

1. Intermolecular hydrogen bond -

Hydrogen bond formed between two

Same or different molecules.
Eg. Between $\mathrm{H}_{2} \mathrm{O}$, between alcohol and

2. Intramolecular hydrogen bond -

Hydrogen bond formed within the same molecules. Eg. Ortho - nitrophenol.

$1 / 2$
$p^{3} d$ hybrid orbitals filled by electron pairs donated by five Cl atoms.

Hybridisation - $\mathrm{sp}^{3} \mathrm{~d}$
Shape - Triagonal bipyramidal
Bond angles -90° and 120°
equired equation
6 C (graphite) $+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{l}) ; \Delta \mathrm{H}_{\mathrm{f}}^{0}=$?
C (graphite) $+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})$

$$
\begin{equation*}
\Delta \mathrm{H}^{0}=-393.5 \mathrm{~kJ} \mathrm{~mol}^{-1} \tag{1}
\end{equation*}
$$

$\mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$

$$
\begin{equation*}
\Delta \mathrm{H}^{0}=-285.83 \mathrm{~kJ} \mathrm{~mol}^{-1} . \tag{2}
\end{equation*}
$$

$\mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{l})+15 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 6 \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) ;$

$$
\begin{equation*}
\Delta \mathrm{H}^{0}=-3267.0 \mathrm{~kJ} \mathrm{~mol}^{-1} \tag{3}
\end{equation*}
$$

Required equation is obtained by $6 \times(1)$ $+3 \times(2)-(3)$
6 C (graphite) $+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{l}) ;$
$\Delta \mathrm{H}_{\mathrm{f}}^{0}=48.51 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$K_{c}=\frac{[B]^{2}[C]}{[A]^{2}}$
(ii) $\quad \mathrm{K}_{\mathrm{P}}=\mathrm{K}_{\mathrm{C}}(\mathrm{RT})^{\Delta \mathrm{n}} \quad \mid \Delta \mathrm{n}=3-2=$
$K_{P}=3.8 \times 10^{-6}(0.0821 \times 1070)^{1}$
$\mathrm{K}_{\mathrm{P}}=333.8 \mathrm{~atm}$
Step 1. $\mathrm{MnO}_{4}^{-}(\mathrm{aq})+\mathrm{Br}^{-}(\mathrm{aq}) \rightarrow \mathrm{MnO}_{2}(\mathrm{~s})$ $+\mathrm{BrO}_{3}{ }^{-}(\mathrm{aq})$
Change in oxidation state of $\mathrm{Mn},+7$ to +4 , so 3 equivalents, change in oxidation state of two $\mathrm{Br},-1$ to +5 , so it is 6 equivalents. ($3: 6=1: 2$)
(ii)

Step 2. $2 \mathrm{MnO}_{4}^{-}{ }^{-}(\mathrm{aq})+\mathrm{Br}^{-}(\mathrm{aq}) \rightarrow$

$$
2 \mathrm{MnO}_{2}(\mathrm{~s})+\mathrm{BrO}_{3}^{-}(\mathrm{aq}) \quad 1
$$

Step 3. $2 \mathrm{MnO}_{4}^{-}{ }^{-}$(aq) $+\mathrm{Br}^{-}(\mathrm{aq}) \rightarrow$

$$
2 \mathrm{MnO}_{2}(\mathrm{~s})+\mathrm{BrO}_{3}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}
$$

Step 4. $2 \mathrm{MnO}_{4}^{-}(\mathrm{aq})+\mathrm{Br}^{-}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}$

$$
\rightarrow 2 \mathrm{MnO}_{2}(\mathrm{~s})+\mathrm{BrO}_{3}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}
$$

$$
+2 \mathrm{OH}^{-}(\mathrm{aq})
$$

25 Markovnikov rule: When an unsymmetric
Step 5. $2 \mathrm{MnO}_{4}^{-}{ }^{-}(\mathrm{aq})+\mathrm{Br}^{-}{ }^{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O} \rightarrow \quad 1$
$2 \mathrm{MnO}_{2}(\mathrm{~s})+\mathrm{BrO}_{3}^{-}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq})$

24 Electrophiles: Electron deficient species
(i) attack at electron rich centre (Lewis acid). 1

Eg. $\mathrm{Cl}^{+}, \mathrm{ACl}_{3}$
Nucleophiles:
Electron rich species attack at electron 1
deficient centre (Lewis base).
Eg. $\mathrm{CN}^{-}, \mathrm{NH}_{3}$
reagent is added to an unsymmetric alkene, the negative part of the addendum gets attached to the carbon containing lesser number of hydrogen atom.

$\mathrm{CH}_{3}-\mathrm{CHBr}-\mathrm{CH}_{3}$
2 - Bromo propane
(ii)

$\mathrm{CH}_{3} \mathrm{CHO}+\mathrm{HCHO}$
1
26

(B)

(C)

27 to 31, Any 4 ($4 \times 4=16$ Marks)

27 A set of integers used to represent the
(i) energy, position, orientation and spin of electron in an atom.

1. Principal quantum number (n)
2. Azimuthal quantum number (l)
3. Magnetic quantum number (m)
4. Spin quantum number (s).
5. Principal quantum number (n):

It gives the main energy level. It also gives the distance of electron from the nucleus. $\mathrm{n}=1,2,3,4 \ldots$.
2. Azimuthal quantum number (l) : It gives sub shell. $l=0$ to $(\mathrm{n}-1)$ values.

It also gives orbital angular momentum of electron.
When $\mathrm{n}=1, l=0(\mathrm{~s}-$ sub shell $)$
When $\mathrm{n}=2, l=0,1$ (s and $\mathrm{p}-$ sub shell)
When $\mathrm{n}=3, l=0,1,2$
(s, p and d-sub shell)

When $\mathrm{n}=4, l=0,1,2,3$
($\mathrm{s}, \mathrm{p}, \mathrm{d}$ and $\mathrm{f}-$ sub shell)
(ii) 3 p <4 s $<3 \mathrm{~d}<4$ p

28 (i) MO configuration of N_{2} (14 electrons) is: $\sigma 1 \mathrm{~s}^{2} \sigma^{*} 1 \mathrm{~s}^{2} \sigma 2 \mathrm{~s}^{2} \sigma^{*} 2 \mathrm{~s}^{2} \pi 2 \mathrm{px}^{2}=\pi 2 \mathrm{py} \mathrm{y}^{2} \sigma 2 \mathrm{pz}^{2}$
(ii)

Bond order (B.O) $=1 / 2\left[\mathrm{~N}_{\mathrm{b}}-\mathrm{N}_{\mathrm{a}}\right]$

$$
=1 / 2[10-4]=3
$$

N_{2} is diamagnetic, due to the absence of unpaired electron.
29 (i) The maximum amount of energy available to a system during a process that can be converted into useful work.
(ii) $\mathrm{G}=\mathrm{H}-\mathrm{TS}$
(iii)

$\Delta \mathrm{H}$	$\Delta \mathrm{S}$	$\Delta \mathrm{G}$ $(\Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S})$	Description
$(+)$	$(+)$	$(-)$	Spontaneous high T
$(+)$	$(-)$	$(+)$	Non - spontaneous at all T

30 (i) Solutions which resist the change in p^{H} on addition of smallamount of acid or alkali.
Eg. Acidic buffer: An equimolar mixture c weak acid and its conjugate salt.
Eg. An equimolar mixture of acetic acid ar sodium acetate.
Basic buffer: An equimolar mixture of a w base and its conjugate salt.
Eg. An equimolar mixture of $\mathrm{NH}_{4} \mathrm{OH}$ and $\mathrm{NH}_{4} \mathrm{Cl}$.
(ii) pH of a buffer solution does not change on dilution.
On dilution, due to buffer action the ratio of concentration of salt and acid or base remains unchanged.
(iii) The suppression of degree of dissociation of a weak electrolyte by the addition of a strong electrolyte
(Application of Common ion effect:

1. Purification of impure NaCl by using HCl
2. Salting out of soap from glycerol by using NaCl .)

The polarity induced in a molecule by the interaction of a lone pair of electrons with a pi bond or the interaction of two pi bonds.

+ R Effect	- R Effect
Resonance effect which increases the electron density in a conjugated system with activating group. Eg. - OH, - OR, $-\mathrm{NH}_{2},-\mathrm{F},-\mathrm{Cl}$ etc.	Resonance effect which decreases the electron density in a conjugated system with deactivating group. Eg. - NO_{2}, -CN , - COOH etc.
+ R Effect: - OH	

```
\square
``` ,```

