

THIRUVANANTHAPURAM CORPORATION

PARIHARABODHANAM (SSLC)

(2022 - 2023)

MATHEMATICS

O & AO

District Institute of Education and Training (DIET) Thiruvananthapuram

Pariharabodhanam **MATHEMATICS**

First Edition November 2022 Layout & Cover Design Kallingal Graphics, Attingal Concepts & Conceptualisation Thiruvananthapuram Corporation

Administrative Charge Sri. C.C. Krishnakumar, Deputy Director of Education, Thiruvananthapuram

Academic Charge Dr. Sheejakumari T.R, Principal in Charge, DIET, Thiruvananthapuram

Coordinator Smt. Geetha Nair, Senior Lecturer, DIET, Thiruvananthapuram

> Printing **Govt. Press,** Thiruvananthapuram

PARIHARABODHANAM Class 10 >>>

പ്രിയ വിദ്യാർത്ഥികളേ,

തിരുവനന്തപുരം നഗരസഭാ പരിധിയിലെ സ്കൂളുകളിൽ പഠിക്കുന്ന വിദ്യാർത്ഥികളുടെ പഠന നിലവാരം വർധിപ്പിക്കുന്നതിനാ യി നഗരസഭ നടപ്പിലാക്കുന്ന പദ്ധതിയാണ് 'പരിഹാരബോധനം'. മുൻ വർഷങ്ങളിൽ നടത്തിവന്നിരുന്ന പദ്ധതി ഈ വർഷവും വിപു ലമായ നിലയിൽ നടപ്പിലാക്കുകയാണ്. പഠനത്തിൽ പിന്നാക്കം നിൽക്കുന്ന വിദ്യാർത്ഥികളെ കൂടുതൽ കരുതൽ നൽകി മുന്നിലേ യ്ക്ക് ഉയർത്തുകയെന്നതാണ് നഗരസഭ ഈ പദ്ധതിയിലൂടെ ഉദ്ദേ ശിക്കുന്നത്. പൊതുവിദ്യാഭ്യാസ രംഗം കൂടുതൽ കരുത്താർജ്ജി ച്ച് മുന്നേറുന്ന ഈ കാലഘട്ടത്തിൽ വിദ്യാർത്ഥികൾക്ക് ഗുണമേന്മ യുള്ള വിദ്യാഭ്യാസം ഉറപ്പാക്കുന്നതിനും വിവിധ തലങ്ങളിൽ മിക വ് തെളിയിക്കാനുള്ള അവസരമൊരുക്കുന്നതിനും സർക്കാരും നഗരസഭയും പ്രതിജ്ഞാബദ്ധമാണ്. അക്കാദമികവും ഭൗതികവുമാ യ സൗകര്യങ്ങൾ കൂടുതൽ മെച്ചപ്പെട്ട് കേരളത്തിലെ പൊതുവി ദ്യാഭ്യാസ രംഗം ശ്രദ്ധേയമായ മാതൃകയായി മാറിയിരിക്കുകയാണ്. ഈ സന്ദർഭത്തിൽ നമ്മുടെ വിദ്യാർത്ഥികൾക്ക് ഉന്നത പഠനത്തിന് ഉപകരിക്കുന്ന തരത്തിൽ പഠന നിലവാരം മെച്ചപ്പെടുത്തുക എന്ന <mark>താണ്</mark> നാം ലക്ഷ്യമിടുന്നത്. മികച്ച അധ്യാപകരുടെ സഹായത്തോ ടെ പഠനം അസ്വാദൃകരമാക്കി മാറ്റിക്കൊണ്ട് കുട്ടികളെ മികച്ച നിലാരത്തിലേയ്ക്ക് ഉയർത്തുകയെന്ന ലക്ഷ്യത്തിന്റെ സാധൂകര ണം കൂടിയാണ് പരിഹാരബോധനം എന്ന ബൃഹത് പദ്ധതി. ഈ പദ്ധതിയുടെ ഭാഗമാകുന്ന എല്ലാ പ്രിയപ്പെട്ട വിദ്യാർത്ഥികൾക്കും അഭിനന്ദനങ്ങൾ അറിയിക്കുന്നതോടൊപ്പം മികച്ച വിജയ<mark>ം ആശം</mark> സിക്കുന്നു.

സ്നേഹത്തോടെ

ആര്യരാജേന്ദ്രൻ എസ്. മേയർ

തിരുവനന്തപുരം നഗരസഭ

പ്രിയപ്പെട്ട കുട്ടികളേ,

തിരുവനന്തപുരം നഗരസഭാ പരിധിയിൽ വരുന്ന ഹൈസ്കൂൾ, ഹയർസെ ക്കന്ററി വിഭാഗം കുട്ടികളുടെ പഠനനിലവാരം ഉയർത്താനും പൊതുപരീക്ഷയിൽ ഉയർന്ന ഗ്രേഡ് കരസ്ഥമാ ക്കാനും ലക്ഷ്യമിട്ടുകൊണ്ട് മുൻവർഷങ്ങളെപ്പോലെ പരിഹാര ബോധനം പദ്ധതി ഈ വർഷവും നടപ്പിലാക്കിവരുന്നതിൽ അതി യായ സന്തോഷവും അഭിമാനവും ഉണ്ട്. ഈ വർഷത്തെ പൊതു പരീക്ഷയ്ക്ക് നേരത്തെതന്നെ തയ്യാറെടുക്കുന്നതിനും എല്ലാ വിഷ യങ്ങളിലെ പാഠഭാഗങ്ങളിലൂടെ ആവർത്തിച്ചുകടന്നുപോകാനും പരിചയപ്പെടാനും സാധിക്കട്ടെ എന്ന് ആശംസിക്കുന്നു.

ഡോ.റീന കെ.എസ്. ചെയർപേഴ്സൺ (വിദ്യാഭ്യാസ കായിക സ്റ്റാന്റിംഗ് കമ്മിറ്റി) തിരുവനന്തപുരം കോർപ്പറേഷൻ

CONTENTS

1.	Arithmetic Sequences7
2.	Circles28
3.	Mathematics of Chance45
4.	Second Degree Equations 52
5.	Trigonometry57
6.	Coordinates72
7.	Tongonto
	Tangents82
8.	Solids
8. 9.	Solids 107
8. 9. 10.	Solids

1. A set of numbers written in order as the first, second, third and so on based on a specific rule is called a number sequence.

eg: Sequence of squares of natural numbers 1, 4, 9, 16, ...

- 2. The algebraic form of a sequence is the relation between position and term.
 - eg: In the sequence of squares of natural numbers, each term is the square of position. If 'n' is the position,

 $x_n = n^2$, is the algebraic form.

- 3. A sequence got by starting with any number and adding a fixed number repeatedly is called an arithmetic sequence..
 - eg. 1. The sequence of multiples of 3 ie, 3,6,9,12, ...
 - 2. The sequence of natural numbers leave a remainder 1 on divison by 5 1,6, 11, 16, 21 ...
- 4. In an arithmetic sequence, if we subtract any term from the term immediately after it, we get the same number. This fixed number is called the common difference.
- 5. In an arithmetic sequence, the difference between any two terms is the product of the position difference of that terms and the common difference.

OR

The difference between any two terms of an arithmetic sequence is a multiple of the common difference.

6. If the terms of an arithmetic sequence are natural numbers, we get the same remainder on division by the common difference.

Eg. In the arithmetic sequence 4, 7, 10, 13... we get 1 as the remainder on division by 3 for any term.

7. In an arithmetic sequence, term difference divided by position difference, gives the common difference.

Eg. In the arithmetic sequence 8, 13, 18, 23... $\frac{23-13}{4-2} = \frac{10}{2} = 5$.

8. The difference of any two terms of an arithmetic sequence divided by the common difference gives the position difference and one more than the position difference is the number of terms.

Eg. In the arithmetic sequence 3, 7, 11, 15, ..., 99.

Number of terms =
$$\frac{99-3}{4} + 1 = \frac{96}{4} + 1 = 24 + 1 = 25$$
.

- 9. Arithmetic Sequences are got by multiplying natural numbers from 1 by a fixed number and then adding a fixed number.
- 10. If the first term of an arithmetic sequence is 'f' and common difference is 'd' then $x_n = f + (n-1)d$

$$x_n = dn + (f - d)$$

11. Algebraic form of an arithmetic sequence is $x_n = an+b$ where 'a' is the common difference and 'a + b' is the first term.

Eg. In $x_n = 3n + 2$. First term is 5 and the common differce is 3.

- 12. If the number of terms of an arithmetic sequence is odd, then sum of terms is the product of the number of terms and the middle term.
 - Eg. Three consecutive terms of an arithmetic sequence are 6, 9, 12, then sum = $3 \times 9 = 27$

Five consecutive terms of an arithmetic sequence are 8, 14, 20, 26, 32,

then sum = $5 \times 20 = 100$.

13. In an arithmetic sequence, if the sum of positions of two pairs of terms are equal, then the sums of the pairs of the terms are also equal.eg: 7 + 12 = 5 + 14 = 3 + 16 = 1 + 18 =

So in the arithmetic sequence $x_1, x_2, x_3, x_4, \dots$, we have

 $x_7 + x_{12} = x_5 + x_{14} = x_3 + x_{16} = x_1 + x_{18} = \dots$

14. Sum of consecutive natural numbers starting with 1 is half the product of the last number and the next number. Algebraically

1 + 2 + 3 + ... + n =
$$\frac{1}{2}n(n+1)$$

Eg. 1 + 2 + 3 + ... + 50 = $\frac{1}{2} \times 50 \times 51 = 25 \times 51 = 1275$

15... For the arithmetic sequece $x_n = an + b$, the sum of first *n*' terms is

$$S_n = a \times \frac{n(n+1)}{2} + bn$$

16. The sum of consecutive terms of an arithmetic sequence is half the product of the number of terms and the sum of the first and last terms.

Algebraically, $x_1 + x_2 + x_3 + ... + x_n = \frac{1}{2}n(x_1 + x_n)$

17. Sum of consecutive terms of an arithmetic sequence is in the form $s_n = pn^2 + qn$, where 2p is the common difference and

p + q is the first term.

18. For two arithmetic sequences with same common difference,

PARIHARABODHANAM Class 10 ▶

- Difference of terms in the same position are equal.
- Difference of the sum of 'n' terms is $n \times$ difference of terms in the same position.

Work Sheet - 1

- 1. 13, 17, 21, is an arithemetic sequence.
 - a) What is its 11th term?
 - b) Write the algebraic form of the sequence
 - c) Check whether 249 a term of the sequence
 - a) First term of F = \square Common difference of d = \square 11^{th} term = $dn + \square - \square$ $= 4 \times \square + (\square - \square)$ = \square
 - b) Algebraic form is in the form

$$xn = \boxed{n + \boxed{n}}$$
$$xn = \boxed{n + 9}$$

c) Each term of the sequence give remainder ____ when divided by 4 when 249 is divided by 4 the remainder is _____

Thus 249 is a term in the sequence Yes ____ / No____

Work Sheet - 2

2. The table given below is based on arithmetic sequences. Fill up the empty columns

First term difference	Common Sequence	Arithmetic	10 th term	Algebraic form
6	11			
		3, 7, 11, 15,		
3			39	
7				5n + 2
	7			7n + 3
				6n – 1
	5		50	

Work Sheet- 3

What is the sum of first 20 terms of the arithmetic sequence 5,8,11,.....

First term =

Common difference =

Algebraic form of the sequence

 $xn = \square \times n+2$

Algebraic form of sum of first n terms

Work Sheet - 4

2. Fill up the following table

Algebraic form (<i>X</i> n)	Common difference	First term (f)	Arithmetic Sequence	10 th term (X ₁₀)
3n+ 2	3	3+2 = 5	5, 8, 11,	$X_{10} = 3 \times 10 + 2$ = 30 + 2 = 32
4n + 3				
5n - 4				
3n - 2				
10 n				

Work Sheet - 5

3. Two terms of some arithemeic sequences are given. Fill up the following table

10 th term	15 th term	$\mathbf{d} = \frac{\text{Term difference}}{\text{Position difference}}$	First term (f)	Algebraic form
32	47	$d = \frac{47 - 42}{15 - 10} = \frac{15}{5} = 3$	$f = X_1 = X_{10} - 9d$ = 32 - 9 × 3 = 32 - 27 = 5	Xn = dn + f - d = $3n + 5 - 3$ = $3n + 2$
71	106			
10	30			
50	80			

Work Sheet - 6

Complete the following table.

Sl. No.	Consecutive terms in the Arithmetic sequence	Number of terms	Middle term	Number term ×middle term	Sum of the terms
1	1, 2, 3	3	2	3×2=6	1+2+8=6
2	2, 3, 4				
3	1, 3, 5				
4	5, 8, 11				
5	<i>x</i> −1, <i>x</i> , <i>x</i> +1				
6	<i>x–y, x, x+y</i>				
7	1, 2, 3, 4, 5				
8	<i>x</i> -2 <i>y</i> , <i>x</i> - <i>y</i> , <i>x</i> , <i>x</i> + <i>y</i> , <i>x</i> +2 <i>y</i>				

Work Sheet - 7

3, 6, 9, 12, 15, 18, 21, 24, 27 are consecutive terms in an arithmetic sequence.

Number of terms =

Middle term =

If we add the terms which are at same distance from the two ends, then

$$x_1 + x_9 = 3 + 27 = 30$$

$$x_2 + x_8 = \dots + \dots =$$

 $x_3 + x_7 = \dots + \dots =$

 $x_4 + x_6 = \dots + \dots =$

- a) Identify the relation among sums of each pair?
- b) How the sum is related to the middle term?

Work Sheet - 8

The sum of 4th and 6th terms in an arithmetic sequence is 20

- a) Find the sum of its 1st and 9th terms?
- b) Write any two pairs of terms having the same sum?
- c) Find its 5th term?
- d) If 3rd term is 7, then find its 7th term?

Work Sheet - 9

- a) $1+2+3+4+\ldots+20 = \frac{20\times21}{2} = \ldots$
- b) 2+4+6+.....+50 = 25 ×(25+1) =
- c) $1+3+5+\ldots+29 = 15^2 = \ldots$

Find the following sums

- a) 1+2+3+4+ ...+ 50
- b) 2+4+6+8+... + 40
- c) 1+3+5+7+...+19

Work Sheet - 10

a) 1+2+3+4+...+15 = _____
b) 3+6+9+12+....+45 = 3 (1+2+3+....+15)

= 3× =

c)
$$5+8+11+14+...+47 = \frac{3\times15\times16}{2}+15\times2$$

= ______+ _ _ _ =

Find the following sums.

- a) 1+2+3+4+....+30
- b) 8+16+24+32+...+240
- c) 9+17+25+....+241

Work Sheet - 11

Complete the following table.

Algebraic	First term	Common	Sum of first	Sum of first
form (<i>X</i> n)	(f)	difference (d)	n terms (S _n)	10 terms (S ₁₀)
3n + 2	3+2 = 5	3	$Sn = \frac{3n(n+1)}{2} + 2n$	$S_{10} = \frac{3 \times 10 \times 11}{2} + 2 \times 10$
			$=\frac{3n^2+3n}{2}+2n$	$= 3 \times 5 \times 11 + 20$
			$=\frac{3n^2}{2}+\frac{3n}{2}+2n$	= 165 + 20
			$=\frac{3n^2}{2}+\frac{7n}{2}$	= 185
6n +4				
10n – 3				
7n + 1				

Work Sheet - 12

Complete the following table.

Arithmetic Sequence	First term (f)	Common difference (d)	Sum of first 10 terms (Sn)
5, 8, 11,	5	3	$S_n = \frac{n}{2} \left[2f + (n-1)d \right]$
			$S_{10} = \frac{10}{2} \left[2 \times 5 + (10 - 1)3 \right]$
			= 5 (10 + 9 ×3)
			= 5 (10 + 27)
			= 5 ×37= 185
12, 23, 34,			
15, 22, 29,			
10, 16, 22,			

Work Sheet - 13

Complete the following table

Algebraic form of the sum of	First term (f)	Common difference	Sum of first 10th term 10 terms (S ₁₀) X ₁₀ = f+ 9d
arithmetic sequence		(d)	
$3n^2+2n$	3+2 = 5	2×3 = 6	$S_{10} = 3 \times 10^2 + 2 \times 10$ $X_{10} = 5 + 9 \times 6$
			$= 3 \times 100 + 20 = 5 + 54$
			= 300 + 20 = 59
			= 320
$2n^2 + 5n$			
$n^2 + n$			
$5n^2 + 4n$			

Work Sheet - 14

Complete the following table.

Arithmetic Sequences	Difference of first terms	Number of terms	Difference of sums
4, 7, 10,	15 – 4 = 11	20	20 × 11 = 220
15, 18, 21,			
1, 6, 11,			
7, 12, 17,			
5, 13, 21,			
12, 20, 28,			
21, 27, 33,			
11, 17, 23,			

- a. What is the common difference?
 - b. What is its first term?
 - c. Write the algebraic form of this arithmetic sequence.
- 4. The algebraic form of an arithmetic sequence is $x_n = 7n + 3$.
 - a. Write the first 3 terms.
 - b. What is the remainder on dividing its terms by 7?
 - c. Is 500, a term of this sequence? Justify.

- 5. Consider arithmetic sequence 6, 11, 16, ...
 - a. What is the common difference?
 - b. Write the algebraic from of the sequence.
 - c. Find the sum of first 20 terms?
- 6. The sum of 2^{nd} and 30^{th} terms of an arithmetic sequence is 50.
 - a. What is the sum of 1^{st} and 31^{st} terms?
 - b. What is the sum of 15^{th} and 17^{th} terms?
 - c. What is the 16^{th} term?
 - d. What is the sum of first 31 terms?
- 7. Answer the following questions based on the given pattern.

- a. Write the next two lines?
- b. Find the sum of first 15 odd numbers?
- c. Find $\frac{1}{2} + \frac{3}{2} + \frac{5}{2} + \dots + \frac{29}{2}$?
- 8. The sum of first 9 terms of an arithmetic sequence is 90.
 - a. What is its 5th term?
 - b. Write three arithmetic sequences with 90 as the sum of first 9 terms.
- 9. a. Write the sequence of natural numbers between 100 and 300 which leave a remainder 2 on division by 3.
 - b. How many terms are there in this sequence?
 - c. Find the sum of terms of this sequence.
- 10. The algebraic form of the sum of first 'n' terms of an arithmetic sequence is $S_n = 2n^2 + 3n$
 - a. Write the first term and common difference.
 - b. Write the algebraic form of this sequence.
 - c. Find the sum of first 25 terms?
- 11. The sum of natural numbers from 1 to 100 is 5050. Using this, find the sum of the terms of the arithmetic sequence 3, 6, 9, ... 300.
- 12. The algebraic form of two arithmetic sequences are $x_n = 6n + 2$ and $x_n = 6n 2$. What is the difference of the sums of first 25 terms of these sequences.

- 13. Find the following sums:
 - a. 1 + 2 + 3 + + 40
 - b. 5 + 6 + 7 + + 44
 - c. 6 +12 + 18 + + 240
 - d. -1 + 5 + 11 + + 233
- 14. The 7^{th} term of an arithmetic sequence is 17 and 17^{th} term is 7.
 - a. What is the common difference?
 - b. Find the 24th term?
 - c. Find the sum of first 47 terms?
- 15. The 5^{th} term of an arithmetic sequence is 40 and 31^{st} term is 160.
 - a. What is the sum of 17th and 19th terms?
 - b. Find the 18th term?
 - c. Find the sum of first 35 terms?

d. What is the sum of first 35 terms of the arithmetic sequence with 5^{th} term 43 and 31^{st} term 163?

- 16. The 6^{th} term of an Arithmetic sequence is 28 and 11^{th} is $63 \setminus$
 - a) Find the first term
 - b) What is its common difference
 - c) Write the algebraic form of the sequence.

ANSWERS

Work Sheet - 1

a)
$$f = 13$$

 $d = 17 - 13$
 $= 4$
 $x11 = dn + f - d$
 $= 4 \times 11 + (13 - 4)$
 $= 44 + 9$
 $= 53$
b) $xn = an + b$
 $xn = 4n + 9$

249 is divided by 4, remainder is 1

 $\therefore 249$ a term of this sequence.

Work Sheet - 2

f	d	Arithmetic sequence	10 th term	Algebraic form
6	11	17,28,39,	115	11n+5
3	4	3,7,11,	39	4n-1
3	4	3,7,11,	39	4n-1
7	5	7,12,17,	52	5n+2
10	7	10,17,24,	73	7n+3
5	6	5,11,17	59	6n-1
5	5	5,10,15,	50	5n

Work Sheet - 3

First term = 5, Common difference - 3

$$xn = 3n + 2$$

$$Sn = \frac{1}{2} \times 3n(n+1) + 2n$$

$$S20 = \frac{1}{2} \times 3 \times 20 \times 21 + 2 \times 20$$

$$= 600 + 70$$

$$= 670$$

Work	Sheet	-	4
------	-------	---	---

Algebraic form (Xn)	Common difference (d)	First term (f)	Arithematic Sequence	Algebraic form
3n+2	3	3+2+ = 5	5, 8, 11,	$X_{10} = 3 \times 10 + 2$
				= 30 + 2
				= 32
4n + 3	4	4+3 = 7	7, 11, 15,	$X_{10} = 4 \times 10 + 3$
				= 40 + 3
				= 43
5n – 4	5	5 - 4 = 1	1, 6, 11,	$X_{10} = 5 \times 10 - 4$
				= 50 - 4
				= 46
3n – 2	3	3 – 2 = 1	1, 4, 7,	$X_{10} = 3 \times 10 - 2$
				= 30 - 2
				= 28
10n	10	$10 \times 1 = 10$	10, 20, 30,	X ₁₀ =10×10
				= 100

Work Sheet - 5

10 th term	15 th term	d = Term difference Position difference	First term (f)	Algebraic form
32	47	$d = \frac{47 - 32}{15 - 10} = \frac{15}{5} = 3$	$f = X_1 = X_{10} - 9d$	Xn = dn + f - d
			$= 32 - 9 \times 3$	= 3n + 5 – 3
			= 32 - 27	= 3n + 2
			= 32 - 27	
			= 5	
71	106	$d = \frac{106 - 71}{15 - 10} = \frac{35}{5} = 7$	$f = X_1 = X_{10} - 9d$	Xn = dn + f - d
			$= 71 - 9 \times 7$	= 7n + 8 –7
			= 71 - 63	= 7n + 1
			= 8	

PARIHARABODHANAM Class 10 🛏

.

10	30	$d = \frac{30 - 10}{15 - 10} = \frac{20}{5} = 4$	$f = X_1 = X_{10} - 9d$	Xn = dn + f - d
			= 10 – 9× 4	= 4n + (–26) – 4
			= 10 - 36	= 4n - 30
			= - 26	
50	80	$d = \frac{80 - 50}{15 - 10} = \frac{30}{5} = 6$	$f = X_1 = X_{10} - 9d$	Xn = dn + f - d
			= 50 – 9 × 6	= 6n + (-4) - 6
			= 50 - 54	= 6n – 10
			= - 4	

Work Sheet - 6

Sl. No.	Consecutive terms in the arithemetic sequence	Number of terms	Middle term	Number of terms × middletrem	Sum of the terms
1.	1, 2, 3	3	2	3 × 2 = 6	1+2+3=6
2	2, 3, 4	3	3	3×3 = 9	2+3+4 = 9
3	1, 3, 5	3	3	3×3 = 9	1 + 3 + 5 = 9
4	5, 8, 11	3	8	3×8 = 24	5+8+11=24
5	<i>x</i> -1, <i>x</i> , <i>x</i> +1	3	x	$3 \times x = 3x$	(x-1)+x+(x+1)=3x
6	x - y, x , $x + y$	3	x	$3 \times x = 3x$	(x-y)+x+(x+y)=3x
7	1, 2, 3, 4, 5	5	3	5×3 = 15	1+2+3+4+5=15
8	x-2y, x-y, x, x+y, x+2y	5	x	$5 \times x = 5x$	(x-2y)+(x-y)+x+
					(x+y) + (x+2y) = 5x

Work Sheet - 7

3, 6, 9, 12, 15, 18, 21, 24, 27 Number of terms = 9 Middle term = 15

```
x_1 + x_9 = 3 + 27 = 30

x_2 + x_8 = 6 + 24 = 30

x_3 + x_7 = 9 + 21 = 30

x_4 + x_6 = 12 + 18 = 30
```

a) In an arithmetic sequence if the sum of position of two pairs of terms are equal, then the sums of the pairs of the terms are also equal.

PARIHARABODHANAM Class 10 ₩

b) Sums are two times the middle term.

Work Sheet - 8

- a) 20
- b) $x_2 + x_8, x_3 + x_7$
- c) 10
- d) $x_3 + x_7 = 20$

 $x_7 = 20 - x_3 = 20 - 7 = 13$

Work Sheet - 9

- a) $1 + 2 + 3 + ... + 20 = \frac{20(20+1)}{2} = \frac{20 \times 21}{2} = 210$ b) $2 + 4 + 6 + ... + 50 = 25(25+1) = 25 \times 26 = 650$ c) $1 + 3 + 5 + ... + 29 = 15^2 = 225$ Sum
- a) $1 + 2 + 3 + 4 + \dots + 50 = \frac{50(50+1)}{2} = \frac{50 \times 51}{2} = 1275$
- b) 2+4+6+8+...+40 = 20×21 = 420
- c) $1+3+5\times7+...+19 = 10^2 = 100$

Work Sheet - 10

- a) $1+2+3+4+...+15 = \frac{15 \times 16}{2} = 15 \times 8 = 120$
- b) $3+6+9+12+...+45 = 3 (1+2+3+...+15) = 3 \times 120 = 360$
- c) $5+8+11+14+\ldots+47 = \frac{3 \times 15 \times 16}{2} + 15 \times 2 = 360 + 30 = 390$

Sum

a)
$$1+2+3+4+\ldots+30 = \frac{30 \times 31}{2} = 15 \times 31 = 465$$

- b) $8+16+24+32+...+240 = 8(1+2+3+4+....+30) = 8 \times 465 = 3720$
- c) $9+17+25+...+241 = 3720 + 30 \times 1 = 3720+30 = 3750$

Work Sheet - 11

Algebraic	First term	Common	Sum of first	Sum of first
form		difference	n terms	10 terms
3n + 2	3+2 = 5	3	$S_n = \frac{3n(n+1)}{2} + 2n$	$S_{10} = \frac{3 \times 10 \times 11}{2} + 2 \times 10$
			$=\frac{3n^2+3n}{2}+2$	= 3×5×11+20
			$=\frac{3n^2}{2}+\frac{3n}{2}+2n$	= 165 + 20
			$=\frac{3}{2}n^2+\frac{7}{2}n$	= 185
6n + 4	6+4 = 10	6	$S_n = \frac{6n(n+1)}{2} + 4n$	$S_{10} = \frac{6 \times 10 \times 11}{2} + 4 \times 10$
			= 3n (n+1) + 4n	= 3 ×10×11+40
			$= 3n^2 + 3n + 4n$	= 330 + 40
			$= 3n^2 + 7n$	= 370
10n –3	10-3=7	10	$S_n = \frac{10n(n+1)}{2} + (-3)n$	$S_{10} = \frac{10 \times 10 \times 11}{2} + (-3) \times 10$
			= 5n(n+1) - 3n	= 5×10×11–30
			$= 5n^2 + 5n - 3n$	= 550 -30
			$= 5n^2 + 2n$	= 520
7n+1	7+1=8	7	$S_n = \frac{7n(n+1)}{2} + 1n$	$S_{10} = \frac{7 \times 10 \times 11}{2} + 1 \times 10$
			$=\frac{7n^2+7n}{2}+1n$	= 7×5×11+10
			$=\frac{7n^2}{2}+\frac{7n}{2}+n$	= 385 + 10
			$=\frac{7n^2}{2}+\frac{9n}{2}$	= 395

Work Sheet - 15

Algebraic form of the Sum of arithmatic sequence	First term (f)	Common difference (d)	Sum of first 10 term (S ₁₀)	10th term X ₁₀ = f+9d
3n ² +2n	3+2 = 5	2×3=6	$S_{10} = 3 \times 10^2 + 2 \times 10$ = $3 \times 100 + 20$ = $300 + 20$ = 320	$X_{10} = 5 + 9 \times 6$ = 5+54 = 59
2n ² +5n	2+5 =7	2×2 = 4	$S_{10} = 2 \times 10^2 + 5 \times 10$ = 2 × 100+50 = 200+50 = 250	$X_{10} = 7 + 9 \times 4$ = 7+36 = 43
n ² +n	1+1= 2	2×1=2	$S_{10} = 10^2 + 10$ = 100 + 10 = 110	$X_{10} = 2 + 9 \times 2$ = 2 + 18 = 20
5n ² +4n	5+4= 9	2×5=10	$S_{10} = 5 \times 10^{2} + 4 \times 10$ = 5 × 100+40 = 500 + 40 = 540	$X_{10} = 9 + 9 \times 10$ = 9+90 = 99

Work Sheet - 13

Arithmetic Sequence	Difference of First Term	Number of Terms	Difference of Sum
4, 7, 10,	15 – 4 = 11	20	20×11=220
15, 18, 21,			
1, 6, 11,			
7, 12, 17,	7 – 1 = 6	25	25×6 = 150
5, 13, 21,			
12, 20, 28,	12 - 5 = 7	30	30×7 = 210
21, 27, 33,			
11, 17, 23,	21 - 11 = 10	25	25×10 = 250

PARIHARABODHANAM Class 10 ₩ 23

.

Work Sheet - 14

- 7, 8, 9, 10 a) 11, 12, 13, 14, 15 10 = 1+2+3+4b) $1+2+3+...+9 = \frac{9\times10}{2} = 45$ C) 46 d) 1 + 2 + 3 + ... + 10 = 55e) 10 f) $\frac{10}{2}(46+55) = 5 \times 101 = 505$ g) Answers a. 1, 5, 9, ...; 4, 8, 12, ...; 6, 10, 14 ...; are examples. b. $x_{15} = f + 14d$. Or $x_{15} = d \times 15 + (f - d)$ c. The difference between any two terms of this sequence is a multiple of 4. Since 145 is not a multiple of 4, it is not the difference between any two terms of this sequence. 2. a. $x_n = 3n + 2$ b. $x_s = 3 \times 8 + 2 = 24 + 2 = 26$ $x_{24} = 3 \times 24 + 2 = 72 + 2 = 74$
- 3. a. $x_8 + 8d = x_{16}$

1.

25 + 8d = 49	OR	$x_{16} - x_8 = 49 - 25$
8d = 49 - 25 = 24		8d = 24
$d = \frac{24}{8} = 3$		$d = \frac{24}{8} = 3$

b. First term $x_1 = x_8 - 7d = 25 - 3 \times 7 = 25 - 21 = 4$

c.
$$x_n = 3n + 1$$

- 4. **a**. $x_1 = 7 \times 1 + 3 = 10$ $x_2 = 7 \times 2 + 3 = 17$ $x_3 = 7 \times 3 + 3 = 24$
 - b. The terms of this sequence leaves a remainder 3 on division by 7.
 - 500 leave a remainder 3 on division by 7. So 500 is a term. C.
- a. Common difference = 55.
 - b. Algebraic from, $x_n = dn + (f d) = 5 n + 1$
- PARIHARABODHANAM Class 10 ₩

c.
$$S_{20} = 5 \times \frac{20 \times 21}{2} + 20 \times 1$$

= 1050 + 20 = 1070

6. a. $x_1 + x_{31} = 50$

- b. Since $x_2 + x_{30} = 50$ $x_{15} + x_{17}$ is also 50.
- c. Middle term is half the sum of the pair

$$x_{16} = \frac{50}{2} = 25$$

d. Sum of 31 terms = $31 \times x_{16}$

7. a.
$$1+3+5+7=16$$

 $1+3+5+7+9=25$

- b. Sum of first 'n' consecutive odd numbers is n^2 .
 - \therefore Sum of first 15 odd numbers = $15^2 = 225$

c.
$$\frac{1}{2} (1+3+5+...+15) = \frac{1}{2} \times 225 = \frac{225}{2}$$

8. a.
$$9 \times x_5 = 90$$

$$x_5 = \frac{90}{9} = 10$$

b. 2, 4, 6, 8, 10, 12, 14, 16, 18

-10, -5, 0, 5, 10, 15, 20, 25, 30

-2, 1, 4, 7, 10, 13, 16, 19, 22

That is, in any arithmetic sequence with middle term 10 and any number as common difference the sum of 9 terms is always 90.

9. a. $x_1 = 101$

$$d = 3$$

Sequence 101, 104, 107, 110, ... 229

b. Number of terms
$$= \frac{299 - 101}{3} + 1$$

 $= \frac{198}{3} + 1 = 66 + 1 = 67$

- c. $s_{67} = \frac{1}{2}n(x_1 + x_{67})$ = $\frac{1}{2} \times 67 \times (101 + 299)$ = $\frac{1}{2} \times 67 \times 400$ = 13400
- 10. a. In the algebraic form of the sum $S_n = pn^2 + qn$ of the arithmetic sequence 2p is the common difference.

$$s_n = 2n^2 + 3n$$

∴ d = 2 × 2 = 4
First term x = 2 + 3

b. Algebraic form of the arithmetic sequence is $x_n = 4n + 1$

= 5

c.
$$s_{25} = 2 \times 25^2 + 3 \times 25$$

= $2 \times 625 + 3 \times 25$
= $1250 + 75$
= 1325

11.
$$1 + 2 + 3 + 4 \dots + 100 = 5050$$

 $3 + 6 + 9 + \dots + 300 = 3(1 + 2 + 3 + \dots + 100)$
 $= 3 \times 5050$
 $= 15150$

12. Algebraic form of first arithmetic sequence, $x_n = 6n + 2$

Algebraic form of second arithmetic sequence, $x_n = 6n - 2$

First term of the first sequence = 8

First term of the second sequence = 4

In two arithmetic sequences with same common difference, the difference between the first terms is also the difference between any terms at the same position.

Difference between first terms = 8 - 4 = 4

 \therefore Difference of sums = 25 × 4 = 100

13. (a)
$$1 + 2 + 3 + \dots + 40 = \frac{40 \times 41}{2} = 820$$

(b) $5 + 6 + 7 + \dots + 44 = 820 + 40 \times 4 = 980$
(c) $6 + 12 + 18 + \dots + 240 = 6 (1 + 2 + 3 + \dots + 40)$
 $= 6 \times 820 = 4920$
(d) $-1 + 5 + 11 + \dots + 233 = 4920 - 40 \times 7$

PARIHARABODHANAM Class 10 ₩

= 4640 14. (a) Common difference = $\frac{\text{Term difference}}{\text{Position difference}}$ $=\frac{7-17}{17-7}$ = -1(b) $24^{\text{th}} \text{ term} = x_{17} + 7d$ $= 7 + 7 \times (-1)$ = 0 Sum of first 47 terms = $47 \times 24^{\text{th}}$ term (C) $=47 \times 0$ = 0 15. $x_5 = 40, x_{31} = 160$ (a) $x_{17} + x_{19} = x_5 + x_{31}$ = 40 + 160= 200 (b) $x_{18} = \frac{200}{2} = 100$ (c) $S_{35} = 35 \times 100$ = 3500 (d) $x_5 = 43, x_{31} = 163$ Sum of 35- terms = $3500 = 35 \times 3$ = 3605 $x_6 = 28, x_{11} = 63$ 16. $x_1 = x_6 - 5d$ (a) = 28 - 35= -7 (b) Common difference = $\frac{35}{5} = 7$ (c) Algebraic form, $x_n = dn + (f - d)$ = 7 n + (-7 - 7)= 7n - 14

PARIHARABODHANAM Class 10 ▶

Points to Remember

 If we join the ends of a diameter of a circle to any point on the circle, we get a right angle.

If we join the end points of a diameter of a circle to a point inside the circle, we get an angle more than a right angle, and if the point is outside, the angle is less than a right angle.

 $\angle ACB=90^{\circ}, \ \angle ADB=90^{\circ}$ $\angle APB < 90^{\circ}, \ \angle AQB > 90^{\circ}$

 All the mutually perpendicular lines drawn from the two end points of a line will meet at the circle with the line as diameter.

The angle made by any arc of a circle on the alternate arc is half the angle made at the centre.

$$\angle ACB = \frac{1}{2} \angle AOB$$

PARIHARABODHANAM Class 10 M

• All the angles made by an arc on the alternate arc are equal and a pair of angles on alternate arcs are supplementary.

$$\angle P = \angle Q = \angle R$$

$$\angle P + \angle C = 180^{\circ}, \quad \angle Q + \angle C = 180^{\circ}, \quad \angle R + \angle C = 180^{\circ}$$

• If all the four vertices of a quadrilateral are on a circle, then its opposite angles are supplementary.

$$\angle P + \angle R = 180^{\circ}$$
$$\angle Q + \angle S = 180^{\circ}$$

If one vertex of a quadrilateral is outside the circle drawn through the other three vertices, then the sum of the angles at this vertex and the opposite vertex is less than 180°, if it is inside the circle, the sum is more than 180°.

- $\angle ABC + \angle D \le 180^{\circ}$ $\angle ABC + \angle AEC \ge 180^{\circ}$
- If the opposite angles of a quadrilateral are supplementary, we can draw a circle passing through all four of its vertices.
- If two chords of a circle intersect within the circle, then the product of the parts of the two chords are equal. That is the rectangle formed by the parts of the same chord have equal area.

The area of two rectangels are equal

• If two chords of a circle intersect externally, the product of the distances from the external point to the ends of the chords are equal.

The product of the parts into which a diameter of a circle is cut by a perpendicular chord is equal to the square of half the chord. That is the area of the rectangle formed of parts into which a diameter of a circle is cut by a perpendicular chord is equal to the area of the square formed by half the chord.

Area of the square is equal to area of the rectangle.

Work Sheet - 1

In the figure O is the centre of the circle and A,B,C are points on the circle. $\angle OAC = 30^{\circ}$, $\angle OBC = 20^{\circ}$. Find all angles of $\triangle ABC$ and $\triangle OAB$

In the figure join OC $\triangle OAC$ is an isosceles triangle. (\square = \square)

 $\angle OCA = \angle \Box = \Box$

 $\triangle OBC$ is an isosceles triangle ($\square = \square$)

 $\angle OCB = \angle \Box = \Box$

 $\angle ACB = \angle \square + \angle \square = \square + \square = \square$

 $\angle AOB = 2 \times \angle \Box = 2 \times \Box = \Box$

 $\triangle OAB$ is an isosceles triangle ($\square = \square$)

$$\angle OAB = \angle OBA = \frac{180^{\circ} - \angle \Box}{2} = \frac{180^{\circ} - \Box}{2} = \Box$$

Angles of $\triangle OAB$

 $\angle OAB =$, $\angle OBA =$, $\angle AOB =$

Work Sheet - 2

If a circle is drawn with AB as diameter, find the position of the points C,D,E related to the circle (Inside, Outside or on the circle)

Worksheet - 3

In the figure O is the centre of the circle. Find all angles of ΔPQR

Worksheet - 4

In the figure P,Q,R,S are points on the circle. Find the angles of the quadrilateral ABCD and the angles between the diagonals.

Worksheet - 5

In the figure ABCD is a cyclic quadrilateral

 $\angle A = x$, $\angle B = y$, $\angle C = 3x$, $\angle D = 5y$

a) Find x andy

b) Find all angles of quadrilateral ABCD

a) $\angle A + \angle C = \Box$ (Reason)

PARIHARABODHANAM Class 10 ₩

In the figure AB is the diameter of the semicircle. Also $PC \perp AB PA= 8cm$ PC=4cm

- a) Find PB
- b) Find the radius of the semicircle

Worksheet - 7

- In the figure chords AB and CD intersect at P
- a) Which angle is equal to $\angle ACD$?
- a) Which angle is equal to $\angle ACD$?
- c) Which angle is equal to $\angle APC$?

d)
$$\frac{PA}{\Box} = \frac{\Box}{PB}$$
 (Reason)

f) Fill in the blanks

PA	PB	PC	PD
8	4	_	16
—	3	2	9
12	_	4	6
8	5	4	—

വർക്ക് ഷീറ്റ് – 8

Chords AB and CD intersect at a point P outside the circle. AB=10cm, PB=2cm, PD=3cm. Find the length of chord CD

Work Sheet - 9

1. Find the third angle of the triangle	180 - (60 +70)
	= 180 - 130 $= 50^{\circ}$
2. Calculate the double of the angles of triangle	120°, 140°, 100°
3. Draw a circle of radius 3cm and draw one radius	A

PARIHARABODHANAM Class 10 ₩

Work sheet- 11

Draw a rectangle ABCD with sides AB = 5cm BC = 4cm	$ \begin{array}{c} D \\ C \\ 4 cm \\ A \\ 5 cm \\ B \end{array} $
Extend AB to P with BP = 4cm	$ \begin{array}{c} D \\ \hline C \\ 4 cm \\ A \\ 5 cm \\ B \\ 4 cm \\ P \end{array} $

PARIHARABODHANAM Class 10 >>>
Answerkey

Worksheet 1

In the figure join OC. $\triangle OAC$ is an isosceles triangle (OA=OC)

$$\angle OCA = \angle OAC = 30^{\circ}$$

 $\triangle OBC$ is an isosceles triangle (OB=OC)

$$\angle OCB = \angle OBC = 20^{\circ}$$

 $\angle ACB = \angle OCA + \angle OCB = 30^{\circ} + 20^{\circ} = 50^{\circ}$

 $\angle AOB = 2 \times \angle ACB = 2 \times 50^\circ = 100^\circ$

 $\triangle OAB$ is an isosceles triangle. (OA=OB)

$$\angle OAB = \angle OBA = \frac{180^{\circ} - \angle AOB}{2} = \frac{180^{\circ} - 100^{\circ}}{2} = 40^{\circ}$$

Angles of $\triangle ABC$

$$\angle A = 30^{\circ} + 40^{\circ} = 70^{\circ}$$
, $\angle B = 20^{\circ} + 40^{\circ} = 60^{\circ}$, $\angle C = 50^{\circ}$

Angles of $\triangle OAB$

$$\angle OAB = 40^\circ$$
, $\angle OBA = 40^\circ$, $\angle AOB = 100^\circ$

Worksheet 2

 $\angle C = 120^{\circ} > 90^{\circ}$, C is inside the circle $\angle D = 90^{\circ}$ D is a point of the circle

 $\angle E = 60^{\circ} < 90^{\circ}$ E is outside the circle

PARIHARABODHANAM Class 10 ₩

Worksheet 3

Angles of ΔPQR

$$\angle P = 60^\circ, \angle Q = 70^\circ, \angle R = 50^\circ$$

Worksheet - 4

$\angle SQR = 45^{\circ}$	$\angle SPR = 45^{\circ}$	(All angles made by an arc on the alternate are equal)					
$\angle PRS = 40^{\circ}$	$\angle PQS = 40^{\circ}$	(All angles made by an arc on the alternate are equal)					
$\angle RSQ = 35^{\circ}$	$\angle RPQ = 35^{\circ}$	(All angles made by an arc on the alternate are equal)					
$\angle QPS = \angle SPR + \angle R$	$\angle QPS = \angle SPR + \angle RPQ = 45^\circ + 35^\circ = 80^\circ$						
$\angle QRS = 180 - \angle QPS$	$\angle QRS = 180 - \angle QPS = 180^{\circ} - 80^{\circ} = 100^{\circ}$						
PARIHARABODHANAM Class 10 🍽							

 $\angle PQR = \angle PQS + \angle SQR = 40^{\circ} + 45^{\circ} = 85^{\circ}$ $\angle PSR = 180^{\circ} - \angle PQR = 180^{\circ} - 85^{\circ} = 95^{\circ}$ $\Delta PMQ \quad \textcircled{o3} \qquad \angle PMQ = 180^{\circ} - (35^{\circ} + 40^{\circ}) = 180^{\circ} - 75^{\circ} = 105^{\circ}$ $\angle RMS = \angle PMQ = 105^{\circ} \quad \text{(Opposite angles)}$ $\angle QMR = 180^{\circ} - 105^{\circ} = 75^{\circ}$ $\angle PMS = \angle QMR = 75^{\circ} \quad \text{(Opposite anngles)}$

Worksheet - 5

a)
$$\angle A + \angle C = 180^{\circ}$$
 (Opposite angles of a cyclic quadrilateral are supplymentary)
 $x + 3x = 180^{\circ}$
 $4x = 180^{\circ}$
 $x = \frac{180^{\circ}}{4} = 45^{\circ}$
 $\angle B + \angle D = 180^{\circ}$ (Opposite angles of a cyclic quadrilateral are supplymentary)
 $y + 5y = 180^{\circ}$
 $6y = 180^{\circ}$
 $y = \frac{180^{\circ}}{6} = 30^{\circ}$

b) $\angle A = x = 45^{\circ}$ $\angle B = y = 30^{\circ}$ $\angle C = 135^{\circ}$ $\angle D = 150^{\circ}$

PARIHARABODHANAM Class 10 ₩

- a) $PA \times PB = PC^2$ $8 \times PB = 4^2$ $PB = \frac{16}{8} = 2$
- b) Diameter of the semicircle AB=PA+PB

= 8 + 2 = 10cm

Radius =
$$\frac{10}{2} = 5cm$$

Worksheet - 7

- a) $\angle BAC = \angle BDC$
- b) $\angle ACD = \angle ABD$
- c) $\angle APC = \angle BPD$ (Opposite angles)
- d) $\frac{PA}{PD} = \frac{PC}{PB}$ (ΔPAC and ΔPBD are similar triangles)

e)
$$PA \times PB = PC \times PD$$

PA	PB	PC	PD
8	4	<u>2</u>	16
<u>6</u>	3	2	9
12	<u>2</u>	4	6
8	5	4	<u>10</u>

Worksheet - 8

f)

PA = PB + AB = 2 + 10 = 12

 $PA \times PB = PC \times PD$

PARIHARABODHANAM Class 10 🍽

= 180 - 130

 $= 50^{\circ}$

ō

В

В

120

100°

100°

 $12 \times 2 = PC \times 3$ $PC = \frac{24}{3} = 8 \text{ cm}$ CD = PC - PD= 8 - 3 = 5 cmWork Sheet - 9 1. Find the third angle of the triangle 180 - (60 + 70)2. Calculate the double of the angles of $120^{\circ}, 140^{\circ}, 100^{\circ}$ triangle 3. Draw a circle of radius 3cm and draw one radius

4. Draw two central angles with measures 100° and 120°

5. Join AB, BC, AC

 ΔABC is the required triangle

PARIHARABODHANAM Class 10

Work sheet- 10

PARIHARABODHANAM Class 10 ₩

.....

Additional Questions for pratice

1. Draw a triangle with two angles 35° and 65° and has circumradius 4 cm.

2.

In the figure ABCD is a cyclic quadrilateral $\angle CBE = 80^{\circ}$, $\angle BCD = 70^{\circ}$. Find the measure of all angles of quadrilateral ABCD.

3. Draw the rectangle of sides 6cm and 3cm. Draw a square of the same area.

- 4. In the figure AB and CD meet at a point P Outside the circle PA=4cm, PC=5cm and CD=7cm
 - a) Find PD
 - b) Let AB = x cm. Find the length of PB
 - c) Write the relation between PA, PB, PC, PD
 - d) Find the length of AB

ଚ୍ଚର

Points to Remember

The probability of occurring an event is the number, which indicates how many part of the favourable outcomes of it to the total outcomes.

 $Probability = \frac{Number of favourable outcomes}{Total Number of outcomes}$

Geometric probability = $\frac{\text{Area of required region}}{\text{Total area}}$

Probability of pairs = $\frac{\text{Number of favourable pairs}}{\text{Total Number of pairs}}$

Worksheet - 1

A box contains 18 black balls and 7 white balls. A ball is taken from the box. What is the probability that it is black?

What is the probability that it is white?

Total number of balls in the box =_____

Total number of black balls =_____

Total number of white balls =_____

Probability of getting a black ball =_____

Probability of getting a white ball =____

Worksheet- 2

In the figure a large square is cut in to smaller squares of equal size. Without looking put a dot inside the larger square. What is the probability of it being in the shaded region?

Total number of smaller squares =____

Total number of smaller squares shaded

Worksheet - 3

Two dice are rolled together and two digit numbers are formed with the

PARIHARABODHANAM Class 10 M

MATHEMATICS

numbers turned up.

- a. What is the probability of both digits being the same?
- b. What is the probability of both digits even?
- c. What is the probability of both digits odd?
- d. What is the probability of one digit being even and other odd? Complete the table in this way.

Total number of two digits numbers =_____

- a. Total number of two digit numbers with both digits same =_____
 Probability of both digits being same =_____
- b. Total number of two digit numbers with both digits even
 Probability of getting both digits even =_____
- c. Total number of two digit numbers with both digits odd =_____
 Probability of getting both digits odd =_____
- d. Total number of two digit numbers with one digit even and other odd

Probability of getting one digit even and other odd =_____

Worksheet - 4

In the figure ABCD is a square in which P,Q,R,S are the mid points of the sides AB,BC,CD and AD respectively without looking put a dot inside the larger square.

PARIHARABODHANAM Class 10 ₩

a) What is the probability that the dot being inside the small square?

b) Let *x* be the side of large square

Side of small square =

Area of small square =

Area of large square =

Probability of getting the dot inside the small square \square

Worksheet - 5

There are 45 students in class 10 A out of which 25 are girls and 40 students in class 10 B out of which 20 are girls.

If one from each class is selected.

- a. What is the probability of both being girls?
- b. What is the probability of both being boys?

Total number of students in 10 A =_____

Total number of girls in 10 A =_____

Total number of boys in 10 A =_____

Total number of Students in 10 B =_____

Total number of girls in 10 B =_____

Total number of boys in 10 B =_____

Total number of pairs = Total number of Students in 10A × Total number of students in 10 B

= ____ × ____ = ____

Total number of pairs both being girls = ____ × ___ = ___

Total number of pairs both being boys = ____ × ___ = ___

Total number of pairs of one boy and other girl

= Total number of boys in 10 A × Total number of girls in 10 B + Total number of girls in 10 A × Total number of boys in 10 B

= ____ × ____ + ____ × ____ = ____ × ____ = ____

Total number of pairs of getting atleast one girl = Total number of pairs – Total number of pairs of both boys.

i. Probability of both being girls = $\frac{\text{Total number of pairs both being girls}}{\text{Total number of pairs}}$

= _____

ii. Probability of both being boys = _____

iii. Probability of one being a boy and other a girl = _____

iv. Probability of atleast one girl = _____

PARIHARABODHANAM Class 10 ▶

ANSWERS

Worksheet: 1

Total number of balls = 18 + 7 = 25 Number of black balls = 13 Number of white balls = 7

Probability of getting a black ball = $\frac{18}{25}$

Probability of getting a white ball = $\frac{7}{25}$

Worksheet : 2

Total numbers of small squares = 25

Total numbers of small shaded squares = 9

Probability of putting a dot on the shaded part = $\frac{9}{25}$

Worksheet : 3

	1	2	3	4	5	6
1	11	12	13	14	15	16
2	21	22	23	24	25	26
3	31	32	33	34	35	36
4	41	42	43	44	45	46
5	51	52	53	54	55	56
6	61	62	63	64	65	66

Total numbers of two digit numbers = 36

a. Total number of two digit numbers in which both digits are same = 6 [11, 22, 33, 44, 55, 66]

Probability of getting both digits same = $\frac{6}{36} = \frac{1}{6}$

b. Total number of two digit numbers with both digits even = 9

Probability of getting both digits even = $\frac{9}{36} = \frac{1}{4}$

- c. Total number of two digit numbers with both digits odd = 9
 - PARIHARABODHANAM Class 10 ▶

Probability of getting both digits odd= $\frac{9}{36} = \frac{1}{4}$

d. Total number of two digit numbers with one digit even and other odd = 18

Probability of getting one digit even and other odd = $\frac{18}{36} = \frac{1}{2}$

Worksheet: 4

Let *x* be the side of the large square

Side of small square =
$$\frac{\left(x \times \sqrt{2}\right)}{2} = \frac{x}{\sqrt{2}}$$

Area of the small square = $\left(\frac{x}{\sqrt{2}}\right)^2 = \frac{x^2}{2}$

Area of the large square = x^2

Probability of getting the dot inside the small square = $\frac{\frac{x^2}{2}}{x^2} = \frac{1}{2}$

Worksheet : 5

Total number of students in 10 A = 45 Total number of girls in 10 A = 25 Total number of boys in 10 A = 20 Total number of students in 10 B = 40 Total number of girls in 10 B = 20 Total number of boys in 10 B = 20 Total number of pairs = $45 \times 40 = 1800$ Total number of pairs with both being girls = $25 \times 20 = 500$ Total number of pairs with both being boys = $20 \times 20 = 400$

i. Probability of both being girls = $\frac{500}{1800} = \frac{5}{18}$

ii. Probability of both being boys =
$$\frac{400}{1800} = \frac{4}{18} = \frac{2}{9}$$

PARIHARABODHANAM Class 10 ₩

PRACTICE PROBLEMS

- 1. One is asked to say a three digit number. What is the probability of all the digits being the same?
- 2. There are 4 black beads and 5 white beads in a box. 6 black beads and 5 white beads is another box.
 - a. A bead is taken out from the first box without looking. What is the probability of it being black ? What about white?
 - b. Which box is preferable to get a white bead?
 - c. If all the beads are put in a single box and take a bead without looking, what is the probability of it being black?
- 3. There are white and black beads in a box, with total 16. The probability of getting a black bead from this box is ½. Then,
 - a. How many black beads are there?
 - b. How many white beads are there?
 - c. What is the probability of getting a white bead?
 - d. If one more black bead is put into this box, what is the probability of getting a black bead ?
- 4. Slips numbered 1 to 100 are put in a box. One is taken out from it without looking.
 - a. What is the probability of it being a multiple of 4?

b. What is the probability of it being a multiple of 5?

5. Slips numbered odd numbers less than 10 are put in a box and slips

numbered natural numbers from 1 to 5 in another box. One slip is taken from each box without looking.

- a. What is the probability of both being odd?
- b. What is the probability of both being even?

Answers

- 1. $\frac{1}{100}$
- 2. a) $\frac{4}{9}$
 - b) $\frac{5}{9}$
- 3. a) 8
 - b) 8
 - C) ½

4. a)
$$\frac{1}{4}$$

b) $\frac{1}{5}$
5. a) $\frac{2}{5}$
b) $\frac{3}{5}$

PARIHARABODHANAM Class 10 ₩

.

PARIHARABODHANAM Class 10 M

Activity -3

Length of a rectangle is 2cm less than twice its breadth. The length of its diagonal is 5cm. Find the length and breadth of the rectangle.

Let breadth = x,

Then length =

= _____

Breadth = [

Length =

PRACTICE PROBLEMS

- 1. The square of the difference of 3 times a natural number and 1 is 121. What is the number ?
- 2. One side of rectangle is 2cm longer than the other side and its diagonal is 10cm. What are the lengths of its sides?
- 3. What should be the lengths of the sides of a rectangle having perimeter 28 cm and area 24cm².
- 4.

54

In the figure, the chord AB extended and the tangent at the point $\ ?$ PARIHARABODHANAM Class 10 \blacktriangleright

55

- 4. The sum of the squares of two consecutive odd numbers is 130. What are the numbers?
- 5. The sum of the perpendicular sides of a right angled triangle is 14 cm and its area is 24 cm². Find the length of its sides?

Answers

1. Number = 3

- breadth = 6cm
 length = 8cm
- Length = 12 cm
 breadth = 2cm
- 4. Consicutive odd number = 7, 9
- 5. Sides of a right triangle 6cm, 8cm, 10cm

Answers

Worksheet - 1

- One side of the original square = x
 Side of the new square = x+3
 - Area of the new square = $(x+3)^2$

```
(x+3)^2 = 100
```

```
x + 3 = \sqrt{100}
```

x+3=100, x+3=10-3

x=y

One side of original square = 7cm

Worksheet - 2

```
Breadth = x

Length = x+6

Area = x(x+6)

x(x+6) = 91

x^2+6x+9=91+9

(x+3)^2 = 100

x+3 = \sqrt{100}
```

PARIHARABODHANAM Class 10 M

x + 3 = 10x = 10 - 3x = 7Breadth of rectangle = 7 cmLength of rectangle = 7+6=13cm Worksheet - 3 Breadth - xThen length = 2x-2 $x^{2}+(2x-2)^{2}=25$ $5x^2 - 8x + 4 - 25 = 0$ $5x^2 - 8x - 21 = 0$ a=5 b=-8 c=-21 $b^2 = 4ac = (-8)^2 - 4 \times 5 \times -21$ = 64+420 = 484 $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ $=\frac{-8\pm\sqrt{484}}{2\times5}$ $=\frac{8\pm22}{10}$ $x = \frac{8+22}{10}, x = \frac{8-22}{10}$ $x = \frac{30}{10}, x = \frac{-14}{10}$ $x = 3, x = \frac{-14}{10}$ Breadth = 3 cmThe length = 2×5 = 4 cm