SECOND YEAR HIGHER SECONDARY MODEL EXAMINATION MARCH 2022

SUBJECT: CHEMISTRY

Qn. Code: ME 525

Qn. No.	Sub Qns.	Answer Key/Value Points		Score	Total		
	PART I						
	A. Answer any 5 questions from 1 to 9. Each carries 1 score						
1.	(b) Co			1	1		
2.		38% Sulphuric acid (H ₂ SO ₄) solution		1	1		
3.		(d) Molarity		1	1		
4.		S ⁻¹		1	1		
5.		Nickel (Ni)		1	1		
6.		(c) Rubber Latex		1	1		
7.		(a) CH ₃ -NH ₂		1	1		
8.		CH ₃ -CH ₂ -OH (Ethanol)		1	1		
9.		(c) COCl ₂		1	1		
		B. Answer all questions from 10	0 to 13. Each carries 1 score				
10.		(b) Thymine		1	1		
11.		(b) Phenol, formaldehyde		1	1		
12.		(c) Artificial Sweetener		1	1		
13.	3. (b) Zinc		1	1			
PARTII							
	1	A. Answer any 2 questions from 1	4 to 17. Each carries 2 scores		r		
		Order	Molecularity				
		1. It is the sum of the powers of the concentration terms in	It is the total number of reactant species				
14.		the rate law expression	collide simultaneously in a chemical reaction	2	2		
		3. It can be zero or fractional	It cannot be zero or fractional				
		(Any 2 differences required)					
		The regular decrease in the atomic and ionic radii along lanthanide series is known as lanthanide contraction. Consequences: i) Due to Lanthanide Contraction the 2nd and 3rd row transition					
45					2		
15.		series elements have similar radii.			2		
		ii) Lanthanides have similar physical properties and they occur together in nature. So					
		their isolation is difficult. [Any one required]					
10		Hinsberg reagent is benzene sulphonyl chloride ($C_6H_5SO_2CI$). It is used to distinguish the three types of amines.		1	2		
16.				1	2		
		Osmotic pressure (π) = CRT		1			
17.		Here C = 0.1 M, R = 0.082 Latm/K/mol and T = 27 ^o C = 27 + 273 = 300 K			2		
		So, π = 0.1 x 0.082 x 300 = 2.46 atm					
B. Answer any 2 questions from 18 to 20. Each carries 2 scores							
		In conductors, the valence band is either partially filled or it is overlapped with the		2			
18.		conduction band. So electrons can easily flow from valence band to conduction band.			2		
	In insulators, there is a large gap between valence band and conduction band. So no						

	electrons can move from valence band to conduction band.		
	Or, the diagram.		
	Conduction band Empty band Forbidden zone (Large energy gap) Filled band (a) Metal (b) Insulator		
	 The preparation of Potassium permanganate from Pyrolusite (MnO₂) involves two steps. 1. MnO₂ is fused with KOH to form potassium manganate (K₂MnO₄). 		
19.	$2MnO_{2} + 4KOH + O_{2} \rightarrow 2K_{2}MnO_{4} + 2H_{2}O$ 2. $K_{2}MnO_{4}$ is electrolytically oxidised to potassium permanganate. $MnO_{4} \stackrel{2-}{=} \underbrace{Electrolytic \ oxidation}_{\text{in alkaline medium}} MnO_{4} \stackrel{-}{=}$	1	2
	 When aniline is treated with nitrous acid (prepared by mixing NaNO₂ & HCl) at 273-278K, benzene diazonium chloride is formed. Dependent diazonium chloride on warming with water to form phonel. 		
	2. Benzene diazonium chloride on warming with water to form phenol. Or the equation:		
20.	$\begin{array}{c} \begin{array}{c} & & \\ $		2
	PART III A Answer any 3 questions from 21 to 24 Each carries 3 scores		
	Cabattley Defeat		
21.	Schottky DejectFrenkel DejectArising due to the missing of equal number of anions and cations from the lattice siteArising due to the misplacing of a cation from the lattice site to the interstitial site.Decreases the density of the solidNo change in the density of the solid.It is shown by ionic crystals in which the anionic and cationic sizes are almost equal.It is shown by ionic crystals in which the ions.	3	3
22.	For a first order reaction, $k = \frac{2.303}{t} \log \frac{[R]_0}{[R]}$	1	3

		For 90% completion, we can take $[R]_0 = 100$ and $[R] = 100 - 90 = 10$. Also, t = 20 s So k = $\frac{2.303}{20} \log \frac{100}{10} = 0.115 \text{ s}^{-1}$ Half life period (t ½) = $0.693/k = 0.693/0.115 = 6.026 \text{ s}$	1 1	
23.		Williamson Synthesis: Alkyl halide reacts with sodium alkoxide to form ether. This reaction is called Williamson's ether synthesis. Or, R-X + R'-ONa \rightarrow R-O-R' + NaX By Williamson synthesis, we can prepare methoxybenzene (Anisole) by treating sodium phenoxide (C ₆ H ₅ -ONa) with methyl bromide (CH ₂ -Br)	1	3
	(1)	C_6H_5 -ONa + CH ₃ -Br \longrightarrow C_6H_5 -O-CH ₃ + NaBr	2	
	(i)	Phenol when treated with chloroform in the presence of sodium hydroxide, followed by acidification, we get salicylaldehyde (o-hydroxybenzaldehyde). This reaction is known as Reimer - Tiemann reaction. Or the equation:	2	
24.		$ \underbrace{\overset{OH}{\longrightarrow}}_{\text{CHCl}_3 + \text{ aq NaOH}} \underbrace{\overbrace{O}^{\overline{O} \text{ Na}^+}_{\text{CHCl}_2}}_{\text{Intermediate}} \underbrace{\xrightarrow{O}_{\text{NaOH}}}_{\text{NaOH}} \underbrace{\xrightarrow{O}_{\text{Na}^+}_{\text{CHO}}}_{\text{Salicylaldehyde}} \underbrace{\overset{OH}{\longrightarrow}}_{\text{Salicylaldehyde}} \underbrace{\overset{OH}{\longrightarrow}}_{\text{Salicylaldehyde}} \underbrace{\overset{OH}{\longrightarrow}}_{\text{Salicylaldehyde}}$		3
	(ii)	2,4,6 – Tribromophenol	1	
	1	B. Answer any 2 questions from 25 to 27. Each carries 3 scores		
	(i)	van't Hoff factor (i) is defined as: i = <u>Normal Molar mass</u> Abnormal molar mass Or, i = <u>Observed colligative property</u> Calculated colligative property	1	
25.	(ii)	Or, i = <u>Total number of moles of particles after association/dissociation</u> Number of moles of particles before association/dissociation If the solvent is benzene, benzoic acid molecules undergo dimerization. So the number of particles decreases and hence the colligative properties. So the value of molar mass obtained by colligative property measurement is abnormal.	2	3
26.	(i)	 Haloarenes are less reactive towards nucleophilic substitution reactions due to the following reasons: 1. Resonance effect: Due to this effect, the C – X bond gets a partial double bond character. 2. sp² hybridisation of the carbon to which halogen atom is bonded. 3. Due to instability of phenyl cation, S_{N2} reaction does not occur. 4. Due to repulsion between nucleophile and electron rich nucleophile. 	2	3
	(ii)	[Any 2 required] When a mixture of alkyl halide and aryl halide is treated with sodium in dry ether, an alkyl arene is formed. This reaction is called Wurtz-Fittig reaction. Or the equation:	1	

		$X + Na + RX \xrightarrow{Ether} R + NaX$			
	(i)	Hydroboration - oxidation reaction: Propene add diborane (B ₂ H ₆) to give tripropyl borane as addition product. This on oxidation by hydrogen peroxide in the presence	2		
27.	(ii)	of aqueous sodium hydroxide to form propan-1-ol. CH_3 - $CH=CH_2 + B_2H_6 \longrightarrow (CH_3-CH_2-CH_2)_3B \xrightarrow{H_2O_2/OH} CH_3-CH_2-CH_2-OH$ Wood spirit is Methanol or methyl alcohol	1	3	
		PART IV			
		A. Answer any 3 questions from 28 to 31. Each carries 4 scores			
	(i)	into electrical energy			
		Working of $H_2 = O_2$ fuel cell:	1		
		Anode reaction: $2H_2 + 4OH - \rightarrow 4H_2O + 4e-$	-		
		Cathode reaction: $O_2 + 2H_2O + 4e \rightarrow 4OH -$			
28.		Overall reaction: $2H_2(g) + O_2(g) \rightarrow 2H_2O(I)$	2		
		The advantages of fuel cell are:		4	
	(11)	i) The cell works continuously as long as the reactants are supplied.			
		ii) It has higher efficiency as compared to other conventional cells.	1		
		iii) It is eco-friendly (i.e. pollution free) since water is the only product formed.			
		iv) Water obtained from $H_2 - O_2$ fuel cell can be used for drinking. [Any 2 required]			
	(i)				
		Polymer Monomer		4	
		HDP Ethylene	4 x ½		
		Teflon Tetrafluoroethene			
		Protein Amino acid			
29.		Starch D-glucose			
	(::)				
	(11)	The process of heating natural rubber with sulphur and an appropriate additive at a	1		
		temperature of 373 to 415 K is called vulcanisation.			
		and thus the rubber gets stiffened	1		
	and thus the rubber gets stiffened.				
	Cane sugar (sucrose) on hydrolysis gives an equimolar mixture of glucose and				
	(i)	fructose.	2		
		$C_{12}H_{22}O_{11} + H_2O \rightarrow C_6H_{12}O_6 + C_6H_{12}O_6$			
		Sucrose D(+)Glucose (+52.5 ⁰) D(-)Fructose (-92.4 ⁰)		4	
30		Sucrose is dextro rotatory, but after hydrolysis it gives dextro rotatory glucose and			
50.		laevo rotatory fructose. Since the laevo rotation of fructose is more than dextro			
	(ii)	rotation of glucose, the mixture is laevo rotatory. So the process is called <i>inversion of</i>			
		cane sugar.			
		Sucrose molecule does not contain free aldehydic or ketonic group. So it is called	2		
		non-reducing sugar.			
31.	(i)	Leaching of alumina from Bauxite: Here the powdered ore is treated with a		4	
	concentrated solution of NaOH at 473 – 523 K and 35 – 36 bar pressure. Alumina				

		(Al ₂ O ₃) dissolves in NaOH to form sodium aluminate $[2Na[Al(OH)_4]$ leaving behind the				
		impurities.				
		AI_2O_3 (s) + 2NaOH(aq) + $3H_2O(I) \rightarrow 2Na[AI(OH)_4](aq)$				
		The aluminate in solution is neutralised by passing CO ₂ gas and hydrated Al ₂ O ₃ is				
		precipitated. The solution is seeded with freshly prepared hydrated Al ₂ O ₃ which				
		induces the precipitation.				
		$2Na[Al(OH)_4](aq) + CO_2(g) \rightarrow Al_2O_3$.xH ₂ O(s) + 2NaHCO ₃ (aq)			
		The hydrated alumina is filtered, dried and	heated to give back pure alumina (Al ₂ O ₃).	1		
	(ii)	Al ₂ O ₃ .xH ₂ O(s) 1470 K Al ₂ O ₃	$(s) + xH_2O(g)$			
		Cryolite is used to lower the melting point	of bauxite and to increase the			
		conductivity.				
		B. Answer any 1 questions f	rom 32 to 33. Each carries 4 scores			
	(i)	Brownian movement: It is the zig-zag move	ement of colloidal particles in dispersion			
	(1)	medium.		1		
22		It is due to the unbalanced bombardment of	of particles of the dispersed phase by the	1	л	
52.		particles of dispersion medium.			4	
	(;;)	Zeolites are aluminosilicates of metals, whi	ich have honey-comb like structure. They	2		
	(11)	are used as shape selective catalysts in pet	rochemical industries.			
	(i)	Anionic Detergents	Cationic Detergents			
		a) These are sodium salts of	a) These are quaternary ammonium			
		sulphonated long chain alcohols or	salts of amines with acetates,			
		hydrocarbons.	chlorides or bromides as anions.	2		
		b) Here the anionic part of the molecule	b) Here the cationic part is responsible			
22		is involved in the cleansing action.	for cleansing action.			
33.		E.g. Sodium salts of	E.g. Cetvltrimethvlammoniumbromide			
		alkylbenzenesulphonates.	5 , , ,		4	
	(ii)	Antibiotics which kill or inhibit a wide range	e of Gram-positive and Gram-negative			
	-	bacteria are called broad spectrum antibiotics.		2	1	
		E.g. Ampicillin, Amoxycillin, Chloramphenic	col, Vancomycin, Ofloxacin etc. [Any one	2		
		example required]				
		ΡΑ	NRT V			
		Answer any 3 questions from	n 34 to 36. Each carries 6 scores			
		Contact process involves the following step	DS:			
	(i)	(i) (i) Burning of sulphur or sulphide ores in air to generate SO ₂ .				
		$S(s) + O_2(g) \rightarrow SO_2(g)$				
		(ii) Conversion of SO ₂ to SO ₃ by the reaction with oxygen in the presence of a				
		catalyst (V ₂ O ₅) $2SO_2 + O_2 \rightarrow 2SO_3$				
24		(iii) Absorption of SO ₃ in H ₂ SO ₄ to g	ive Oleum (H ₂ S ₂ O ₇).		~	
34.		$SO_3 + H_2SO_4 \rightarrow H_2S_2O_7$			б	
		(iv) Dilution of oleum with water gi	ves H_2SO_4 of the desired concentration.			
		$H_2S_2O_7 + H_2O \rightarrow 2H_2SO_4$				
	(ii)	Inter halogen compounds are compounds	formed by combination of different	2		
		halogen atoms. E.g.: CIF				
	(iii)	PCl ₃ reacts with moisture and forms fumes	of HCl gas.	1		
	. ,	$PCI_3 + H_2O \longrightarrow H_3PO_3 + HCI$				

	(i)	Rosenmund reduction : Acid chlorides react with hydrogen in presence of Pd supported on BaSO ₄ , we get aldehydes. This reaction is called Rosenmund's reduction. Or, the equation:	2	
35.	(11)	$R-COCI + H_2 \xrightarrow{Pd/BaSO_4} R-CHO + HCI$	2	6
	(11)	Crotanaldehyde or, But-2-enal		
		2CH ₃ -CHO dil. NaOH CH ₃ -CH(OH)-CH ₂ -CHO CH ₃ -CH=CH-CHO Ethanal 3-Hydroxybutanal (aldol) But-2-enal (Crotanaldehyde)	2	
	(iii)	Fluoroacetic acid.	2	
	(,	This is due to the greater electronegativity (-I effect) of fluorine.		
	(i)	[Co(NH ₃) ₅ Br]SO ₄ – Pentaamminebromidocobalt(III)sulphate [Ni(CO) ₄] – Tetracarbonylnickel(0)		
	(ii)	Linkage isomerism : This type of isomerism is shown by co-ordination compounds containing ambidentate ligand, which can bind to the central atom through more		
		than one donor atoms. Eg. NO ₂ ligand can bind to the central atom either through nitrogen atom or through oxygen atom. In $[Co(NH_3)_5(ONO)]Cl_2$, it is bound through oxygen atom, and in $[Co(NH_3)_5(ONO)]Cl_2$.		
36		In $[Co(NH_3)_5(NO_2)]Cl_2$ it is bound through nitrogen atom.	1	
50.	(iii)	Geometrical isomers of [Co(NH ₃) ₄ Cl ₂] ⁺	1	
		$H_{3}N$ Cl Cl $H_{3}N$ NH_{3} $H_{3}N$ $H_{3}N$		
		$H_{3}N$ NH_{3} $H_{3}N$ NH_{3} NH_{3}		
		NH ₃ Cl		
		cis isomer trans isomer		
