
F	IRST YEAR HSS MODEL EXAMINATIO	N		% of X = $\frac{\text{At.mass of X \times m \times 100}}{\text{Molecular mass of AgX \times w}}$ 1
	FEBRUARY 2023	SSI		Where m = Mass of AgX formed w = Weight of organic compound
	ANSWER KEY		15	TRANS CIS
Q No	Value point	Mark	15	
	1 to 5, Any 4 ($4 \times 1 = 4$ Marks)			H / / /
1	(d) femto	1		c=c c=c 1
2	Unbinilium	1		H CH3
3	1	1		cents cents
	$\frac{1}{x}$			
4	Hexane – 2, 5 – dione	1		<mark>16 to 26, Any 8 (8 × 3 = 24 Marks)</mark>
5	Methane	1	16 (i)	$2H_2(g) + O_2(g) \rightarrow 2H_2O(l)$
	<mark>6 to 15, Any 8 (8 × 2 = 16 Marks</mark>)			2 Vol. 1 Vol 2 Vol 12 Vol 6 Vol 12 Vol 1
6 (i)	Molarity is volume based and the	1		12 Vol6 Vol12 Vol1The volume of water vapour produced = 12 Vol1
	volume depends on temperature.	_	(ii)	Elements Atomic Simplest Simple
(ii)	Molerity $(M) = W_B \times 1000$	1		ratio ratio whole
	Molarity (M) = $\frac{W_B \times 1000}{M_B \times V_{mL}}$			number
	$=\frac{4 \times 1000}{40 \times 250} = 0.4 \text{ mol/L}$			ratio
7 (i)	Phenomenon in which electrons are	1		$C \qquad \frac{67.9}{12} = \frac{5.65}{1.88} = 3 \qquad 3$
. (1)	ejected from the surface of a metal when	-		12 1.88 5.65
	light is incident on it.			$\frac{H}{H} = \frac{5.70}{1} = \frac{5.70}{1.88} = -3$
(ii)	Kinetic energy of electrons ejected is	1		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
	proportional to the frequency of light.			
8	It is impossible to determine the exact	1		
	position and exact velocity of an electron			
	simultaneously.			Empirical formula = C_3H_3N
	$\Delta \mathbf{x} \times \Delta \mathbf{p} \ge \frac{\mathbf{n}}{4\pi}$	1	17	$\Delta E = 2.18 \times 10^{-18} \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right]$
9	Species with same number of electrons.	1		
	N ³⁻ , O ²⁻ , F ⁻ , Ne, Na ⁺ , Al ³⁺	1		$h\boldsymbol{v} = 2.18 \times 10^{-18} \left[\frac{1}{4} - \frac{1}{25}\right]$
10	(1) Grouping of chemically	1		$\boldsymbol{v} = 3.29 \times 10^{15} \left[\frac{1}{4} - \frac{1}{25}\right] \text{ s}^{-1}$
	dissimilar elements.	1		7 25
	(2) Separation of chemically similar			$\boldsymbol{v} = 3.29 \times 10^{15} \left[\frac{21}{100}\right] = 6.909 \times 10^{14} \mathrm{s}^{-1}$ $\frac{1}{2}$
	elements			$\frac{1}{\lambda} = 109677 \left[\frac{1}{n_1^2} - \frac{1}{n_2^2}\right] \text{ cm}^{-1}$
	(3) The position of hydrogen			1
	(4) Anomalous pairs			$n_1 - 2, n_2 - 3$
11	The energy of an isolated system is	1		$\frac{1}{\lambda} = 109677 \left[\frac{1}{4} - \frac{1}{25}\right] \text{ cm}^{-1} = 23032.2 \text{ cm}^{-1}$
	constant.			$\lambda = 4.34 \times 10^{-5} \text{ cm} = 434 \text{ nm}$ $1/2$
	Mathematical expression: $\Delta U = q + w$	1		
12	Homogeneous Heterogeneous		18	The energy required to remove an
	equilibrium equilibrium			electron from an isolated gaseous atom 1
	All reactants and Different phases	1		in its ground state.
	products are in			Trend: Along a period, ionization
	the same phase			enthalpy increases - ¹ / ₂
	$N_2(g) + 3 H_2(g) \leftrightarrow$ $CaCO_3(s) \leftrightarrow$	1		Due to decrease in size and increase in $\frac{1}{2}$
	$2 \text{ NH}_3(g) \text{CaO}(s) + \text{CO}_2(g)$			nuclear charge.
13 (a)	+ 5	1		Down in a group, ionization enthalpy
(b)	-1	1		decreases –
14	Halogen (X = $Cl/Br/I$) containing organic	1		Due to increase in size.
	compound is heated with nitric acid and		19	The attractive force which binds hydrogen
	silver nitrate. Halogen is precipitated as silver halide ($\Delta g X$). From the weight of			atom of one molecule with the electro-
	silver halide (AgX). From the weight of silver halide, the % of halogen can be			negative atom like F, O or N of another
	calculated.			molecule.

	 Magnetic quantum number (m) Spin quantum number (s). Principal quantum number (n): It gives the main energy level. It also gives the distance of electron from the 				1	31 (i)	interaction of a lone pair of electrons with a pi bond or the interaction of two pi bonds.		
	gives the distance of electron from the nucleus. $n = 1, 2, 3, 4 \dots$ 2. Azimuthal quantum number (<i>l</i>): It gives sub shell. $l = 0$ to $(n - 1)$ values. It also gives orbital angular momentum of electron. When $n = 1, l = 0$ (s – sub shell) When $n = 2, l = 0, 1$ (s and p – sub shell) When $n = 3, l = 0, 1, 2$ (s, p and d – sub shell) When $n = 4, l = 0, 1, 2, 3$			1	31(ii)	+ R Effect Resonance effect which increases the electron density in a conjugated system with activating group. Eg OH, - OR, - NH ₂ , - F, - Cl etc.	 – R Effect Resonance effect which decreases the electron density in a conjugated system with deactivating group. Eg NO₂, - CN, - COOH etc. 	2	
					(iii)	+ R Effect: - OH		11/2	
(ii)	(s, p, d and f - sub shell) $3p < 4s < 3d < 4p$						SUJ	ITH	
$\frac{(11)}{28(i)}$									
()	$\sigma 1s^2 \sigma^2 1s^2 \sigma 2s^2 \sigma^2 2s^2 \pi 2px^2 = \pi 2py^2 \sigma 2pz^2$			2					
(ii)	Bond order (B.O) = $\frac{1}{2} [N_b - N_a]$ = $\frac{1}{2} [10 - 4] = 3$			1					
	N ₂ is diamagnetic, due to the absence of unpaired electron.				1				
29 (i)	availa	ble to a	im amount of a system durin onverted into	g a process	1				
(ii)		that can be converted into useful work. G = H - TS							
(iii)	∆H	⊿S	ΔG ($\Delta G = \Delta H - T\Delta S$)	Description					
	(+)	(+)	(-)	Spontaneous high T	1				
	(+)	(-)	(+)	Non - spontaneous	1				
30 (i)	at all T Solutions which resist the change in p ^H on addition of smallamount of acid or alkali. Eg. Acidic buffer: An equimolar mixture c			1					
	weak acid and its conjugate salt. Eg. An equimolar mixture of acetic acid ar sodium acetate.				1				
	Basic buffer: An equimolar mixture of a w base and its conjugate salt. Eg. An equimolar mixture of NH ₄ OH and NH ₄ Cl.				1				
(ii)	 pH of a buffer solution does not change on dilution. On dilution, due to buffer action the ratio of concentration of salt and acid or base remains unchanged. The suppression of degree of dissociation of a weak electrolyte by the addition of a strong electrolyte containing a common ion. (Application of Common ion effect: 1. Purification of impure NaCl by using 			1					
(iii)				1					
	HCl 2. Salt		t of soap from						