SECOND YEAR HIGHER SECONDARY MODEL EXAMINATION

Part III

MATHEMATICS

Time:2Hours
Cool-off time:15 minutes
Maximum:60 scores

General Instructions to Candidates :

- There is a Cool-off time of 15 minutes in addition to the writing time.
- Use the Cool-off time to get familiar with questions and to plan your answers.
- Read questions carefully before answering.
- Read the instructions carefully.
- Calculations, figures and graphs should be shown in the answer sheet itself.
- Give equations wherever necessary.
- Electronic devices except non-programmable calculators are not allowed in the Examination Hall.

PART-1

A. Answer any five questions from 1 to 9 each carries 1 score.

$$
(1 \times 5=5)
$$

1. The function $f: R \rightarrow R$ defined by $f(x)=x$. Find $f(f(x)$

Solution: $f(f(x)=f(x)=x$
2. Find the value of $\cos \left(\sec ^{-1} x+\operatorname{cosec}^{-1} x\right)$

Solution: $\cos \left(\frac{\pi}{2}\right)=0$
3. Let a be a square matrix of order 3×3, then which among the following is the value of $|k A|$

Solution: $k^{3}|A|$
4. The rate of change of area of a circle with respect to radius, when the radius 6 cm is

Solution: Area $A=\pi r^{2}$,
$\frac{d A}{d r}=2 \pi r$ at $\mathrm{r}=6 \Longrightarrow \frac{d A}{d r}=12 \pi$
5. Write the value of the definite integral $\int_{\pi / 2}^{\pi / 2} \sin x d x$

Solution: $\sin \mathrm{x}$ is an odd function
$\therefore \int_{-\pi / 2}^{\pi / 2} \sin x d x=0$
6. Write the degree of the differential equation $\frac{d^{2} y}{d x^{2}}+y=0$

Solution: 1

7. if $\vec{a}=2 \hat{i}+\hat{j}+3 \hat{k}$ and $\vec{b}=8 \hat{i}+4 \hat{j}+12 \hat{k}$, then $\vec{a} \times \vec{b}$ is

Solution: Here both vectors are parallel so cross product is zero
8. The Cartesion equation of a line is $\frac{x}{2}=\frac{y}{2}=\frac{z}{2}$. write the corresponding vector equation.

$$
\text { Solution: } \vec{r}=\lambda(2 \hat{i}+4 \hat{j}+2 \hat{k})
$$

9. If $A \subset B$, then the value of $P(B / A)$ is \qquad

Solution: $P(B / A)=\frac{P(A \cap B)}{P(A)}=\frac{P(A)}{P(A}=1$

B. Answer all questions from 10 to 13 each carries 1 score.(Nonfocus area)

10. Write the principal value of $\sin ^{-1} \frac{1}{2}$.

Solution: $\frac{\pi}{6}$

11. If a is a singular matrix , then the value of $|A|$ is

Solution: 0

12. $y=e^{\log x}$, find $\frac{d y}{d x}$.

Solution: $y=e^{\log x}=x$, then $\frac{d y}{d x}=1$
13. If $l, \mathrm{~m}, \mathrm{n}$ are direction cosines of a line in space then $l^{2}+m^{2}+n^{2}$ is \qquad

Solution: $l^{2}+m^{2}+n^{2}=1$

PART-II

A. Answer any two questions from 14 to 17 each carries 2 score.(Focus area)

$(2 \times 2=4)$
14. Construct a 2×2 matrix $A=\left[a_{i j}\right]$ whose elements are given by $a_{i j}=2 i-j$

Solution: $A=\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 3 & 2\end{array}\right]$
15. Find the intervals in which the function f given by $f(x)=x^{2}-4 x+6$ is strictly increasing.

Solution: Given $f(x)=x^{2}-4 x+6$ then $f^{\prime}(x)=2 x-4, f(x)$ is strictly increasing in which $f^{\prime}(x)>0 \Longrightarrow 2 x-4>0 \Longrightarrow x>2$ $\therefore f(x)$ is strictly increasing in $(2, \infty)$
16. Find equation of normal to the curve $y=x^{3}$ at $(1,1)$

Solution: $y=x^{3} \Longrightarrow \frac{d y}{d x}=3 x^{2}$
Slope of the tangent at $(1,1)=3$
\therefore slope of normal $=-\frac{1}{3}$
\therefore equation of normal $y-1=-\frac{1}{3}(x-1)$
$\Longrightarrow x+3 y-4=0$
17. Form the differential equation corresponding to family of straight lines $y=m x$ where m is an arbitrary constant

Solution: $y=m x$ differentiating $\frac{d y}{d x}=m \therefore$ Differential equation is $y=\frac{d y}{d x} x$
B. Answer any two questions from 18 to 20 each carries 2 score.(Nonfocus area)
$(2 \times 2=4)$
18. Find $\frac{d y}{d x}$ if $x-y=\pi$

Solution: $x-y=\pi \Longrightarrow 1-\frac{d y}{d x}=0 \quad \therefore \frac{d y}{d x}=1$
19. Solve the differential equation $\frac{d y}{d x}=\frac{x+y}{x}$.

$$
\begin{aligned}
& \text { Solution: } \\
& \frac{d y}{d x}=\frac{x+y}{x} \\
& \frac{d y}{d x}=1+\frac{y}{x} \\
& \frac{d y}{d x}-\frac{y}{x}=1 \\
& \text { integrating factor } e^{\int-1 / x}=1 / x \\
& \text { General solution } \frac{y}{x}=\int 1 / x \Longrightarrow \frac{y}{x}=\log |x|+c
\end{aligned}
$$

20. Show that the vectors $\vec{a}=\hat{i}-2 \hat{j}+3 \hat{k}, \vec{b}=-2 \hat{i}+3 \hat{j}-4 \hat{k}$ and $\vec{c}=\hat{i}-3 \hat{j}+5 \hat{k}$ arecoplanar

Solution: vectors are coplanar then $\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]=0 \Longrightarrow\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]=\left|\begin{array}{ccc}1 & -2 & 3 \\ -2 & 3 & -4 \\ 1 & -3 & 5\end{array}\right|=0$
\therefore vectors are coplanar

PART-III

A. Answer any three questions from 21 to 24 each carries 3 score.(Focus area)

$$
(3 \times 3=9)
$$

21. Show that the relation R in the set $\{1,2,3\}$ given by $R=\{(1,1),(2,2),(3,3),(1,2),(2,3)\}$ is reflexive but neither symmetric nor transitive.

Solution:

Every elements are related to itself $\therefore \mathrm{R}$ is reflexiive $(1,2) \in R$ bt $(2,1) \notin R$ so R is not symmetric $(1,2),(2,3) \in R$ but $(1,3) \notin R$ so R is not transitive .
22. If $A=\left[\begin{array}{ll}3 & -2 \\ 4 & -2\end{array}\right]$ and $I=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ Find K so that $A^{2}=K A-2 I$

$$
\begin{gathered}
\text { Solution: Given } A=\left[\begin{array}{ll}
3 & -2 \\
4 & -2
\end{array}\right] \text { and } I=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \text { so } A^{2}=\left[\begin{array}{ll}
3 & -2 \\
4 & -2
\end{array}\right]\left[\begin{array}{ll}
3 & -2 \\
4 & -2
\end{array}\right]=\left[\begin{array}{ll}
1 & -2 \\
4 & -4
\end{array}\right] \\
K A-2 I=\left[\begin{array}{cc}
3 k-2 & -2 k \\
4 k & -2 k-2
\end{array}\right] \quad \therefore k=1
\end{gathered}
$$

23. Find the area of the parallelogram whose adjacent sides are given by the vectors $\vec{a}=3 \hat{i}+\hat{j}+4 \hat{k}$ and $\vec{b}=\hat{i}-\hat{j}+\hat{k}$.

Solution: Area of the parallelogram $=|\vec{a} \times \vec{b}|, \quad \vec{a} \times \vec{b}=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 3 & 1 & 4 \\ 1 & -1 & 1\end{array}\right|=5 \hat{i}+\hat{j}-4 \hat{k}$ \therefore area $|\vec{a} \times \vec{b}|=\sqrt{42}$
24. Probability of solving specific problem independently by A and B are $\frac{1}{2}$ and $\frac{1}{3}$ respectively . If both try to solve the problem independently .Find the probability that exactly one of them solve the problem

Solution:

$\mathrm{P}($ exacly one of them solve the problem $)=P(A \cap \bar{B})+P(\bar{A} \cap B)$

$$
=P(A) \cdot P(\bar{B})+P(\bar{A}) \cdot P(B)=\frac{1}{2} \times \frac{2}{3}+\frac{1}{2} \times \frac{1}{3}=\frac{3}{6}=\frac{1}{2}
$$

B. Answer any two questions from 25 to 27 each carries 3 score.(Nonfocus area)

$(3 \times 2=6)$
25. Consider the binary operation \wedge on the set $\{1,2,3,4,5\}$ defined by $a \wedge b=\min \{a, b\}$. write the operation table of \wedge

Solution:

\wedge	1	2	3	4	5
1	1	1	1	1	1
2	1	2	2	2	2
3	1	2	3	3	3
4	1	2	3	4	4
5	1	2	3	4	5

26. By using elementary operation, Find the inverse of the matrix $A=\left[\begin{array}{cc}1 & 2 \\ 2 & -1\end{array}\right]$

Solution: $A \cdot A^{-1}=I \Longrightarrow\left[\begin{array}{cc}1 & 2 \\ 2 & -1\end{array}\right] \cdot A^{-1}=I$

$$
\begin{aligned}
& R_{2} \rightarrow R_{2}-2 \cdot R_{1} \Longrightarrow \\
& {\left[\begin{array}{cc}
1 & 2 \\
0 & -5
\end{array}\right] \cdot A^{-1}=\left[\begin{array}{cc}
1 & 0 \\
-2 & 1
\end{array}\right]} \\
& R_{2} \rightarrow R_{2} \times-\frac{1}{5} \Longrightarrow\left[\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right] \cdot A^{-1}=\left[\begin{array}{cc}
1 & 0 \\
\frac{2}{5} & \frac{-1}{5}
\end{array}\right] \\
& R_{1} \rightarrow R_{1}-2 R_{2} \Longrightarrow\left[\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right] \cdot A^{-1}=\left[\begin{array}{cc}
\frac{1}{5} & \frac{2}{5} \\
\frac{2}{5} & \frac{-1}{5}
\end{array}\right] \Longrightarrow A^{-1}=\left[\begin{array}{cc}
\frac{1}{5} & \frac{2}{5} \\
\frac{2}{5} & \frac{-1}{5}
\end{array}\right]
\end{aligned}
$$

27. Find $\int_{0}^{2} x^{2} d x$ as limit of infinite sum .

$$
\begin{aligned}
& \text { Solution: } \int_{0}^{2} x^{2} d x=\lim _{h \rightarrow 0} h\left\{f(0)+f(h)+f\left(h^{2}\right)+\ldots \ldots .+f\left((n-1) h^{2}\right)\right\} ; h=\frac{2}{n} \\
& \left.\Longrightarrow I=\lim _{h \rightarrow 0} h\left\{h^{2}\right)+4 h^{2}+9 h^{2}+\ldots \ldots .+f\left((n-1)^{2} h^{2}\right)\right\} \\
& \left.\Longrightarrow I=\lim _{h \rightarrow 0} h^{3}\{1)+2^{2}+3^{2}+\ldots \ldots+\left((n-1)^{2}\right)\right\} \\
& =\lim _{n \rightarrow \infty} \frac{8}{n^{3}} \frac{(n-1) n(2(n-1)+1)}{6}=\frac{16}{6}=\frac{8}{3}
\end{aligned}
$$

PART-IV

A. Answer any 3 questions from 28 to 31 each carries 4 score.(Focus area)

$(4 \times 3=12)$
28. Show that:
i) $\tan ^{-1} \frac{1}{2}+\tan ^{-1} \frac{2}{11}=\tan ^{-1} \frac{3}{4}$
ii) $\cos ^{-1}\left(4 x^{3}-3 x\right)=3 \cos ^{-1} x, x \in\left[\frac{1}{2}, 1\right]$

Solution:

i) $\tan ^{-1} \frac{1}{2}+\tan ^{-1} \frac{2}{11}=\tan ^{-1} \frac{\frac{1}{2}+\frac{2}{11}}{1-\left(\frac{1}{2} \times \frac{2}{11}\right)}=\tan ^{-1} \frac{15}{20}=\tan ^{-1} \frac{3}{4}$
ii) put $x=\cos \theta$ then $\cos ^{-1}\left(4 x^{3}-3 x\right)=\cos ^{-1} \cos (3 \theta)=3 \theta=3 \cos ^{-1} x$
29. Verify Mean value theorem for the function $f(x)=x^{2}$ in the interval $[2,4]$.

Solution: $\mathrm{f}(\mathrm{a})=\mathrm{f}(2)=4$ and $\mathrm{f}(\mathrm{b})=\mathrm{f}(4)=16$
$f^{\prime}(x)=2 x \Longrightarrow f^{\prime}(c)=2 c$
by L.M.V.T $f^{\prime}(c)=2 c=\frac{16-4}{4-2}=6 \Longrightarrow c=3 \in[2,4]$ hence verified
30. Find the area of the region bounded by the curve $y^{2}=x$ and the line $\mathrm{x}=1$ and $\mathrm{x}=4$ and the x axis and the first quadrant

Solution: Area $=\int_{1}^{4} \sqrt{x}=\left[\frac{x^{3 / 2}}{3 / 2}\right]_{1}^{4}=\frac{16}{3}-\frac{2}{3}=\frac{14}{3}$
31. Find the shortest distance between the lines whose vector equations are $\vec{r}=\hat{i}+\hat{j}+\hat{k}+\lambda(2 \hat{i}-\hat{j}+\hat{k})$ and $\vec{r}=2 \hat{i}-\hat{j}-\hat{k}+\mu(3 \hat{i}-5 \hat{j}+2 \hat{k})$

Solution: $d=\left|\frac{\left(\vec{a}_{2}-\vec{a}_{1}\right) \cdot\left(b_{1} \times b_{2}\right)}{\left|b_{1} \times b_{2}\right|}\right|$
$\vec{a}_{2}-\vec{a}_{1}=\hat{i}-2 \hat{j}-2 \hat{k}$ and $\left(b_{1} \times b_{2}\right)=3 \hat{i}-\hat{j}-7 \hat{k} \Longrightarrow d=\frac{19}{\sqrt{59}}$

B. Answer any one questions from 32 to 33 each carries 4 score.(Nonfocus area)

($4 \times 1=4$)
32. Random variable X has following probability distribution

X	0	1	2	3	4
$\mathrm{P}(\mathrm{x})$	0.1	k	2 k	2 k	k

i) Find the value of k
ii)Find $P(X<3)$

Solution: i) $\sum P(X)=1 \Longrightarrow 6 k+0.1=1 \therefore k=\frac{0.9}{6}=0.15$
ii) $P(X<3)=0.1+0.15+0.3=0.55$
33. Find the cartesion and vector eqation of the plane with intercepts $2,3,4$ on the $\mathrm{x}, \mathrm{y}, \mathrm{z}$ axis respectively .

Solution:

Equation of plane, Cartesion form
$\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1 \Longrightarrow \frac{x}{2}+\frac{y}{3}+\frac{z}{4}=1$
ie, $6 x+4 y+3 z-1=0 \therefore$ vector form is $\vec{r} \cdot(6 \hat{i}+4 \hat{j}+3 \hat{k})=1$

PART-V

A. Answer any two questions from 34 to 36 each carries 2 score.(Focus area)

$(6 \times 2=12)$
34. Solve the following system of equations by matrix method
$3 x-2 y+3 z=8$

$$
\begin{array}{ll}
2 x+y-z=1 \\
. & 4 x-3 y+2 z=4
\end{array}
$$

Solution: $3 x-2 y+3 z=8$

$$
2 x+y-z=1
$$

$$
4 x-3 y+2 z=4
$$

$$
\Longrightarrow\left[\begin{array}{ccc}
3 & -2 & 3 \\
2 & 1 & -1 \\
4 & -3 & 2
\end{array}\right] \cdot\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
8 \\
1 \\
4
\end{array}\right] \text { ie }, \mathrm{AX}=\mathrm{B} \text { form }
$$

$$
|A|=-17 \text { and } \operatorname{adj}(A)=\left[\begin{array}{ccc}
-1 & -5 & -1 \\
-8 & -6 & 9 \\
-10 & 1 & 7
\end{array}\right]
$$

$$
X=A^{-1} B \Longrightarrow X=\frac{-1}{17}\left[\begin{array}{ccc}
-1 & -5 & -1 \\
-8 & -6 & 9 \\
-10 & 1 & 7
\end{array}\right] \cdot\left[\begin{array}{l}
8 \\
1 \\
4
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
3=1, y=2, \mathrm{z}=3
\end{array}\right]
$$

35. Solve the following linear programing problem graphically :

Maximise $Z=4 x+y$ subject to the constraints $x+x \leq 50, \quad 3 x+y \leq 90, x \geq 0 \quad y \geq 0$.

Solution:		
	corner point $(0,0)$ $(30,0)$ $(20,30)$ $(0,50)$	 Z 0 120 110 50

$$
\text { Maximum } Z=120 \text { at }(30,0)
$$

36. Find :
i) $\int \frac{\sin \left(\tan ^{-1} x\right)}{1+x^{2}} d x$
ii) $\int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\sin x}}{\sqrt{\sin x}+\sqrt{\cos x}} d x$
iii) $\int \frac{d x}{x^{2}-16} d x$

Solution:

i) $\tan ^{-1} x=t \Longrightarrow \frac{1}{1+x^{2}} d x=d t$
$\int \frac{\sin \left(\tan ^{-1} x\right)}{1+x^{2}} d x=\int \sin t d t=-\cos t=-\cos \left(\tan ^{-1} x\right)$ ii) Let $\mathrm{I}=\int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\sin x}}{\sqrt{\sin x}+\sqrt{\cos x}} d x$
Unig property $\mathrm{I}=\int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\cos x}}{\sqrt{\cos x}+\sqrt{\sin x}} d x$
$\therefore 2 I=\int_{0}^{\frac{\pi}{2}} d x=\frac{\pi}{2} \Longrightarrow I=\frac{\pi}{4}$
iii) $\int \frac{d x}{x^{2}-16}=\frac{1}{2 \times 4} \log \frac{x-4}{x+4}+c$

