Name :

SECOND YEAR HIGHER SECONDARY EXAMINATION, MARCH 2022

Part – III

STATISTICS

Time : 2 Hours Cool-off time : 15 Minutes

Maximum : 60 Scores

General Instructions to Candidates :

- There is a 'Cool-off time' of 15 minutes in addition to the writing time.
- Use the 'Cool-off time' to get familiar with questions and to plan your answers.
- Read questions carefully before answering.
- Read the instructions carefully.
- Calculations, figures and graphs should be shown in the answer sheet itself.
- Malayalam version of the questions is also provided.
- Give equations wherever necessary.
- Electronic devices except non-programmable calculators are not allowed in the Examination Hall.
- Statistical tables can be used in the examination hall.

വിദ്യാർത്ഥികൾക്കുള്ള പൊതുനിർദ്ദേശങ്ങൾ :

- നിർദ്ദിഷ്ട സമയത്തിന് പുറമെ 15 മിനിറ്റ് 'കൂൾ ഓഫ് ടൈം' ഉണ്ടായിരിക്കും.
- 'കൂൾ ഓഫ് ടൈം' ചോദ്യങ്ങൾ പരിചയപ്പെടാനും ഉത്തരങ്ങൾ ആസൂത്രണം ചെയ്യാനും ഉപയോഗിക്കുക.
- ഉത്തരങ്ങൾ എഴുതുന്നതിന് മുമ്പ് ചോദ്യങ്ങൾ ശ്രദ്ധാപൂർവ്വം വായിക്കണം.
- നിർദ്ദേശങ്ങൾ മുഴുവനും ശ്രദ്ധാപൂർവ്വം വായിക്കണം.
- കണക്ക് കൂട്ടലുകൾ, ചിത്രങ്ങൾ, ഗ്രാഫുകൾ, എന്നിവ ഉത്തരപേപ്പറിൽ തന്നെ ഉണ്ടായിരിക്കണം.
- ചോദ്യങ്ങൾ മലയാളത്തിലും നല്ലിയിട്ടുണ്ട്.
- ആവശ്യമുള്ള സ്ഥലത്ത് സമവാക്യങ്ങൾ കൊടുക്കണം.
- പ്രോഗ്രാമുകൾ ചെയ്യാനാകാത്ത കാൽക്കുലേറ്ററുകൾ ഒഴികെയുള്ള ഒരു ഇലക്ട്രോണിക് ഉപകരണവും പരീക്ഷാഹാളിൽ ഉപയോഗിക്കുവാൻ പാടില്ല.
- സ്റ്റാറ്റിസ്റ്റിക്കൽ ടേബിളുകൾ പരീക്ഷാഹാളിൽ ഉപയോഗിക്കാവുന്നതാണ്.

PART – I

A.	Ans	wer a	ny 5 questions from 1 to 9. E	ach c	arries 1 score. $(5 \times 1 = 5)$
	Cho	ose th	e correct answer for the follow	ving q	uestions :
	1.	If F((x) is a c.d.f. of a random varial	ble X	then $F[-\infty] = $
		(a)	0	(b)	1
		(c)	-1	(d)	∞–
	2.	Con	sider the following bivariate da	ata :	
		X	2 4 6 8		
		Y	1 3 5 7		
				and V	1.
			relation coefficient between X		
		(a)	0	(b)	1
		(c)	-1	(d)	0.5
	3.	Whe	o is known as the father of Qua	lity C	entrel Analysis 2
	5.		R.A. Fisher	(b)	P.C. Mahalanobis
		(a) (c)	Francis Galton	(b) (d)	Walter A. Schewhart
		(0)	Trancis Galton	(u)	water A. Schewhart
					$e^{-4} \Delta^x$
	4.	Ran	dom variable X has p.m.f. f(x) =	$\frac{e^{-4}4^x}{x!}$; $x = 0, 1, 2, \dots$. Which of the
		follo	owing is true ?		
		(a)	E(X) = 0 and $V(X) = 0$	(b)	E(X) = 2 and $V(X) = 2$
		(c)	E(X) = 4 and $V(X) = 4$	(d)	E(X) = 4 and $V(X) = 2$
	5.	If Co	$ov(x, y) = \sigma_x \sigma_y$ then correlation	1 coef	ficient is
		(a)	1	(b)	0
		(c)		(d)	2
		(-)		()	
	6.	Prob	bability distribution of a statisti	c is ca	alled distribution.
		(a)	Binomial	(b)	Poisson
		(c)	Normal	(d)	Sampling
SY-	32			2	

PART – I

A. 1 മുതൽ 9 വരെ ചോദ്യങ്ങളിൽ ഏതെങ്കിലും 5 എണ്ണത്തിന് ഉത്തരമെഴുതുക. 1 സ്കോർ വീതം. (5 × 1 = 5)

താഴെ തന്നിരിക്കുന്ന ചോദ്യങ്ങൾക്ക് ഉത്തരം തെരഞ്ഞെടുത്തെഴുതുക :

- 1. ഒരു റാൻഡം വേരിയബിളിന്റെ c.d.f. F(x) ആകുന്നു എങ്കിൽ $F[-\infty] =$ _____ ആയിരിക്കും
 - (a) 0 (b) 1 (c) -1 (d) $-\infty$
- 2. ചുവടെ തന്നിരിക്കുന്ന ബൈവേരിയേറ്റ് ഡാറ്റ പരിഗണിക്കുക :

Y 1 3 5 7	X	2	4	6	8
	Y	1	3	5	7

X ഉം Y ഉം തമ്മിലുള്ള കോറിലേഷൻ കോയഫിഷ്യന്റ് _____ ആകുന്നു.

- (a) 0 (b) 1
- (c) -1 (d) 0.5
- 3. ക്വാളിറ്റി കൺട്രോൾ അനാലിസിസിന്റെ പിതാവ് എന്ന് അറിയപ്പെടുന്നത് ആര്?
 - (a) R.A. ഫിഷർ (b) P.C. മഹലനോബിസ്
 - (c) ഫ്രാൻസിസ് ഗാൾട്ടൻ (d) വാർട്ടർ.എ. ഷിവാർട്ട്

4. X എന്ന റാൻഡം വേരിയബിളിന്റെ p.m.f. $f(x) = \frac{e^{-4}4^x}{x!}$; x = 0, 1, 2, ചുവടെ

തന്നിട്ടുള്ളതിൽ ശരി ഏതാണ് ?

- (a) E(X) = 0; V(X) = 0 (b) E(X) = 2; V(X) = 2
- (c) E(X) = 4; V(X) = 4 (d) E(X) = 4; V(X) = 2
- 5. $\operatorname{Cov}(x, y) = \sigma_x \sigma_y$ ആകുന്നു എങ്കിൽ കോറിലേഷൻ കോയിഫിഷ്യന്റ് _____ ആയിരിക്കും.
 - (a) 1 (b) 0 (c) -1 (d) 2
- ഒരു സ്റ്റാറ്റിസ്റ്റിക്കിന്റെ പ്രോബബിലിറ്റി ഡിസ്ട്രിബ്യൂഷനെ _____ ഡിസ്ട്രിബ്യൂഷൻ എന്ന് വിളിക്കുന്നു.
 - (a) ബൈനോമിയൽ (b) പോയിസോൺ
 - (c) നോർമൽ (d) സാമ്പ്ളിംഗ്

7.	Year	2016	2017	2018	2019	2020	2021
	Earnings (in lakhs)	15	14	16	17	15	13

Semi average trend values for the above data is

(a)	14, 15	(b)	15, 15
(c)	15, 13	(d)	16, 17

8. If Laspeyer's index number = 120 and Paasche's index number = 130 then Fisher index number is _____.

(a)	120	(b)	130
(c)	128	(d)	124.9

9. Correlation coefficient between X and Y is 0.7. Standard deviation of X = 2 and Standard deviation of Y = 5. Regression coefficient of Y on X is _____.

(a)	0.19	(b)	14.3
(c)	1.75	(d)	0.28

В.	Answer all questions from 10 to 13. Each carries 1 score.	$(4 \times 1 = 4)$
----	---	--------------------

- 10. Find the derivative of $x^3 + x + 1$.
- 11. Choose the correct answer :

X is a continuous random variable with variance 4. The values of V(2X + 1) is

- (a) 8 (b) 4
- (c) 9 (d) 16
- 12. Choose the correct answer :

Sample values taken from a population are 10, 12, 13, 14, 13, 10 moment estimate of population mean is _____.

- (a) 13 (b) 12
- (c) 11.5 (d) 72
- 13. If $P[0 < Z < Z_1] = 0.4251$ then find the value of Z_1 , where $Z \sim N(0, 1)$.

7.	വർഷം	2016	2017	2018	2019	2020	2021	
	വരുമാനം(ലക്ഷത്തിൽ)	15	14	16	17	15	13	
	 മുകളിൽ തന്നിരിക്കുന്ന ര	ധാറ്റയുറെ	ട സെമി	ആവറേ	ജ് ട്രെൻ	ഡ് വിലം	ചൾ ഏത്	ĭ?
	(a) 14, 15		(b)	15, 15				
	(c) 15, 13		(d)	16, 17				
8.	ലാസ്പിയറുടെ ഇൻഡ _{റ്റ}	e						= 130
	എന്നിങ്ങനെ ആയാൽ പ	ിഷർ ഇ	ൻഡക്റ്റ	നമ്പർ	(ആയിരിം	ക്കും.	
	(a) 120		(b)	130				
	(c) 128		(d)	124.9				
9.	X ഉം Y ഉം തമ്മിലുള്ള	<u>ദ</u> കോറിര	ലഷൻ	കോയിം	ഫിഷ്യന്റ്	0.7 ആ	കുന്നു.	X ന്റെ
	സ്റ്റാൻഡേർഡ് ഡീവിയേ	ഷൻ 2	<u>ഉം</u> Y യ	ഴുടെ സ്റ്റാ	ൻഡേർ	ഡ് ഡീറ	ിയേഷന്	ർ 5 ഉം
	അറന്നലിൽ റിഗ്രംപൾ ര	കായഫിം	ഷ്യന്റ് Y	on X		ന്തകുന്ന	д.	
	ആണെങ്കിൽ റിഗ്രഷൻ േ							
	(a) 0.19		(b)	14.3				
10 a			(d)	0.28	ുതുക. 1	സ്കോർ ര		(4 × 1 =
	(a) 0.19(c) 1.75	ാദ്യങ്ങൾ	(d) ക്കും ഉര	0.28	ുതുക. 1	സ്കോർ ((4 × 1 =
	(a) 0.19 (c) 1.75 മുതൽ 13 വരെ എല്ലാ ചേ	ാദൃങ്ങൾ റ്റീവ് കാഞ	(d) ക്കും ഉര നുക.	0.28	ുതുക. 1	സ്കോർ ((4 × 1 =
10.	(a) 0.19 (c) 1.75 മുതൽ 13 വരെ എല്ലാ ചേ $x^3 + x + 1 ന്റെ ഡെറിവേറ്റ$	ാദ്യങ്ങൾ റ്റീവ് കാഞ ടുത്തെഴ	(d) ക്കും ഉര നുക. ുതുക :	0.28 ഞരമെഴ				< Comparison of the second sec
10.	 (a) 0.19 (c) 1.75 മുതൽ 13 വരെ എല്ലാ ചേ x³ + x + 1 ന്റെ ഡെറിവേറ്റ ശരിയുത്തരം തെരഞ്ഞെ 	ാദൃങ്ങൾ റ്റീവ് കാഞ ടുത്തെഴ വരിയബ്	(d) ക്കും ഉര നുക. ുതുക :	0.28 ഞരമെഴ				< Comparison of the second sec
10.	(a) 0.19 (c) 1.75 മുതൽ 13 വരെ എല്ലാ ചേ x ³ + x + 1 ന്റെ ഡെറിവേറ്റ ശരിയുത്തരം തെരഞ്ഞെ X എന്ന കണ്ടിന്യൂസ് ഗേ	ാദൃങ്ങൾ റ്റീവ് കാഞ ടുത്തെഴ വരിയബ്	(d) ക്കും ഉര നുക. ുതുക :	0.28 ഞരമെഴ				< Comparison of the second sec
10.	 (a) 0.19 (c) 1.75 മുതൽ 13 വരെ എല്ലാ ചേ x³ + x + 1 ന്റെ ഡെറിവേറ്റ ശരിയുത്തരം തെരഞ്ഞെ X എന്ന കണ്ടിന്യൂസ് ഗേ വില ആകുന്ന 	ാദൃങ്ങൾ റ്റീവ് കാഞ ടുത്തെഴ വരിയബ്	(d) ക്കും ഉര നുക. റ്റതുക : ളിന്റെ ദ	0.28 ഞരമെഴ വരിയൻ				< Comparison of the second sec
10.	(a) 0.19 (c) 1.75 മുതൽ 13 വരെ എല്ലാ ചേ $x^3 + x + 1 ന്റെ ഡെറിവേറ്റശരിയുത്തരം തെരഞ്ഞെX എന്ന കണ്ടിന്യൂസ് ഗേവില ആകുന്ന(a) 8$	ാദൃങ്ങൾ റ്റീവ് കാണ ടുത്തെഴ വരിയബ് റു.	(d) ക്കും ഉര നുക. ുതുക : ല്രിന്റെ ദ (b) (d)	0.28 ന്തരമെഴ വേരിയൻ 4				< Comparison of the second sec
10. 11.	 (a) 0.19 (c) 1.75 മുതൽ 13 വരെ എല്ലാ ചേ x³ + x + 1 ന്റെ ഡെറിവേറ്റ ശരിയുത്തരം തെരഞ്ഞെ X എന്ന കണ്ടിന്യൂസ് ഗേ വില ആകുന്ന (a) 8 (c) 9 ശരിയുത്തരം തെരഞ്ഞെ ഒരു പോപ്പുലേഷനിൽ ന	ാദ്യങ്ങൾ റ്റീവ് കാണ ാടുത്തെഴ വരിയബ് റ്റ. ടുത്തെഴ റിന്നും എ	(d) ക്രും ഉര നുക. റ്റതുക : ല്രിന്റെ ദ (b) (d) റ്റതുക : റ്റെത്ത ന	0.28 ന്തരമെഴ വേരിയൻ 4 16 സാമ്പിൾ	സ് 4 ത വിലകഗ്	കുന്നു. 8 10, 12	V(2X + , 13, 14,	- 1) ന്റ 13, 10
10. 11.	 (a) 0.19 (c) 1.75 മുതൽ 13 വരെ എല്ലാ ചേ x³ + x + 1 ന്റെ ഡെറിവേറ്റ ശരിയുത്തരം തെരഞ്ഞെ X എന്ന കണ്ടിന്യൂസ് നേ വില ആകുന്ന (a) 8 (c) 9 ശരിയുത്തരം തെരഞ്ഞെ 	ാദ്യങ്ങൾ റ്റീവ് കാണ ാടുത്തെഴ വരിയബ് റ്റ. ടുത്തെഴ റിന്നും എ	(d) ക്രും ഉര നുക. റ്റതുക : വളിന്റെ ദ (b) (d) റ്റതുക : വ്നിന്റെ ഒ	0.28 ന്തരമെഴ വേരിയൻ 4 16 സാമ്പിൾ	സ് 4 ത വിലകഗ്	കുന്നു. 8 10, 12	V(2X + , 13, 14,	- 1) ന്റ 13, 10

13. $P[0 < Z < Z_1] = 0.4251$ എങ്കിൽ Z_1 ന്റ വില കാണുക. ഇവിടെ $Z \sim N(0, m)$ ആകുന്നു.

5

Answer any 2 questions from 14 to 17. Each carries 2 scores. $(2 \times 2 = 4)$ A.

(B)

- (A) (i) Cyclical Variation (a) Population Time Irregular Variation (ii) (b) Salcs of Sweets 2 3 4 5 Time (Year) 5 1 (iii) Seasonal Variation (c) ↑ No. of War Time Boom (iv) (d) Secular Trend Depression Time
- 14. Match the following :

- A. 14 മുതൽ 17 വരെ ചോദ്യങ്ങളിൽ ഏതെങ്കിലും 2 എണ്ണത്തിന് ഉത്തരമെഴുതുക. 2 സ്കോർ വീതം. (2 × 2 = 4)
 - 14. ചേരുംപടി ചേർക്കുക :

(A)

(B)

- 15. Find control limits for \overline{X} -chart. $\overline{\overline{X}} = 16.2$ and $\overline{R} = 7.4$ are given for 10 samples of size 5 each.
- 16. Define (a) Type-I error (b) Type-II error in testing of hypothesis.
- 17. In a bivariate data following results were obtained : Mean value of x = 53, Mean value of y = 27, Regression Co-efficients $b_{yx} = -1.5$, $b_{xy} = -0.2$. Find the most likely value of y when X = 60.
- B. Answer any 2 questions from 18 to 20. Each carries 2 scores. $(2 \times 2 = 4)$
 - 18. Distinguish between Point estimation and Interval estimation of a parameter.
 - 19. If $X \sim N$ (68, σ^2) and P[X > 72] = 0.1587. Find the value of σ .
 - 20. If the two regression lines are X + 2Y = 5 and 2X + 3Y = 8 then calculate Arithmetic means of X and Y.

PART – III

- A. Answer any 3 questions from 21 to 24. Each carries 3 scores. $(3 \times 3 = 9)$
 - 21. (a) Find integral of 8 with respect to x.

(b) Evaluate :
$$\int_{0}^{1} (x+1) dx$$
 (1+2)

- 22. X be a normal variable with mean 50 and standard deviation 10. Find P[X < 70].
- 23. A population consists of the values 8, 9, 13, 15 and 16. Take all possible samples of size 2 by SRSWOR.
 - (a) Find mean of the population.
 - (b) Check whether E (Sample Mean) = Population Mean.

- 15. 5 വീതമുള്ള 10 സാംബിളുകളുടെ $\overline{\overline{X}}$ = 16.2 ഉം \overline{R} = 7.4 ഉം എങ്കിൽ \overline{X} -ചാർട്ടിന്റെ കൺട്രോൾ ലിമിറ്റുകൾ കാണുക.
- 16. ഹൈപ്പോഞ്ഞെസിസ് ടെസ്റ്റിംഗിലെ (a) ടൈപ്പ്-I എറർ (b) ടൈപ്പ്-II എറർ എന്നിവ നിർവ്വചിക്കുക.
- 17. ഒരു ബൈവേരിയേറ്റ് ഡാറ്റയിൽ x ന്റെ മീൻ വില = 53, y യുടെ മീൻ വില = 27, റിഗ്രഷൻ കോയിഫിഷ്യന്റുകൾ $b_{yx} = -1.5$, $b_{xy} = -0.2$. X ന്റെ വില 60 ആകുമ്പോൾ y യുടെ ഏറ്റവും സാധ്യമായ വില കാണുക.
- B. 18 മുതൽ 20 വരെ ചോദ്യങ്ങളിൽ ഏതെങ്കിലും 2 എണ്ണത്തിന് ഉത്തരമെഴുതുക.
 2 സ്കോർ വീതം. (2 × 2 = 4)
 - 18. പോയിന്റ് എസ്റ്റിമേഷൻ, ഇന്റർവെൽ എസ്റ്റിമേഷൻ ഇവ വേർതിരിച്ച് വിശദമാക്കുക.
 - 19. X ~ N (68, σ^2) ഉം P[X > 72] = 0.1587 ഉം ആകുന്നുവെങ്കിൽ σ യുടെ വില കാണുക.
 - 20. X + 2Y = 5, 2X + 3Y = 8 എന്നിവ രണ്ട് റിഗ്രഷൻ ലൈനുകൾ ആകുന്നു. X ന്റെ യും Y യുടെയും അരിത്മെറ്റിക് മീൻ കണക്കാക്കുക.

PART – III

- A. 21 മുതൽ 24 വരെ ചോദ്യങ്ങളിൽ ഏതെങ്കിലും 3 എണ്ണത്തിന് ഉത്തരമെഴുതുക. 3 സ്കോർ വീതം. (3 × 3 = 9)
 - 21. (a) x ആധാരമായ 8 ന്റ ഇന്റഗ്രൽ കാണുക.

(b)
$$\int_{0}^{1} (x+1) dx$$
 കാണുക. (1+2)

- 22. X എന്നത് ഒരു നോർമൽ വേരിയബിളാണ്. X ന്റ മീൻ 50 ഉം സ്റ്റാൻഡേർഡ് ഡീവിയേഷൻ 10 ഉം ആകുന്നു. P[X < 70] കാണുക.
- 23. 8, 9, 13, 15, 16 എന്നിവ പോപ്പുലേഷൻ വിലകളാണ്. SRSWOR പ്രകാരം 2 വീതമുള്ള സാമ്പിളുകൾ എഴുതുക.
 - (a) പോപ്പുലേഷൻ മീൻ കാണുക.
 - (b) E (സാമ്പിൾ മീൻ) = പോപ്പുലേഷൻ മീൻ ആണോയെന്ന് പരിശോധിക്കുക.

24. Sales of statistics books in a School from 2015 to 2020 as follows	24.	Sales of statistics	books in a School	from 2015 to	2020 as follows
--	-----	---------------------	-------------------	--------------	-----------------

Year	2015	2016	2017	2018	2019	2020
Number of books	15	28	30	28	26	32

Calculate 3 year moving average values.

B. Answer any 2 questions from 25 to 27. Each carries 3 scores. $(2 \times 3 = 6)$

25. From the following data, calculate the rank correlation coefficient between X and Y :

X	36	56	20	65	56
Y	50	35	70	25	58

26. A continuous random variable X has the p.d.f., f(x) = 2x; $0 \le x \le 1$

= otherwise

Obtain distribution function of X.

27. Total revenue of a firm is given by $R(X) = 22X - X^2$. Where 'X' is the number of units sold. Find the optimum (Maximum or Minimum) revenue that the company can take.

PART – IV

- A. Answer any 3 questions from 28 to 31. Each carries 4 scores. $(3 \times 4 = 12)$
 - 28. Let $\overline{x} = 6.14$, $\overline{y} = 4$, $\Sigma xy = 209$, $\Sigma y^2 = 146$, n = 7. Write the regression equation x on y.
 - 29. A discrete random variable X has the p.m.f. :

X	1	2	3
P (<i>x</i>)	$\frac{1}{6}$	$\frac{2}{6}$	$\frac{3}{6}$

Find

- (a) $P[1 \le X \le 2]$
- (b) E(X)

(c)
$$V(X)$$

(1+1+2)

24. 2015 മുതൽ 2020 വരെ ഒരു സ്കൂളിൽ വില്പന നടത്തിയ സ്റ്റാറ്റിസ്റ്റിക്സ് പുസ്തകങ്ങളുടെ എണ്ണം ചുവടെ തന്നിരിക്കുന്നു :

വർഷം	2015	2016	2017	2018	2019	2020
പുസ്തകങ്ങളുടെ എണ്ണം	15	28	30	28	26	32

3 വർഷ മൂവിംഗ് ആവറേജ് വിലകൾ കണക്കാക്കുക.

- B. 25 മുതൽ 27 വരെ ചോദ്യങ്ങളിൽ ഏതെങ്കിലും 2 എണ്ണത്തിന് ഉത്തരമെഴുതുക.
 3 സ്കോർ വീതം. (2 × 3 = 6)
 - 25. ചുവടെ തന്നിരിക്കുന്ന ഡാറ്റ ഉപയോഗിച്ച് X ഉം Y ഉം തമ്മിലുള്ള റാങ്ക് കോറിലേഷൻ കോയഫിഷ്യന്റ് കണക്കാക്കുക :

X	36	56	20	65	56
Y	50	35	70	25	58

26. $f(x) = 2x; 0 \le x \le 1$

= മറ്റെല്ലാവിലകൾക്കും.

എന്നത് X എന്ന കണ്ടിന്യൂസ് റാൻഡം വേരിയബിളിന്റെ p.d.f. ആകുന്നു. X ന്റെ ഡിസ്രിബ്യൂഷൻ ഫങ്ഷൻ കാണുക.

 ഒരു കമ്പനിയുടെ റവന്യൂ ഫംങ്ങ്ഷൻ R(X) = 22X – X² എന്നാകുന്നു. 'X' എന്നത് വിറ്റുപ്പോയ യൂണിറ്റുകളുടെ എണ്ണമാകുന്നു. കമ്പനിക്ക് നേടാൻ കഴിയുന്ന പരമാവധി റവന്യൂ എത്രയെന്ന് കണ്ടുപിടിക്കുക.

PART – IV

- A. 28 മുതൽ 31 വരെ ചോദ്യങ്ങളിൽ ഏതെങ്കിലും 3 എണ്ണത്തിന് ഉത്തരമെഴുതുക. 4 സ്കോർ വീതം. (3 × 4 = 12)
 - 28. $\overline{x} = 6.14$, $\overline{y} = 4$, $\Sigma xy = 209$, $\Sigma y^2 = 146$, n = 7 എന്ന് കരുതുക. റിഗ്രഷൻ ഇക്വേഷൻ x on y എഴുതുക.
 - 29. X എന്ന ഡിസ്ക്രീറ്റ് റാൻഡം വേരിയബിളിന്റെ p.m.f. ചുവടെ തന്നിരിക്കുന്നു :

X	1	2	3
P (<i>x</i>)	$\frac{1}{6}$	$\frac{2}{6}$	$\frac{3}{6}$
(a) P[1 (b) E(2 (c) V(2)	-]	
	കാണുക).	

P.T.O.

- 30. (a) Write the conditions required for binomial experiments.
 - (b) X follows binomial distribution with mean = 6 and variance = 3.6.Find probability of 'Success'. (2 + 2)
- 31. (a) What you mean by assignable factors in ANOVA?

Source	d.f.	SS	M.S.S.	F	F _{0.05}
Between	_	18		1.2	4.07
Within	8		5		
Total	11				·

(b) Complete the ANOVA table given below and make a conclusion :

B.	Answer any 1	l question from 32 and 33. Carries 4 scores.	$(1 \times 4 = 4)$
----	--------------	--	--------------------

- 32. Two lines of regression are y x = 5 and 16x = 9y 94.
 - (a) Identify the given lines as regression line of y on x and regression line of x on y.

(1+3)

- (b) Find regression coefficients.
- (c) Compute correlation coefficient. (2+1+1)
- 33. The result of a test can be summarised as :

Gender	Res	Result Tota		
Genuer	Pass	Fail	TUtal	
Male	28	12	40	
Female	34	26	60	

Calculate Chi-square statistics value.

- 30. (a) ബൈനോമിയൽ എക്സ്പീരിമെന്റിന് വേണ്ടതായ നിബന്ധനകൾ എഴുതുക.
 - (b) ബൈനോമിയൽ ഡിസ്പ്രിബ്യൂഷൻ ഫോളോ ചെയ്യുന്ന X ന്റെ മീൻ = 6 ഉം വേരിയൻസ് = 3.6 ഉം ആകുന്നു. 'സക്സസിന്റെ' പ്രോബബിലിറ്റി കാണുക. (2 + 2)
- 31. (a) ANOVA യിലെ അസൈനബിൾ ഫാക്ടേഴ്സ് എന്നതുകൊണ്ട് നിങ്ങൾ അർത്ഥമാക്കുന്നതെന്ത് ?
 - (b) ചുവടെ തന്നിരിക്കുന്ന ANOVA ടേബിൾ പൂരിപ്പിക്കുകയും നിഗമനത്തിലെത്തുകയും ചെയ്യുക :

Source	d.f.	SS	M.S.S.	F	F _{0.05}
Between		18		1.2	4.07
Within	8		5		
Total	11				

(1+3)

B. 32 മുതൽ 33 വരെ ഏതെങ്കിലും ഒരു ചോദ്യത്തിന് ഉത്തരമെഴുതുക. 4 സ്റ്റോർ

 $(1 \times 4 = 4)$

- 32. y x = 5, 16x = 9y 94 എന്നിവ രണ്ട് റിഗ്രഷൻ ലൈനുകളാണ്.
 - (a) തന്നിരിക്കുന്ന റിഗ്രഷൻ ലൈനുകളെ y on x, x on y എന്നിങ്ങനെ തിരിച്ചറിയുക.
 - (b) റിഗ്രഷൻ കോയഫിഷ്യന്റുകൾ കാണുക.
 - (c) കോറിലേഷൻ കോയഫിഷ്യന്റ് കണക്കാക്കുക. (2 + 1 + 1)
- 33. ഒരു പരീക്ഷയുടെ ഫലം പട്ടികപ്പെടുത്തിയിരിക്കുന്നു :

ലിംഗം	Ċ	ഫലം	ആകെ
	#Wo	തോൽവി	(90)0703
ആൺ	28	12	40
പൺ	34	26	60

Chi-square സ്റ്റാറ്റിസ്റ്റികിന്റെ വില കണക്കാക്കുക.

PART - V

Answer any 2 questions from 34 to 36. Each carries 6 scores.

 $(2 \times 6 = 12)$

34. Scores obtained (out of 15) for 5 students in a class test as follows :

English	8	6	10	7	15
Statistics	10	7	8	4	6

Calculate Karl Pearson's correlation coefficient.

35. (a) Find Simple A.M. Price Index for the following data :

Price in 2020	44	38	48
Price in 2021	48	40	54

(b) Calculate Laspeyer's index for the following data :

Base Year		Current Year		
Price	Quantity	Price	Quantity	
2	20	5	15	
4	4	8	5	
1	10	2	12	
5	5	10	6	

(2+4)

- 36. (a) X_1, X_2, X_3 is a random sample taken from a population with Mean μ and Standard Deviation σ . Let $T_1 = 2X_1 - 2X_2 + X_3$ and $T_2 = 3X_1 - X_2 - X_3$ are two unbiased estimators of μ . Find which one is more efficient.
 - (b) A sample of 144 observations is taken from a population with Mean 50. The Sample Mean = 55 with S.D. = 20. Test the hypothesis that population Mean is equal to the Sample Mean at 5% level of significance. (Given $Z_{\alpha/2} = 1.96$) (3 + 3)

PART - V

34 മുതൽ 36 വരെ ചോദ്യങ്ങളിൽ ഏതെങ്കിലും 2 എണ്ണത്തിന് ഉത്തരമെഴുതുക. 6 സ്കോർ വീതം. (2 × 6 = 12)

34. ഒരു ക്ലാസ്സ് പരീക്ഷയിൽ 5 വിദ്യാർത്ഥികൾക്ക് ലഭിച്ച സ്കോറുകൾ (15 ൽ) ചുവടെ തന്നിരിക്കുന്നു :

ഇംഗ്ലിഷ്	8	6	10	7	15
സ്റ്റാറ്റിസ്റ്റിക്ല്	10	7	8	4	6

കാൾ വിയേഴ്സൺ കോറിലേഷൻ കോയഫിഷ്യന്റ് കണക്കാക്കുക.

35. (a) ചുവടെ തന്നിരിക്കുന്ന ഡാറ്റയുടെ സിംപിൾ A.M. പ്രൈസ് ഇൻഡക്സ് കാണുക :

2020 ലെ വില	44	38	48
2021 ലെ വില	48	40	54

(b) താഴെ തന്നിരിക്കുന്ന ഡാറ്റയുടെ ലാസ്പയേഴ്സ് ഇൻഡക്സ് കണക്കാക്കുക :

ബേസ് ഇയർ		കറന്റ് ഇയർ	
വില	ക്വാണ്ടിറ്റി	വില	ക്വാണ്ടിറ്റി
2	20	5	15
4	4	8	5
1	10	2	12
5	5	10	6

- 36. (a) മീൻ μ ഉം, സ്റ്റാൻഡേർഡ് ഡീവിയേഷൻ യും ആയ ഒരു പോപ്പുലേഷനിൽ നിന്നും എടുത്ത സാമ്പിളുകളാണ് X_1, X_2, X_3 എന്നിവ. $T_1 = 2X_1 - 2X_2 + X_3$, $T_2 = 3X_1 - X_2 - X_3$ എന്നിവ μ ന്റെ 2 അൺ ബയാസ്ഡ് എസ്റ്റിമേറ്ററുകളാണ്. ഇവയിൽ കൂടുതൽ എഫിഷ്യന്റ് ഏതാണ് ?
 - (b) മീൻ 50 ആയ ഒരു പോപ്പുലേഷനിൽ നിന്നും 144 സാമ്പിളുകൾ എടുത്തിരിക്കുന്നു. സാമ്പിൾ മീൻ = 55 ഉം സ്റ്റാൻഡേർഡ് ഡീവിയേഷൻ = 20 ഉം ആകുന്നു. പോപ്പുലേഷൻ മീൻ സാമ്പിൾമീനിന് തുല്യമാണോയെന്ന് 5% ലെവൽ ഓഫ് സിഗ്നിഫിക്കൻസിൽ പരിശോധിക്കുക. (Z_{α/2} = 1.96 എന്ന് തന്നിരിക്കുന്നു) (3 + 3)

^(2 + 4)