

Reg.	No.	:	•••••

Name:

FIRST YEAR HIGHER SECONDARY MODEL EXAMINATION, JUNE 2022 Part – III

Part – III PHYSICS

Maximum: 60 Scores

Time: 2 Hours

Cool-off Time: 15 Minutes

General Instructions to Candidates:

- There is a 'Cool off time' of 15 minutes in addition to the writing time.
- · Read questions carefully before answering.
- · Calculations, figures and graphs should be shown in the answer sheet itself.
- Malayalam version of the questions is also provided.
- · Give equations wherever necessary.
- Electronic devices except non programmable calculators are not allowed in the Examination Hall.

വിദ്യാർത്ഥികൾക്കുള്ള പൊതുനിർദ്ദേശങ്ങൾ :

- നിർദ്ദിഷ്ട സമയത്തിന് പുറമെ 15 മിനിട്ട് 'കൂൾ ഓഫ് ടൈം' ഉണ്ടായിരിക്കും.
- ഉത്തരങ്ങൾ എഴുതുന്നതിന് മുമ്പ് ചോദ്യങ്ങൾ ശ്രദ്ധാപൂർവ്വം വായിക്കണം.
- കണക്ക് കൂട്ടലുകൾ, ചിത്രങ്ങൾ, ഗ്രാഫുകൾ, എന്നിവ ഉത്തരപേപ്പറിൽ തന്നെ ഉണ്ടായിരിക്കണം.
- ചോദ്യങ്ങൾ മലയാളത്തിലും നൽകിയിട്ടുണ്ട്.
- അവശ്യമുള്ള സ്ഥലത്ത് സമവാകൃങ്ങൾ കൊടുക്കണം.
- പ്രോഗ്രാമുകൾ ചെയ്യാനാകാത്ത കാൽക്കുലേറ്ററുകൾ ഒഴികെയുള്ള ഒരു ഇലക്ട്രോണിക് ഉപകരണവും പരീക്ഷാഹാളിൽ ഉപയോഗിക്കുവാൻ പാടില്ല.

Answer any five questions from 1 to 7. Each carries 1 score.

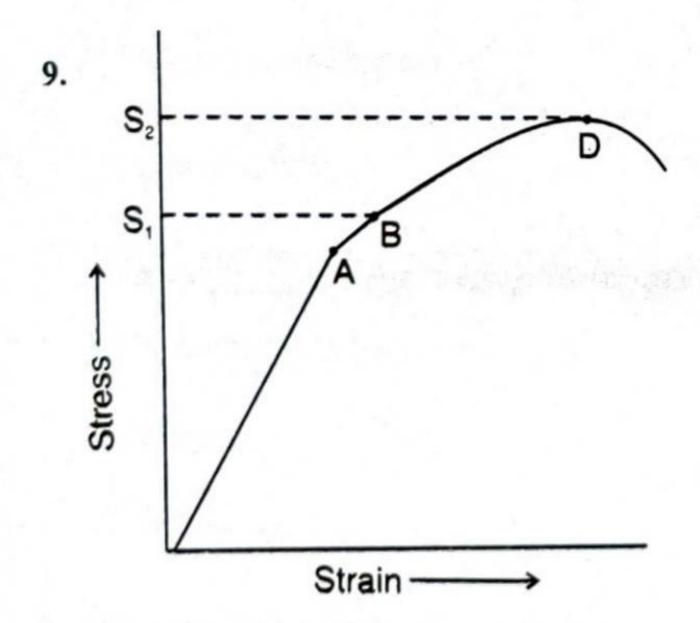
 $(5 \times 1 = 5)$

- 1. Which one of the following fundamental forces in nature binds protons and neutrons?
 - a) Gravitational force
 - b) Electromagnetic force
 - c) Strong nuclear force
- 2. 1 Angstrom $[1Å] = ____$
 - a) 10^{-15} m
 - b) 10^{-10} m
 - c) 10^{-12} m
- 3. Magnitude of a null vector is
 - a) 1
 - b) Zero
 - c) Unpredictable

1 മുതൽ 7 വരെ ചോദ്യങ്ങളിൽ ഏതെങ്കിലും 5 എണ്ണത്തിന് ഉത്തരമെഴുതുക. 1 സ്കോർവീതം. (5×1=5)

- പോട്ടോണുകളെയും ന്യൂട്രോണുകളെയും തമ്മിൽ ബന്ധിപ്പിക്കുന്ന പ്രകൃതിയിലെ അടിസ്ഥാന ബലം താഴെ പറയുന്നവയിൽ ഏതാണ് ?
 - ഭൂഗുരുത്വാകർഷണ ബലം
 - b) ഇലക്ട്രോമാഗ്നറ്റിക് ബലം
 - c) ന്യൂക്ലിയർ ബലം
- 2. 1 ആംഗ്സ്രോം [1Å] = _____
 - a) 10⁻¹⁵ m
 - b) 10⁻¹⁰ m
 - c) 10⁻¹² m
- ഒരു ശൂന്യ സദിശത്തിന്റെ പരിമാണം ____ ആണ്.
 - a) 1
 - b) പൂജ്യം
 - c) പ്രവചനാതീതം

4.	When a bus suddenly moves forward, a passenger gets thrown backward with a jerk. Name the law used to explain the above situation.
	a) Law of area
	b) Second law of motion
	c) Law of inertia
5.	The ratio of tensile stress to the longitudinal strain is
	a) Young's modulus
	b) Elasticity
	c) Elastomer
6.	Working of a hydraulic lift is based on law.
	a) Pascal's law
	b) Newton's law
	c) Kepler's law
7.	The change of solid state to vapour state without passing through the liquid state is called
	a) Melting
	b) Sublimation
	c) Regelation



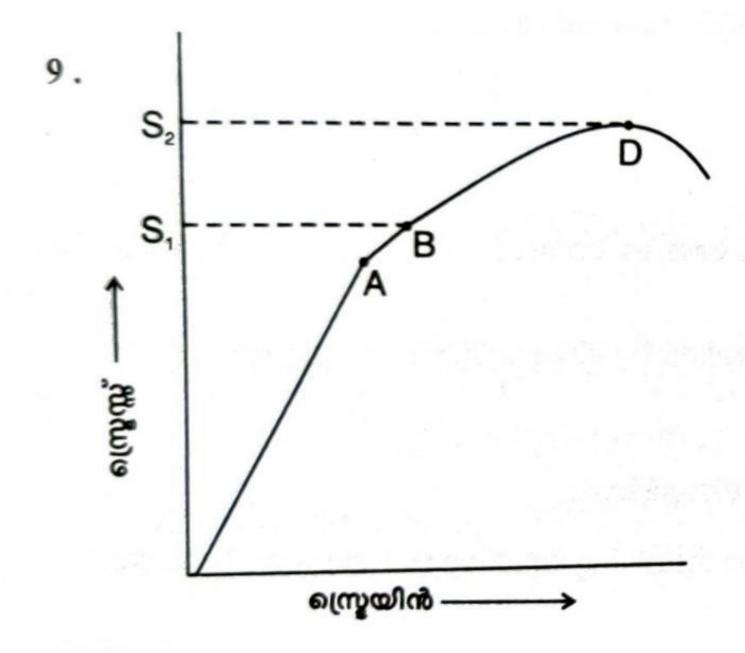
4.	ഒരു ബസ് പെട്ടെന്ന് മുന്നോട്ട് നീങ്ങുമ്പോൾ യാത്രക്കാരൻ ഒരു ഞെട്ടലോടെ	പിന്നിലേക്ക
	തെറിച്ചു വീഴുന്നു. മേൽപ്പറഞ്ഞ സാഹചര്യം വിശദീകരിക്കുവാൻ ഉപയോഗിക	പ്സെ നിയമ
	ത്തിന്റെ പേര് എഴുതുക.	
	a) പ്രദേശ നിയമം	
	b) രണ്ടാം ചലന നിയമം	
	c) ജഡത്വനിയമം	
5.	ടെൻസൈൽ സ്മ്രെസ്സിന്റെയും ലോഞ്ചിട്യൂഡിനൽ സ്മ്രെയിനിന്റെയും അനുപാതം	ആണ്.
	a) യംഗ്സ് മോഡുലസ്	
	b) ഇലാസ്ക്ലീകത	
	c) ഇലാസ്റ്റോമർ	
6.	ഒരു ഹൈഡ്രോളിക് ലിഫ്റ്റിന്റെ പ്രവർത്തനം നിയമത്തെ അടിസ്ഥാനം	മാക്കിയാണ്.
6.	ഒരു ഹൈഡ്രോളിക് ലിഫ്റ്റിന്റെ പ്രവർത്തനം നിയമത്തെ അടിസ്ഥാനം a) പാസ്ക്കൽ നിയമം	മാക്കിയാണ്.
6.		മാക്കിയാണ്.
6.	a) പാസ്ക്കൽ നിയമം	മാക്കിയാണ്.
6.	a) പാസ്ക്കൽ നിയമം b) ന്യൂട്ടൺ നിയമം	മാക്കിയാണ്.
6. 7.	a) പാസ്ക്കൽ നിയമം b) ന്യൂട്ടൺ നിയമം	
	a) പാസ്ക്കൽ നിയമം b) ന്യൂട്ടൺ നിയമം c) കെപ്പർ നിയമം	
	 a) പാസ്ക്കൽ നിയമം b) ന്യൂട്ടൺ നിയമം c) കെപ്ലർ നിയമം ദ്രാവകാവസ്ഥയിലൂടെ കടന്നുപോകാതെ ഖരാവസ്ഥയിൽ നിന്നും വാതകാവസ്ഥ 	
	 a) പാസ്ക്കൽ നിയമം b) ന്യൂട്ടൺ നിയമം c) കെപ്പർ നിയമം ദ്രാവകാവസ്ഥയിലൂടെ കടന്നുപോകാതെ ഖരാവസ്ഥയിൽ നിന്നും വാതകാവസ്ഥ മാറ്റത്തെ എന്നു വിളിക്കുന്നു. 	
	 a) പാസ്ക്കൽ നിയമം b) ന്യൂട്ടൺ നിയമം c) കെപ്പർ നിയമം ദ്രാവകാവസ്ഥയിലൂടെ കടന്നുപോകാതെ ഖരാവസ്ഥയിൽ നിന്നും വാതകാവസ്ഥമാറ്റത്തെ എന്നു വിളിക്കുന്നു. a) മെൽറ്റിംഗ് 	

Answer any 5 questions from 8 to 14. Each carries 2 scores.

 $(5 \times 2 = 10)$

8. Show that impulse is equal to change in momentum.

In the given stress-strain graph identify the stresses S, and S, corresponding to points B and D respectively.


10. A body falls through a fluid

- i) Name the forces acting on the falling body.
- ii) Name the velocity of the body when the net force acting on it is zero. (1+1)
- 11. The triple point of carbon dioxide is -56.6°C. Express this temperature on Fahrenheit scale.

8 മുതൽ 14 വരെ ചോദ്യങ്ങളിൽ ഏതെങ്കിലും 5 എണ്ണത്തിന് ഉത്തരമെഴുതുക. 2 സ്കോർ വീതം.

 $(5 \times 2 = 10)$

അവേഗവും അക്കവ്യത്യാസവും തുല്യമാണെന്ന് തെളിയിക്കുക.

തന്നിരിക്കുന്ന സ്മെസ്സ്-സ്മെയിൻ ഗ്രാഫിൽ ${f B}, {f D}$ എന്നീ പോയിന്റുകൾക്കു നേരെയുള്ള ${f S}_{_1}$, ${f S}_{_2}$ എന്നീ പോയിന്റുകളിലെ സ്മെസ്സുകൾ ഏതൊക്കെയാണെന്ന് എഴുതുക.

- 10. ദ്രാവകത്തിലൂടെ ഒരു വസ്തു വീഴുന്നു.
 - വീഴുന്ന വസ്തുവിൽ അനുഭവപ്പെടുന്ന ബലങ്ങൾ ഏവ ?
 - ii) പ്രസ്തുത വസ്തുവിൽ അനുഭവപ്പെടുന്ന അകെ ബലം പൂജ്യമാകുമ്പോൾ വസ്തുവിന്റെ പ്രവേഗത്തിന്റെ പേരെഴുതുക.
- 11. കാർബൺഡൈഓക്സൈഡിന്റെ ട്രിപ്പിൾ പോയിന്റ് -56.6°C ആണ്. ഈ താപനില ഫാരൻഹീറ്റ് സ്കെയിലിൽ എത്രയാണ് ?

- 12. State the law of equipartition of energy.
- 13. Equation for velocity of simple harmonic motion is $V_{(t)} = -\omega A \sin(\omega t + \phi)$. Find the expression for acceleration of simple harmonic motion.
- 14. What is meant by standing waves?

Answer any 6 questions from 15 to 22. Each carries 3 scores.

 $(6 \times 3 = 18)$

- 15. The correctness of equations can be checked by the principle of homogeneity of dimensions.
 - i) State the principle of homogeneity of dimensions.
 - ii) Using this principle, check whether the following equation is dimensionally correct.

$$\frac{1}{2}mv^2 = mgh \tag{1+2}$$

- 16. i) Draw the velocity time graph of a uniformly accelerated object.
 - Using the graph derive an equation for displacement in terms of initial velocity V₍₀₎ and acceleration (a).
- 17. Find the magnitude of the resultant of two vectors \vec{A} and \vec{B} in terms of their magnitudes and angle θ between them.
- 18. A mass rests on a horizontal plane. The plane is gradually inclined with the horizontal until the mass just begins to slide. Find an equation for the coefficient of static friction (μ_s) between the block and the surface.

- ഊർജ്ജത്തിന്റെ സമഭാഗീകരണ നിയമം പ്രസ്താവിക്കുക.
- 13. സിമ്പിൾ ഹാർമോണിക് ചലനത്തിന്റെ പ്രവേഗത്തിന്റെ സമവാക്യം $V_{(t)} = -\omega A \sin{(\omega t + \phi)}$ ആണ്. ത്വരണത്തിന്റെ സമവാക്യം കണ്ടുപിടിക്കുക.
- 14. നിശ്ചലതരംഗങ്ങൾ എന്നാൽ എന്ത് ?
- 15 മുതൽ 22 വരെ ചോദ്യങ്ങളിൽ ഏതെങ്കിലും 6 എണ്ണത്തിന് ഉത്തരമെഴുതുക. 3 സ്കോർ വീതം. (6×3=18)
- സമവാകൃങ്ങളുടെ കൃതൃത ഡൈമൻഷണൽ ഏകാത്മകതാ തത്വം ഉപയോഗിച്ച് പരിശോധിക്കാം.
 - i) ഡൈമൻഷണൽ ഏകാത്മാകതാ തത്വം പ്രസ്താവിക്കുക.
 - ii) ഈ നിയമം ഉപയോഗിച്ച് താഴെ തന്നിരിക്കുന്ന സമവാക്യം ഡൈമൻഷണലായി ശരിയാണോ എന്ന് പരിശോധിക്കുക.

$$\frac{1}{2}mv^2 = mgh \tag{1+2}$$

- i) സമാന ത്വരണ ചലനത്തിന്റെ പ്രവേഗ-സമയ (v-t) ഗ്രാഫ് വരക്കുക.
 - ii) പ്രവേഗ-സമയ ഗ്രാഫ് ഉപയോഗിച്ച് ആദ്യ പ്രവേഗത്തിനെയും $V_{(0)}$ ത്വരണത്തിനെയും (a) ബന്ധപ്പെടുത്തി സ്ഥാനാന്തരത്തിന്റെ സമവാക്യം രൂപീകരിക്കുക. (1+2)
- \overrightarrow{A} , \overrightarrow{B} എന്നീ സദിശങ്ങളുടെ പരിണത ഫലത്തിന്റെ പരിമാണം \overrightarrow{A} യുടെയും \overrightarrow{B} യുടെയും പരി മാണങ്ങളുടെയും അവയ്ക്കിടയിലുള്ള കോണളവിന്റെയും അടിസ്ഥാനത്തിൽ കണ്ടുപിടിക്കുക.
- 18. ഒരു വസ്തു തിരിശ്ചീന പ്രതലത്തിൽ നില കൊള്ളുന്നു. വസ്തു നിരങ്ങി നീങ്ങുന്നതുവരെ ഈ പ്രതല ത്തിന്റെ ചരിവ് ക്രമേണ ഉയർത്തുന്നു. ഈ വസ്തുവും പ്രതലവും തമ്മിലുള്ള സ്ഥിത ഘർഷണ ഗുണാങ്ക ത്തിന്റെ (μ) സമവാക്യം കണ്ടുപിടിക്കുക.

- 19. Find the angle between force $\vec{F} = (3\hat{i} + 4\hat{j} 5\hat{k})$ unit and displacement $\vec{d} = (5\hat{i} + 4\hat{j} + 3\hat{k})$ unit.
- 20. Angular momentum of a rotating body is $\vec{l} = \vec{r} \times \vec{p}$. Using this relation arrive at the equation, $\frac{d\vec{l}}{dt} = \vec{\tau}$.
- 21. i) The value of acceleration due to gravity is maximum at the _____.
 - a) Poles
 - b) Centre of the earth
 - c) Equator
 - ii) Find the height at which g is reduced to $\frac{g}{2}$. (Radius of earth R_E)
- 22. i) Differentiate streamline flow and turbulent flow.
 - ii) What is meant by critical speed in fluid dynamics? (2+1)

Answer any 3 questions from 23 to 27. Each carries 4 scores. (3×4=12)

- 23. An object released near the surface of earth is accelerated downward under the influence of gravity
 - i) Write down the equations of motion in this case.
 - ii) Also plot a graph connecting acceleration and time in this case. (3+1)

- 19. ബലം $\vec{F}=(3\hat{i}+4\hat{j}-5\hat{k})$ യൂണിറ്റ്, സ്ഥാനാന്തരം $\vec{d}=(5\hat{i}+4\hat{j}+3\hat{k})$ യൂണിറ്റ് ആയാൽ ഇവയ്ക്കിടയി ലുള്ള കോണളവ് കാണുക.
- 20. കുറങ്ങുന്ന ഒരു വസ്തുവിന്റെ കോണീയ ആക്കം $\vec{l}=\vec{r}\times\vec{p}$. ഈ സമവാക്യം ഉപയോഗിച്ച് $\frac{d\vec{l}}{dt}=\vec{\tau}$ എന്ന സമവാക്യം രൂപീകരിക്കുക.
- i) ഭൂഗുരുത്വാകർഷണം മൂലമുള്ള ത്വരണത്തിന്റെ കൂടിയ വില _____ ൽ അനുഭവപ്പെടുന്നു.
 - a) ധ്രുവങ്ങളിൽ
 - b) ഭൂമിയുടെ മധ്യത്തിൽ
 - c) ഭൂമധ്യരേഖയിൽ
 - ii) g യുടെ വില $\frac{g}{2}$ ആയി മാറുന്ന ഉയരം (h) കണ്ടുപിടിക്കുക. $(ഭൂമിയുടെ ആരം R_{_E}) \end{tabular}$ (1+2)
- 22. i) ധാരാരേഖീയ പ്രവാഹവും പ്രക്ഷുബ്ധ പ്രവാഹവും തമ്മിലുള്ള വൃത്യാസമെന്ത് ?
 - ii) ദ്രവക ചലനാത്മകതയിലെ 'ക്രിട്ടിക്കൽ വേഗത' എന്നാൽ എന്ത് ?(2+1)
- 23 മുതൽ 27 വരെ ചോദ്യങ്ങളിൽ ഏതെങ്കിലും 3 എണ്ണത്തിന് ഉത്തരമെഴുതുക. 4 സ്കോർ വീതം.

 $(3 \times 4 = 12)$

- ഭൂമിയുടെ ഉപരിതലത്തിനടുത്തു നിന്നു വിട്ടയക്കുന്ന ഏതൊരു വസ്തുവിനും ഗുരുത്വാകർഷണ ബലത്തിനാൽ താഴേക്ക് ത്വരണമുണ്ടാകുന്നു.
 - ഈ വസ്തുവിനെ സംബന്ധിച്ച ചലന സമവാക്യങ്ങൾ എഴുതുക.
 - ii) ഈ വസ്തുവിന്റെ ത്വരണസമയ ഗ്രാഫ് വരയ്ക്കുക. (3+1)

- 24. i) What is meant by work done by a force?
 - ii) Write down any two conditions in which work done is zero.
 - iii) Write any one example for negative work.

(1+2+1)

- 25. Heat engine is a device by which a system is made to undergo a cyclic process that results in conversion of heat to work. Explain briefly the operations of a Carnot's heat engine and draw the Carnot's cycle.
 (4)
- 26. i) What do you mean by simple harmonic motion?
 - ii) Prove that the projection of uniform circular motion on any diameter of the circle is simple harmonic motion. (1+3)
- 27. A resonance column is an example for a closed pipe.
 - i) Sketch the pattern of wave forms of the first two harmonics formed in a closed pipe.
 - ii) Show that in a closed pipe the frequencies of the first two harmonics are in the ratio 1:3. (2+2)

Answer any 3 questions from 28 to 32. Each carries 5 scores.

 $(3 \times 5 = 15)$

- 28. A ball is projected at an angle θ with the horizontal
 - i) What is the path followed by this ball?
 - a) Circle
 - b) Ellipse
 - c) Parabola

- 24. i) 'ബലം ചെയ്യുന്ന പ്രവൃത്തി' എന്നാൽ എന്ത് ?
 - ii) പ്രവൃത്തി 'പൂജ്യം' ആകുന്ന ഏതെങ്കിലും രണ്ട് സാഹചര്യങ്ങൾ എഴുതുക.
 - iii) നെഗറ്റീവ് പ്രവൃത്തിക്ക് ഏതെങ്കിലും ഒരു ഉദാഹരണം എഴുതുക. (1+2+1)
- 25. ഒരു വ്യവസ്ഥയെ ഒരു ചാക്രിക പ്രക്രിയയ്ക്ക് വിധേയമാക്കി താപത്തെ പ്രവൃത്തിയാക്കി മാറ്റുന്ന ഉപകരണമാണ് താപയന്ത്രം. കാർനോ എഞ്ചിന്റെ പ്രവർത്തനങ്ങൾ ചുരുക്കത്തിൽ വിവരിക്കുക, കാർനോ ചക്രം വരക്കുക.
 (4)
- 26. i) സിമ്പിൾ ഹാർമോണിക് ചലനം എന്നാൽ എന്ത് ?
 - ii) സമവർത്തുള ചലനത്തിന്റെ വൃത്തപാതയുടെ ഏതെങ്കിലും വ്യാസരേഖയിലേക്കു വര ക്കുന്ന പ്രക്ഷേപ പാദത്തിന്റെ ചലനം സിമ്പിൾ ഹാർമോണിക് ചലനമാണ് എന്ന് തെളി യിക്കുക.
 (1+3)
- 27. റെസൊണെൻസ് കോളം ഒരു ക്ലോസ്ഡ് പൈപ്പിന് ഉദാഹരണമാണ്.
 - ഒരു ക്ലോസ്ഡ് പൈപ്പിന്റെ ആദ്യ രണ്ടു ഹാർമോണിക്സിന്റെ തരംഗ രൂപത്തിന്റെ മാതൃക വരക്കുക.
 - ii) ഒരു ക്ലോസ്ഡ് പൈപ്പിന്റെ ആദ്യ രണ്ടു ഹാർമോണിക്സിന്റെ ആവൃത്തികളുടെ അനുപാതം1:3 ആണെന്ന് തെളിയിക്കുക.
- 28 മുതൽ 32 വരെ ചോദൃങ്ങളിൽ ഏതെങ്കിലും 3 എണ്ണത്തിന് ഉത്തരമെഴുതുക. 5 സ്കോർ വീതം. (3×5=15)
- 28. ഒരു പന്ത് തിരശ്ചീന തലത്തിൽ നിന്നും നിശ്ചിത കോണിൽ പ്രൊജക്ട് ചെയ്യുന്നു.
 - i) ഈ പന്ത് പിന്തുടരുന്ന പാത ഏതാണ് ?
 - a) വൃത്തം
 - b) ദീർഘവൃത്തം
 - c) പരാബോള

- ii) Derive an equation for the path followed by the ball.
- iii) A cricket ball is thrown at a speed of 28 ms⁻¹ at an angle $\theta = 30^{\circ}$ with the horizontal. Calculate the maximum height. (sin 30 = 0.5) (1+2+2)
- 29. A car is moving on a circular level road.
 - i) What are the three forces acting on the car?
 - ii) Derive an expression for maximum safe speed of the car. (1+4)
- 30. State and prove Bernoulli's principle.
- 31. i) Define orbital velocity of a satellite.
 - ii) Obtain an equation for orbital velocity.
 - iii) Write the relationship connecting orbital velocity and escape speed. (1+3+1)
- 32. i) What are the analogues of mass and force in rotational motion?
 - ii) Derive an expression for kinetic energy of a rotating body. (2+3)

- പന്ത് പിന്തുടരുന്ന പാതയ്ക്ക് ഒരു സമവാക്യം രൂപീകരിക്കുക.
- iii) തിരശ്ചീന തലത്തിൽ നിന്നും 30° കോണളവിൽ $28~{
 m ms}^{-1}$ വേഗത്തിൽ ഒരു ക്രിക്കറ്റ് പന്ത് എറിയപ്പെടുന്നു. ക്രിക്കറ്റ് പന്ത് എത്തിച്ചേരുന്ന ഏറ്റവും കൂടിയ ഉയരം കണ്ടുപിടിക്കുക. $(\sin 30 = 0.5)$
- 29. നിരപ്പായ റോഡിലൂടെ വൃത്താകൃതിയിലുള്ള പാതയിലൂടെ ഒരു കാർ സഞ്ചരിക്കുന്നു.
 - i) ഈ കാറിൽ അനുഭവപ്പെടുന്ന മൂന്ന് ബലങ്ങൾ ഏതൊക്കെ ?
 - ii) കാറിന്റെ പരമാവധി സുരക്ഷിത വേഗതയുടെ സമവാക്യം രൂപീകരിക്കുക. (1+4)
- 30. ബെർണോളി തത്വം പ്രസ്താവിക്കുകയും തെളിയിക്കുകയും ചെയ്യുക.
- i) ഒരു സാറ്റലൈറ്റിന്റെ പരിക്രമണ പ്രവേഗം നിർവ്വചിക്കുക.
 - ii) പരിക്രമണ പ്രവേഗത്തിന് ഒരു സമവാക്യം രൂപീകരിക്കുക.
 - iii) പരിക്രമണ പ്രവേഗവും പലായന വേഗവും തമ്മിലുള്ള ബന്ധം എഴുതുക. (1+3+1)
- 32. i) പിണ്ഡത്തിനും ബലത്തിനും സമാനമായി ഭ്രമണ ചലനത്തിലുള്ളവ ഏതൊക്കെയാണ് ?
 - ii) ഭ്രമണം ചെയ്യുന്ന ഒരു വസ്തുവിന്റെ ഗതികോർജ്ജത്തിന്റെ സമവാക്യം രൂപീകരിക്കുക. (2+3)