SECOND YEAR HIGHER SECONDARY MODEL EXAMINATION, MARCH 2022
Part III
PHYSICS
Maximum: 60 Score
HSPTA KANNUR
ANSWER KEY (unofficial)

Qn No.	Qn Sub No.	Scoring Indicators	Split score	Total

1		Coulomb $\quad \mu$	1	1
2	(c)	90	1	1
3	(b)	$\mathrm{p}=\mathrm{h} / \lambda$	1	1
4		$\frac{h}{2 \pi}$	1	1
5		Protons: Z, Neutrons: A - Z	1	1
6		false	1	1
7		$\mathrm{B}=\frac{0^{n I}}{2 R}$	1	1
8		Eddy Current	1	1
9		Interference	1	1
10	(b)	increases	1	1
11	(d)	Manganin	1	1
12		negative	1	1
13		Scattering of light	1	1
14		The surface integral of magnetic flux over a closed surface is zero $\oint \vec{B} \cdot \overrightarrow{d s}=0$	2	2
15		 (a) (b)	2	2

SECOND-YEAR HIGHER SECONDARY MODEL EXAMINATION, MARCH 2022 HSPTA KANNUR

ANSWER KEY (unofficial)

Qn No.	Qn Sub No.	Scoring Indicators	Split score	Total

16	(a) (b)	NAND and NOR gates are called universal gates. All gates like OR,AND and NOT can be derived from NAND and NOR gate.	1	2
17		Two sources are said to be coherent, if they emit light waves of the same frequency, same wavelngth,same phase or at a constant phase difference.	2	2
18	(a) (b)	Circle Spiral		
19		(1) Used to detect fractures. (2) Used for cancer treatment. (3) X-Ray diffraction		
20	a) b)	$\begin{aligned} & \vec{\tau}=\vec{p} \times \vec{E} \quad \text { Or }_{\tau}=P E \sin \theta \\ & \theta=90 \end{aligned}$	1 1	2
21	a) b)	Ohm $I=I_{1}+I_{2}------(1)$ But, $I_{1}=\frac{V_{1}}{R_{1}} I_{2}=\frac{V_{2}}{R_{2}}$ $\begin{align*} & \mathrm{I}=\frac{V_{1}}{R_{1}}+\frac{V_{2}}{R_{2}} \tag{2}\\ & \mathrm{I}=\frac{V}{R}------(3) \\ & \frac{V}{R}=\frac{V_{1}}{R_{1}}+\frac{V_{2}}{R_{2}} \tag{4} \end{align*}$ OR, $\frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{R_{2}}$	1 2	3
22	a) b)	$\mathrm{R}=2 \mathrm{f}$	1	

SECOND-YEAR HIGHER SECONDARY MODEL EXAMINATION, MARCH 2022 HSPTA KANNUR

Qn No.	Qn Sub No.	Scoring Indicators	Split score	Total

\begin{tabular}{|c|c|c|c|c|}
\hline \& \& \begin{tabular}{l}
\[
\frac{B^{\prime} F}{F P}=\frac{B^{\prime} P}{B P}
\] \\
\(B^{\prime} P=v, B P=u, B^{\prime} F=v-f, F P=f\)
\[
\frac{v-f}{f}=\frac{v}{u} 1
\] \\
Applying convention
\[
\left\lvert\, \frac{-v--f}{-f}=\frac{-v}{-u}\right.
\] \\
\(\mathrm{v} / \mathrm{f}-1=\mathrm{v} / \mathrm{u}\) \\
Dividing by v
\[
1 / f-1 / v=1 / u
\]
\[
\bar{u}+\frac{1}{v}=\frac{1}{f}
\]
\end{tabular} \& 2 \& 3 \\
\hline 23 \& \begin{tabular}{l}
a) \\
b)
\end{tabular} \& The angle made by the earth's magnetic field at the place with the horizontal.
\[
\begin{aligned}
\& \mathrm{B}_{\mathrm{H}}=\mathrm{B} \cos \Phi \\
\& \mathrm{~B}=0.2 \times 10^{-4} / \cos 60=0.4 \times 10^{-4} \\
\& \mathrm{~B}_{\mathrm{v}}=\mathrm{B} \sin \Phi=0.4 \times 10^{-4} \sin 60=0.346 \times 10^{-4} \mathrm{~T}
\end{aligned}
\] \& 1

2 \& 3 \\

\hline 24 \& a) \& | 1. A surface on which is electric potential is constant at all points. |
| :--- |
| 2. No work is required to move a charge from one point to another on the equipotential surface. Sphere | \& 2

1 \& 3 \\

\hline 25 \& a) \& | 1.The photocurrent is directly proportional to the intensity of incident radiation. |
| :--- |
| 2. If the frequency of incident radiation is less than threshold frequency then the emission is not possible. | \& 2 \& 3 \\

\hline
\end{tabular}

SECOND-YEAR HIGHER SECONDARY MODEL EXAMINATION, MARCH 2022 HSPTA KANNUR

$\begin{aligned} & \text { Qn } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { Qn } \\ & \text { Sub } \\ & \text { No. } \end{aligned}$	Scoring Indicators	Split score	Total
	b)	It is the voltage required to stop the most energetic electrons in the photo apparatus.	1	
26	a) b)	The difference in mass between total masses of constituent nucleons of a nucleus and stable nucleus mass is called ma defect. Mass defect $=\left(Z_{1}+(A-Z) M_{n}\right)-M$ $\mathrm{M}=$ Mass of stable nucleus Nuclear fission	2	3
27	a) b)	The minimum energy required to remove the most loosely bound electron of an isolated neutral atom. 1. It can't explain the stability of an atom. 2. It didn't explain the arrangement of an electron inside the atom.	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	3
28	a)	The total potential drop V across the combination is $\mathrm{V}=\mathrm{V}_{1}+\mathrm{V}_{2}$ Let C be the effective Capacitance of the combination and charge Stored in it is Q , then potential across the combination is $\mathrm{V}=\mathrm{Q} / \mathrm{C}$ then equation for V become $\mathrm{Q} / \mathrm{C}=\left(\mathrm{Q}_{1} / \mathrm{C}_{1}\right)+\left(\mathrm{Q}_{2} / \mathrm{C}_{2}\right) \quad \text { Or } 1 / \mathrm{C}=\left(1 / \mathrm{C}_{1}\right)+\left(1 / \mathrm{C}_{2}\right)$ Generally for series combination of 3 capacitors $\begin{aligned} & \frac{1}{C}=\frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{3}} \\ & \mathrm{c}=900 \mu \mathrm{~F}, \mathrm{~V}=100 \mathrm{~V} \text { Then } \mathrm{E}=(1 / 2) \mathrm{CV}^{2}=0.5 \times 900 \times 10^{-6} \times 100^{2}=4.5 \mathrm{~J} \end{aligned}$	2 2	4
29	a)	Works on the basis of torque acting on a rectangular loop in a magnetic field. The torque on a coil of N turns is given by $\tau=$ NIAB $\sin \theta$. Ammeter- By connecting small resistance (shunt resistance) parallel to the galvanometer Ammeter	1 3	4

SECOND-YEAR HIGHER SECONDARY MODEL EXAMINATION, MARCH 2022 HSPTA KANNUR

ANSWER KEY (unofficial)

Qn No.	Qn Sub No.	Scoring Indicators	Split score	Total

		Voltmeter- By connecting high resistance in series to the galvanometer Voltmeter		
30	a) b)	Electromagnetic induction The work to be done against the back emf in an inductor is stored as magnetic potential energy. For the current I at an instant in a circuit, the rate of work done is $\mathrm{v}=-\mathrm{e}=L \frac{d i}{d t}$ Rate of workdone $\frac{d W}{d t}=\mathrm{vi}=L \frac{d i}{d t} \mathrm{i}$ $\begin{gathered} \mathrm{dW}=\mathrm{Li} \mathrm{di} \\ \mathrm{~W}=\mathrm{L} \int_{0}^{I_{0}} i d i=\frac{1}{2} L I_{0}^{2} \end{gathered}$	1 3	4
31	a)	The PN junction diode offers low resistance in forward bias and high resistance in reverse bias. So diode can be used in the rectifier. During the positive half cycle of the input ac signal, the	1 3	4

SECOND-YEAR HIGHER SECONDARY MODEL EXAMINATION, MARCH 2022 HSPTA KANNUR

ANSWER KEY (unofficial)

Qn No.	Qn Sub No.	Scoring Indicators	Split score	Total

\begin{tabular}{|c|c|c|c|c|}
\hline \& \& diode D 1 conducts and during the negative half cycle diode D2 conducts. During both cycle current through the resistor is remain same \& \& \\
\hline 32 \& \begin{tabular}{l}
a) \\
b)
\end{tabular} \& Mutual induction
\[
\mathrm{Ns}=\mathrm{N}_{\mathrm{p}}\left(\mathrm{~V}_{\mathrm{s}} / \mathrm{V}_{\mathrm{p}}\right)=4000 \mathrm{x}(230 / 2300)=400 \text { turns }
\] \& 1
3 \& 4 \\
\hline 33 \& a) \& \begin{tabular}{l}

\[
\begin{aligned}
\& \mathrm{BC}=\mathrm{v} 1 \mathrm{~T} \\
\& \mathrm{AE}=\mathrm{v} 2 \mathrm{~T}: \frac{\sin i}{\sin r}=\mathrm{v} 1 / \mathrm{v} 2
\end{aligned}
\] \\
We have \(n 2 / n 1=v 1 / v 2\). Hence proved Diffraction
\end{tabular} \& 3

1 \& 4 \\

\hline 34 \& | a) |
| :--- |
| b) |
| c) | \& | Ratio of the Sine of angle of incidence to the sine of angle of refraction is a constant |
| :--- |
| Or $\frac{\sin i}{\sin r}=\mathrm{n}$ |
| Derivation of Lens Maker's formula |
| virtual | \& 2

3
1 \& 6 \\

\hline 35 \& | a) |
| :--- |
| (b) |
| c) | \& | Electric flux |
| :--- |
| The total electric flux over a closed surface is $1 / \varepsilon_{0}$ times the net charge enclosed by the surface. $\oint E . d s=q / \varepsilon_{0}$ $\begin{aligned} & \oint E . d s=q / \varepsilon_{0} \\ & ; \oint E . d s=q / \varepsilon_{0} ; \mathbf{q}=\lambda l ; \\ & \int E . d s=\lambda l / \varepsilon_{0} ; \text { surface area of the cylinder }=2 \pi r l ; \quad E=\left(1 / 2 \pi \varepsilon_{0}\right) \frac{\lambda}{r} \end{aligned}$ | \& 1

2

3 \& 6 \\
\hline
\end{tabular}

SECOND-YEAR HIGHER SECONDARY MODEL EXAMINATION, MARCH 2022 HSPTA KANNUR ANSWER KEY (unofficial)

Qn No.	Qn Sub No.	Scoring Indicators	Split score	Total

