anon's ACADEMY FOR MATHS
 $h a v e m a t h s$ in your $p a t h$

MOST IMPORTANT QUESTIONS

Solve the L.P.P given below graphically: $\max \mathrm{z}=3 \boldsymbol{x}+2 \boldsymbol{y}$ subject to the constrains $x+2 y \leq 10,3 x+y \leq 15$,

$$
x \geq \mathbf{0}, y \geq \mathbf{0}
$$

Solve the L.P.P given below graphically: minimise $\mathbf{z = 2 0 0 x}+$ $500 y$ subject to the constrains $x+2 y \geq 10$,

$$
3 x+y \leq 24, \quad x \geq 0, y \geq 0
$$

Using matrix method, solve the system of linear equations: $x+y+2 z=4,2 x-y+3 z=9$,

$$
3 x-y-z=2
$$

Find $\frac{d y}{d x}$, if $y=x^{\sin x}$
$\int \frac{x-1}{(x+1)(x-2)} d x$
$\int_{0}^{\frac{\pi}{2}} \frac{\cos ^{5} x}{\sin ^{5} x+\cos ^{6} x}$
Find the value of k so that $\mathrm{f}(\mathrm{x})=\left\{\begin{array}{l}k x+1, \text { if } x \leq 5 \\ 3 x-5, \text { if } x>5\end{array}\right.$ cont. at $\mathrm{x}=5$
Find the area of triangle with vertices $(2,7),(1,1)(10,8)$
If $A=\left[\begin{array}{lll}1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4\end{array}\right]$ then verify that $A(\operatorname{adj} A)=|A| I$ also find A^{-1}

anon's ACADEMY FOR MATHS
 $h a v e m a t h s$ in your path

 MOST IMPORTANT QUESTIONS

 MOST IMPORTANT QUESTIONS}

Show that the function f given by $f(x)=x^{3}-3 x^{2}+4 x$ $x \in R$ is increasing on \mathbf{R}

Find the rate of change of area of circle with respect to its radius r, when $r=3 \mathrm{~cm}$

Find $\frac{d y}{d x}$ if $x=2 a t^{2}, y=a t^{4}$
The volume of a cube is increasing at a rate of $9 \mathrm{~cm}^{3} / \mathrm{s}$.how fast is the surface area increasing when the length of edge is 10 cm

If $y=3 \cos (\log x)+4 \sin (\log x) \operatorname{show}$ that $x^{2} y_{2}+x y_{1}+y=0$
Find the maximum minimum values if any of the function $f(x)=9 x^{2}+12 x+2$
$\int \frac{(1+\log x)^{2}}{x} d x$

- $\int \frac{x^{2}}{1-x^{6}} d x$
- $\int \frac{1}{9 x^{2}+6 x+5} d x$
f ind the area of the region bounded by the curve $y^{2}=x$ and lines $\mathrm{x}=1 \mathrm{x}=4$ and x axis in the first quadrant

Find the area ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ using integration

anon's ACADEMY FOR MATHS
 $h a v e m a t h s$ in your path

MOST IMPORTANT QUESTIONS

stone is dropped into a quiet lake and waves move in circles at the speed of $4 \mathrm{~cm} / \mathrm{sec}$.At that instant, when radius of circular wave is $\mathbf{1 0} \mathbf{~ c m}$, how fast is the enclosed area increasing?

Consider the the relation R in the set $\{1,2,3\}$ given by

$$
R=\{(1,1),(2,2)(3,3)(1,2)(2,3\}
$$

a) IS R reflexive .why ?
b) Show that R is neither symmetric nor transitive
c) Which ordered pair may added to \mathbf{R} so that it become transitive

Show that the relation R in the set $A=\{1,2,3,4,5\}$
Given by $\mathrm{R}=\{(\boldsymbol{a}, \boldsymbol{b})|\boldsymbol{a}-\boldsymbol{b}|$ iseven $\}$ is equivalence relation
Express $A=\left[\begin{array}{ccc}3 & 3 & -1 \\ -2 & -2 & 1 \\ -4 & -5 & 2\end{array}\right]$ A the sum of symmetric and skew
symmetric
Find the order and degree of the differential equation
$\left(\frac{d^{2} y}{d x^{2}}\right)^{2}+x\left(\frac{d y}{d x}\right)^{3}+y=0$
Find the general solution differential equation

$$
\frac{d y}{d x}=\frac{1+y^{2}}{1+x^{2}}
$$

anon's ACADEMY FOR MATHS
 $h a v e m a t h s$ in your path

 MOST IMPORTANT QUESTIONS

 MOST IMPORTANT QUESTIONS}

Consider the vectors $a=i+2 j-5 k$ and $b=2 i+j+k$
a) Find $\vec{a}+\vec{b}$
b) Find $|\vec{a}+\vec{b}|$
c) Find the unit vector in the direction of $\vec{a}+\vec{b}$
d) Find the vector of magnitude 5 in the direction of $\vec{a}+\vec{b}$

Let $\mathrm{a}=\boldsymbol{i}-2 j+3 k$, and $b=3 i-2 j+k$
a) Find $\vec{a} \cdot \vec{b}$
b) Find the projection of the vector \vec{a} on \vec{b}
c) Find the angle between the vector \vec{a} and \vec{b}

Find the area of triangle with vertices $A(1,1,2) B(2,3,5)$ and C(1,5,5)

Find s.d between the lines

$$
\begin{gathered}
\vec{r}=i+2 j+3 k+\gamma(i-3 j+2 k) \\
\stackrel{\rightharpoonup}{r}=4 i+5 j+6 k+\mu(2 i+3 j+k)
\end{gathered}
$$

Find the general solution of differential equation

$$
\sec ^{2} x \tan y d x+\sec ^{2} y \tan x d y=0
$$

Evaluate $\int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\sin x}}{\sqrt{\sin x}+\sqrt{\cos x}} d x$

anon's
 ACADEMY FOR MATHS
 $h a v e m a t h s$ in your $p a t h$

MOST IMPORTANT QUESTIONS

find the area of the region bounded by the curve $y^{2}=$ xand lnes

$$
x=1=4 \text { and the } x \text { axis in the first quadrant }
$$

$\int \frac{1-\cos x}{\sin ^{2} x} d x$
Bag -I contains 3 red and 4 black balls while another Bag -II contains 5 red and 6 black balls. One ball is drawn at random from one of the bags and it is found to be red. Find the probability that it was drawn from Bag II.

$$
\because \text { If } p(A)=\frac{6}{11}, p(B)=\frac{5}{11} \text { and } P(A \cup B)=\frac{7}{11}
$$

find $\boldsymbol{P}(\boldsymbol{A} \cap \boldsymbol{B})$

* Find the value of x if $\left|\begin{array}{ll}2 & 4 \\ 5 & 1\end{array}\right|=\left|\begin{array}{cc}2 x & 4 \\ 6 & x\end{array}\right|$

anon's
 ACADEMY FOR MATHS
 $h a v e m a+h s$ in your path

MOST IMPORTANT QUESTIONS

