FIRST YEAR HIGHER SECONDARY MODEL EXAMINATION JUNE 2022

Part III

CHEMISTRY

COI	DE No. ME-62	25 ANSWER KEY MAXIMUM SCOR	RE : 60	
Q. N o.		SECTION 1 : Answer any 6 questions from 1 to 11. Each carries 2 scores (8 x 2 = 16) MAXIMUM MARKS : 16	Split Score	Total Score
1		They start from cathode, more rays are produced from the space between cathode and anode and move towards anode They are material particles They travel in straight lines. They are deflected by both electric and magnetic field. Deflection in the electric field is towards positive plate shows that they are negatively charged particles They does not depend on the nature of the gas inside discharge tube The charge to mass ratio (e/m) is same for all gases (Any Two)		2
2	i) ii)	Pauli's exclusion principle An orbital is the region in space around the nucleus where there is	1	2
3		Here one s orbital and three p orbitals undergo hybridisation, and four sp ³ hybridized orbitals are formed.	1	2
		CH ₄ OR CCl ₄ OR NH ₃ OR H ₂ O OR Any suitable example	1	
4		 O → atomic number 8, Electronic configuration 2,6. Oxygen has six valance electrons. Bonded with two hydrogen atoms. So Oxygen has two bond pairs and two lone pairs around it. There are three type repulsions. Bond pair-bond pair repulsion < bond pair- lone pair repulsion < lone pair - lone pair repulsion. Due to these repulsions bond angle is reduced from tetrahedral angle to 104.5°. Geometry is bent shape or inverted V shape. 		2
5	i)	Oxidation: Increase in oxidation number.	1/2 + 1/2	2
	ii)	Reduction: Decrease in oxidation number.Zn is reducing agent (reductant)Cu2+is oxidizing agent (oxidant).	1/2 + 1/2	-
6	i)	(a) CH₄	1	2
	ii)	Sodium hexa meta phosphate is commercially known as calgon	1	

7		Column A	Column	3½X4	2				
		(a) Quick lime	CaO						
		(b) Plaster of Paris	CaSO ₄ . ½	H₂O					
		(c) Dead burned plaster	CaSO ₄						
		(d) Gypsum	CaSO ₄ . 2	H₂O					
o		The two boron atoms and four hydrogen atoms lie in one plane These four hydrogen atoms are called terminal hydrogen atom	e. ns.		2				
		The other two hydrogen atoms lie above and below this plane. These hydrogen atoms are called bridging hydrogen atoms.							
		The four terminal B-H bonds are 2centre 2 electron bonds (2c -	– 2e).						
		The two bridged B-H-B bonds are 3centre 2 electron bonds (3c	– 2e).						
		Thus diborane is an electron deficient compound.							
		H. A							
		5120°							
		(H) (B) (120 (H)							
		B							
		134 pm							
		Но н н							
		H H H							
		B B							
		п н н							
0	:)			1					
9	1) ii)	s-chioropropanal	1	1	_ _				
	" <i>)</i>		R	T					
		$CH_3 - CH - CH=CH=CH_3 - 100$, 11111000	1.1						
		Pent-3-en-2-ol							
10	i)	$CH_3 + < CH_3 - CH_2 + < (CH_3)_2 CH + < (CH_3)_3 C +$		1	2				
	ii)	Inductive effect , Hyper conjugation		1					
11		(i) For dry cleaning of cloths liquid carbon dioxide is used.	•		2				
		(ii) For bleaching of paper hydrogen peroxide is used.							

	SECTION 2 : Answer any 8 questions from 12 to 23. Each carries 3 scores (8 x 3 = 24) MAXIMUM MARKS : 24						Split Score	TO Sc	tal ore	
12	Elements	Atomic mass	Percentage (%)	$\begin{array}{r} Relativ\\ = \frac{Perc}{Atom} \end{array}$	e number of moles entage nic mass	Simple ratio	Whol num ratio	e ber	3	
	Hydroger	n 1	4.07%	4.07/1 =4	.07	4.07/2.01 =	2			
					-					
	Carbon 12		24.27% 24.27/	24.27/12	=2.02	2.02/2.01 =1	1	1		
	Chlorine	35.5	71.65 %	71.65/35.	5=2.01	2.01/2.01 =1	1			
		Empirical fo Molecular m $n = rac{Mol}{Empiric}$ Molecular fo	rmula mass = (1 nass = 98.96 lecular mass al formula mass prmula = n x E	2 x1) + (1 x) = $\frac{98.96}{49.5} = 2$ Empirical for	x 2) + (35.5 x 1) = 49 rmula =2 (CH ₂ Cl) = (9.5 C ₂ H ₄ Cl ₂				
13	(i)	Molarit	y		Molality			2	3	
		Molarity i of moles of the solution	s defined as the of solute in one on.	e number litre of	Molality is defined a of moles of solute in of the solvent.	is the number one kilogran	1			
		Molarity Number of n Volume of sc W _B X 1000 M _B X V _{(in n}	$= \frac{1}{1} $		$Molality = \frac{Number}{Mass of}$ in kilo	$\frac{f_{b}}{f_{b}} = \frac{1}{M_{E}}$	$\frac{W_B X 10}{X W_{A_{(in)}}}$	00 Igram)		
		Molarity of because it which cha	lepends on tem is related to von nges with temp	perature olume, perature.	Molality does not d	e <mark>pend</mark> on te n TRY	nperat	ure		
	(ii)	Molarity	man p	- A OLIF		CLUD		1		
L4	(i)	s and p bloc	k elements (exce	pt noble ga	ses) are called represer	ntative elemen	<u>ts</u> .	1	3	
	(ii)	Atoms a isoelecti <i>N³⁻,O</i> But cont	nd ions which co ronic species. ²⁻ , F ⁻ , Na ⁺ , Ma rain 10 electrons	ontain same g ²⁺ , Al ³⁺ each)	number of electrons ar (These have differen	e called It nuclear char	ge ,	1		
15	(i)	The amount of energy released when an electron is added to isolated gaseous 1 atom is called electron gain enthalpy.						1	3	
	(ii)	In fluorine atom , inter electronic repulsion in the 2p sub shell is more, due to the very small size of fluorine atom But in chlorine ,electrons are added to relatively larger 3p sub shell . That is relatively easy. So chloring has more possible electron gain anthalay						2		
16		(I) Al m (II) Tł	I the gases are olecules.	made up o	f extremely small part	ticles called	10		3	
	attractive force between the gas molecules.									

		(III) The volume of the gas molecule is negligible as compared to the		
		total volume of the gas.		
		(IV) The molecules are in random and rapid motion. During their		
		motion. they collide with each other and on the walls of the		
		container.		
		(V) The pressure of the gas is due to the collision of molecules on the		
		walls of the container		
		(VI) Molecular collisions are perfectly elastic ie. There is no net loss or		
		gain energy in their collisions However there may be		
		redistribution of energy during such collisions		
		(VIII) Different melecules pessess different speed and hence different		
		anorgios However, the average kinetic energy of the molecules is		
		directly proportional to its absolute tomporature		
17	(i)		2	2
17	(1)	$P_1v_1 - P_2v_2$ 1 2 X 120 - D. X 180	2	5
		$1.2 \times 120 - F_2 \times 160$		
		$P_2 = \frac{180}{180} = 0.8 b dr$		-
	(ii)	Viscosity decreases with rise in temperature.	1	
18	(i)	Density	1	3
	(ii)	$\Delta H_{f}^{0} = -393.5 - (-283.0) = -110.5 \text{ kJmol}^{-1}$	2	
19	i)	AICl ₃ is electron deficient compound , can accept electron pair and so Lewis acid	1	3
	ii)	NH ₄ Cl on hydrolysis gives HCl and NH ₄ OH. HCl is strong acid and ionize completely	1	
		and so H+ concentration is high . Acidic solution. So P" is less than 7		-
	(iii) (i)	Due to common ion effect	1	
20	(1)	Combination reactions	2	3
		Decomposition reactions		
		Dispropertionation reactions		
	(ii)	$7n + 2 H(1 \rightarrow 7nCl_{2} + H_{2})$	1	-
21	(i)	Hardness can be removed by boiling is called temporary bardness.	1	3
		It is due to the presence of bicarbonates of calcium and magnesium.	-	
	(ii)	(i) Boiling: Insoluble magnesium hydroxide and calcium carbonates are	2	
		produced. Filtered.		
		$M(HCO_3)_2 \rightarrow MCO_3 + H_2O + CO_2 , (M = Mg, Ca)$		
		(ii) Clarks method: By adding lime , bicarbonates are converted as magnesium		
		hydroxide and calcium carbonates. Filtered.		
22	:)	$Mg(HCO_3)_2 + 2 Ca(OH)_2 \rightarrow 2 CaCO_3 + Mg(OH)_2 + 2 H_2O$	2	2
22	1)	$ \begin{array}{c} Br \\ C U & C U = C U + U D m \\ \end{array} $	2	3
		$(H_3 - CH = CH_2 + HBT \rightarrow CH_3 - CH - CH_3 + CH_3 - CH_2 - CH_2 - BT$		
		(Minor)		
	ii)	Markownikkov's rule	1	-
23	i)	Green house effect is the phenomenon in which earth's atmosphere trans the heat	1	3
	, ,	from the sun and prevents it from escaping into outer space resulting in the rise of	-	-
		atmospheric temperature.		
•	ii)	It is the amount of oxygen required by micro organism to oxidize organic matter	1	1
	-	present in the polluted water.		
Ì	iii)	Pollution of water by nutrients such as phosphate from detergents and fertilizers	1	1
		accelerate the growth of algae and other plants in river water. This reduces the		
		dissolved oxygen and adversely affect aquatic life. This phenomenon is known as		

eutrophication.		eutrophication.			
-----------------	--	-----------------	--	--	--

QNo.	SECTI	ON 3 : Answer any 5 questions from 24 – 31. Each carries 4 scores	Split	Total		
	(5x4	4 = 20)	Score	Score		
	ΜΑΧΙ	MUM MARKS : 20				
24	(i)	(I) The electrons in an atom revolve around the nucleus in circular paths called	3	4		
		orbits. These orbits have definite energies called energy shells or energy				
		levels. These are numbered 1,2,3,4, or designated as K,L,M,N,				
		(II) As long as electrons remain in a particular orbit, it does not lose or gain				
		energy. Therefore these orbits are called stationary states.				
		(III) Only those orbits are permitted in which the angular momentum of the				
		electron is a whole number multiple of h/2 π . i.e. Angular momentum, mvr				
		$=nh/2\pi$ n = 1,2,3,				
		(IV) Energy is emitted or absorbed by an atom only when an electron in it moves				
		from one orbit to other. The difference in energy , $\Delta E~=~E_2$ - $~E_1$ = $~hv$				
	(ii)	2p	1/2			
		3d	1/2			
25	(i)	$\sigma_{1s} \sigma_{1s} \sigma_{2s} \sigma_{2s} \sigma_{2s} \pi_{2p_{x}} = \pi_{2p_{y}} \sigma_{2p_{z}}$	2	4		
	(ii)	There are two types of hydrogen bonds	2			
		(I) Inter molecular hydrogen bond :- Hydrogen bond between different				
		molecules of same type or different type.				
		It increases the boiling point.				
		e.g., H bonding in HF,H-FH-FH-FH-F				
		(II) Intra molecular hydrogen bond:- Hydrogen bond within the same				
		molecule.				
		It decreases the boiling point.				
		e.g., Hydrogen bonding in Ortho nitro phenol		-		
26	1)	First law of thermo dynamics :- It is law of conservation of energy. It states that	2	4		
		energy can neither be created nor destroyed				
		$\Delta U = q + w$				
	11)	Gibbs energy is defined as the maximum amount of available energy that can be	1			
	III)	$\Delta G = \Delta H - 1\Delta S = 0 G A + 0 A + 0 F G H = 0 A + 1 \Delta S + 1 A + 1 \Delta S = 0 G A + 1 D + 0 F G H = 0 A + 1 \Delta S + 1 A + 1$	1			
27	i)	If a system in equilibrium is subjected to change in concentration, temperature or	1	4		
		pressure, the equilibrium shifts in the direction that tends to reduce the effect of the				
		change.				
	ii)	$Kn = \frac{p(CO)p^3(H_2)}{1-p^3(H_2)}$	1			
		$\boldsymbol{\mu} = p(\boldsymbol{C}\boldsymbol{H}_4)p(\boldsymbol{H}_2\boldsymbol{O})$				
	iii)	a Here as a result of forward reaction, the no. of moles of gaseous species	1			
		increases. So high pressure favours backward reaction.				
		Here forward reaction is endothermic So high temperature favours	1			
		b forward reaction.				
28	(i)	Raw materials : Lime stone(CaCO ₃), ammonia (NH ₃) and brine solution (NaCl).	2	4		
		In this process, carbon dioxide obtained by the decomposition of lime stone is				
		passed through brine solution saturated with ammonia.				
		Sodium bicarbonate is precipitated.				
		It is filtered and heated to get sodium carbonate.				
		By product in this process is calcium chloride.				
	1	$(NH_4)_2 CU_3 + CU_2 + H_2 U \rightarrow Z NH_4 H CU_3$	1			

		$NH_4HCO_3 + NaCl \rightarrow NaHCO_3 + NH_4Cl$		
	()	$2 \text{ NaHCO}_3 \rightarrow \text{ Na}_2 \text{ CO}_3 + \text{ CO}_2 + \text{H}_2 \text{O}$		_
	(11)	Due to its small size, high ionisation enthalpy and absence of vacant d-orbitals, Be exhibits anomalous properties.	2	
29	i)	When borax is heated with transition metals, metaborates with characteristic colours are formed. This is known as Borax bead test.	2	4
	ii)	In CCl ₄ , there is no vacant d-orbital in carbon atom. Thus it cannot accommodate lone pair of electrons donated by the oxygen atom of water molecule. So CCl ₄ cannot be hydrolysed.	1	
	iii)	In CO ₂ molecule, C atom undergoes undergoes sp hybridization. So it has linear shape. It exist as discrete (separate) molecules and there is only weak attractive between the different CO ₂ molecules. So CO ₂ is gas. $: \ddot{O} = C = \ddot{O}:$ But in silica, each silicon atom undergoes sp ³ hybridisation . Here each silicon atom is tetrahedrally surrounded by four oxygen atoms. So it has three dimensional net work structure and hence it is solid. $= \frac{1}{S_{1}} = 0 + \frac{1}{S_{1}$	1	
20	:\	Dumas method OP Kieldeh's method	1	4
50	ii)	Sodium fusion extract + nitric acid + silver nitrate → White precipitate (Presence of chlorine)	2	- 4
	iii)	Distillation	1	
31	(i)	A cyclic, conjugated, planar system is aromatic if it contains (4n +2) pi electrons in the ring. Where n = 1,2,3 etc	2	4
	(ii)	H H H H H H H H H H H H H H H H H H H	2	

PREPARED BY :YOOSAFALI T K, HSST CHEMISTRY , 9947444175

AN INITIATIVE BY ACT THRISSUR