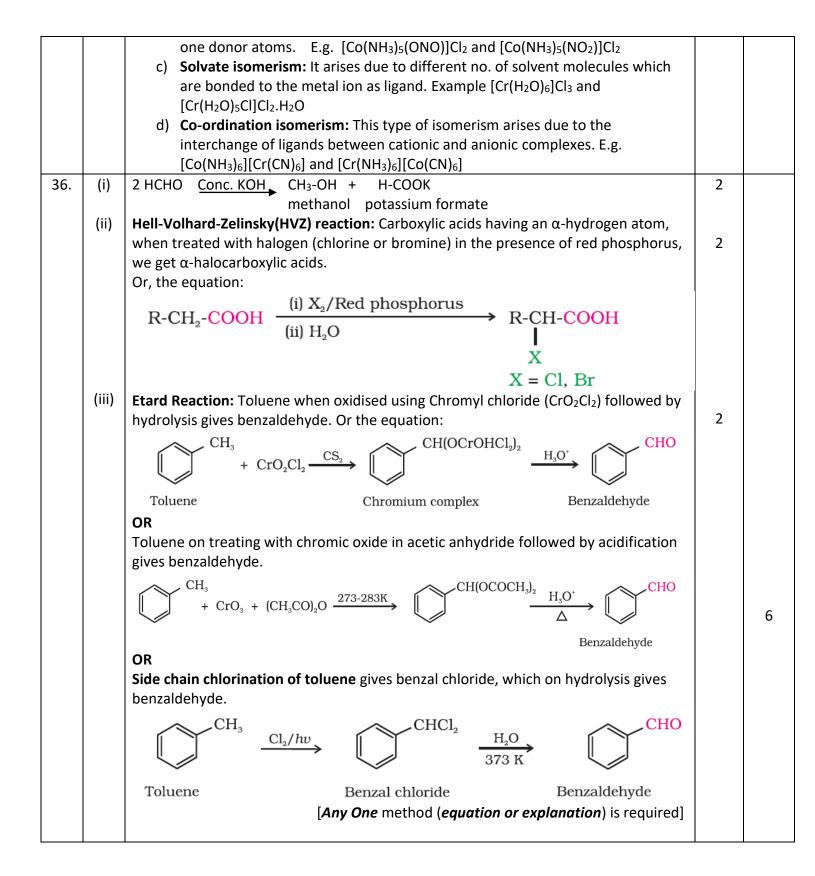
SECOND YEAR HIGHER SECONDARY EXAMINATION APRIL 2022

SUBJECT: CHEMISTRY

Qn. Code: SY 25

Qn. No.	Sub Qns.	Answer Key/Value Points	Score	Total
110.	QIIS.	PART I		
		A. Answer any 5 questions from 1 to 9. Each carries 1 score		
1.		AgBr (Silver Bromide)	1	1
2.		Isotonic Solutions	1	1
3.		Kohlrausch law	1	1
4.		(b) s ⁻¹	1	1
5.		(a) Emulsions	1	1
6.		(d) Froth flotation	1	1
7.		(b) Sandmeyer Reaction	1	1
8.		Lucas reagent [Conc. HCl & anhydrous ZnCl ₂]	1	1
9.		Fuel cells	1	1
		B. Answer all questions from 10 to 13. Each carries 1 score		
10.		2,4,6-Tribromoaniline	1	1
11.		(c) -CO-NH-	1	1
12.		(a) Bakelite	1	1
13.		(b) Aspartame	1	1
		PART II		
	1	A. Answer any 2 questions from 14 to 17. Each carries 2 scores	1	
14.		This is due to the formation of f-centres. Or, by the metal excess defect due to anion vacancy. OR, When KCl crystals are heated in an atmosphere of potassium vapour, some potassium atoms are deposited at the surface of the crystal. Some Cl ⁻ ions from the lattice sites diffuse to the surface of the crystal and combine with K atoms to form KCl. $K + Cl^{-} \rightarrow KCl + e^{-}$ The electrons so formed diffuse into the crystal and occupy the anion vacancies. These electrons are called f-centres. They absorb light energy and get excited. As a result the crystals become violet colour.	2	2
15.		Henry's law states that at constant temperature, the solubility of a gas in a liquid is directly proportional to the pressure of the gas. Or, at constant temperature, the partial pressure of the gas in vapour phase is proportional to the mole fraction of the gas in the solution. Or, the mathematical equation, $p = K_{H.X}$ (at constant temperature) Applications: In the preparation of soda water or soft drinks/ a condition known as Bends in Scuba divers/ a medical condition known as Anoxia in people living at high altitudes or climbers. (<i>Any one</i> application required)	1	2
16.	(i)	Arrhenius equation, $k = A.e^{-Ea/RT}$	1	
	(ii)	Activation energy can be determined graphically by plotting ln k (log k) against $1/T$. From the slop of the graph, the activation energy can be calculated as Ea = - slope x R	1	2


	or, Ea = -2.303 x slope x R. OR, the graph:		
	$ \uparrow \\ \ln k \\ 0 \\ 1/T \rightarrow $ Intercept = ln A $ \int \\ Slope = -E_a/R \\ 1/T \rightarrow $		
17.	The regular decrease in the atomic and ionic radii along lanthanide series is known as lanthanide contraction. Consequences: (i) Due to Lanthanide Contraction the 2 nd and 3 rd row transition series	1	2
	elements have similar radii. (ii) Lanthanides have similar physical properties and they occur together in nature. So their isolation is difficult. [Any one required]	1	
	B. Answer any 2 questions from 18 to 20. Each carries 2 scores		
18.	This is due to the extra stability of Cr^{3+} and Mn^{2+} ions. OR, Cr^{2+} is reducing as its configuration changes from d ⁴ to d ³ . d ³ configuration is stable, since it has a half-filled t_{2g} level (t_{2g}^{3}). On the other hand, the change from Mn^{2+} to Mn^{3+} results in the half-filled (d ⁵) configuration, which has extra stability. So Mn^{3+} is oxidizing.	2	2
19.	Primary amines on heating with chloroform and alcoholic KOH to form foul smelling isocyanides or carbylamines. This reaction is known as carbylamine reaction . R-NH ₂ + CHCl ₃ + 3 KOH heat R-NC + 3 KCl + 3 H ₂ O	1 1	2
20.	This is due to the +I effect of CH ₃ group in CH ₃ -NH ₂ and the resonance effect (+R effect of -NH ₂ group) in aniline (C ₆ H ₅ -NH ₂). OR, Due to the electron releasing inductive effect (+I effect) of CH ₃ group, the electron density on N increases. So CH ₃ -NH ₂ is easily protonated and hence it is more basic than NH ₃ . But in C ₆ H ₅ -NH ₂ , due to resonance, the lone pair of electrons is in conjugation with the benzene ring and is less available for protonation. So, it is less basic than NH ₃ .	2	2

			PART III ns from 21 to 24. Each carries 3 scores		
21.		Crystalline Solids	Amorphous Solids		
21.		Have long range order	Have only short range order		
		Have definite geometrical shape	No definite geometrical shape		
		Definite and sharp m.p	No definite m.p		
		Definite heat of fusion	No definite heat of fusion	3	3
		Give regular cleavage on cutting	Give irregular cleavage on cutting		0
		True solids	Pseudo solids		
		Are anisotropic	Are isotropic		
			[Any 3 differences required]		
22.		We know that $\Delta T_b = \frac{1000 \text{ K}_b \cdot \text{w}_2}{\text{w}_1 \cdot \text{M}_2}$		1	
		Here $w_2 = 18 \text{ g}$, $w_1 = 1 \text{ kg} = 1000 \text{ g}$, $K_b = 0.000 \text{ g}$, $K_b = 0.0000 \text{ g}$, $K_b = 0.0000000000000000000000000000000000$	D.52 K kg/mol, Molar mass of glucose (M ₂)= we get $\Delta T_b = 1000 \times 0.52 \times 18 = 0.052 K$	1	3
			1000 x 180		
		Also, $\Delta T_b = T_b - T_b^0$		1	
		So $T_b = \Delta T_b + T_b^0 = 0.052 + 373.15 = 373$.	202 К	1	
23.	(i)	 The important factors which affect the r 1. Nature of the reactants 2. Concentration of the reactants 3. Temperature 4. Pressure (for gaseous reaction of 5. Effect of catalyst 6. Influence of radiation [Any 2 Rec 	nly)	1	
	(ii)	For a first order reaction, $k = \frac{2.303}{t} \log[R]_{0}$ $t = [R]$ When t = t½, [R] = [R]_{0}/2 Substitute these values in the above equals $k = \frac{2.303}{t\frac{12}{t}} \log\frac{[R]_{0}}{[R]_{0}/2}$ Or, t½ = $\frac{2.303}{k} \log^{2}$ $= \frac{2.303 \times 0.3010}{k}$ Or, t½ = $\frac{0.693}{k}$	uation, we get	2	3
24.	(i)	By Finkelstein Reaction/ by treating with OR, the equation: CH ₃ -CH ₂ -Br + Nal <u>Dry acetone</u> CH ₃ -CH		1	3
	(ii)	$S_N 1$ mechanism or Substitution Nucleop The reaction occurs in two steps:	hilic unimolecular mechanism.		

		In the first step, the C-Br bond undergoes slow cleavage to produce a tert-butyl carbocation and a bromide ion. In the second step, the carbocation is attacked by the nucleophile (OH ⁻) to form the product, tert-butyl alcohol. Or, the equations: $(CH_3)_3CBr \xrightarrow{\text{step I}}_{H_3C} \xrightarrow{CH_3}_{H_3C} + B_r^{\bigcirc}_{H_3}$	2	
		B. Answer any 2 questions from 25 to 27. Each carries 3 scores		
25.	(i)	Alkyl magnesium halides or R-MgX	1	
	(ii)	Saytzeff rule states that in dehydrohalogenation reactions, if there is a possibility of formation of more than one alkenes, the preferred product is that alkene which contains greater number of alkyl groups attached to the C = C bond. E.g. when 2-bromobutane is treated with alcoholic KOH, 2-butene is formed as the major product. CH ₃ -CH ₂ -CHBr-CH ₃ + KOH (alc) \longrightarrow CH ₃ -CH ₂ -CH=CH ₂ + CH ₃ -CH=CH-CH ₃ 2-Bromobutane 1-butene (minor) 2-butene (major)	2	3
26.	(i)	Due to the presence of inter molecular hydrogen bonding in alcohols and phenols.	1	
	(ii)	Aspirin is acetyl salicylic acid.	1	
	()	It is prepared by the acetylation of salicylic acid by treating with acetic anhydride in	1	
		presence of a mineral acid or by treating with acetyl chloride in presence of a base. Or, the equation:		
		$\begin{array}{c} \text{COOH} & \text{COOH} \\ & & \text{OH} \\ & & \text{OH} \\ & & \text{H}^+ & \text{OCOCH}_3 \\ & & \text{Salicylic acid} \\ & & \text{Acetylsalicylic acid} \\ & & \text{(Aspirin)} \end{array} + \text{CH}_3\text{COOH} \end{array}$		3
27.	(i)	A is phenol (C_6H_5 -OH) and D is Mathud is did, or lade mathema (CH = 1)	1	
		B is Methyl iodide or Iodomethane (CH ₃ -I)		
	(ii)	Hydroboration - oxidation reaction: Alkenes add diborane to give trialkyl boranes which on oxidation by hydrogen peroxide in the presence of aqueous NaOH to form alcohols.	1	3
		E.g. Propene add diborane (B_2H_6) to give tripropyl borane which on oxidation by hydrogen peroxide in the presence of aqueous NaOH to form propan-1-ol.	1	

		Or, the equation:					
		$CH_3-CH=CH_2 + B_2H_6 \longrightarrow (CH_3-CH_2-CH_2)$					
		<u>'</u> РА	RT IV				
A. Answer any 3 questions from 28 to 31. Each carries 4 scores							
28.							
	(ii)	The cell reactions taking place in a lead sto					
		Anode: $Pb + SO_4^{2-} \rightarrow PbSO_4 + 2e^-$					
		Cathode: $PbO_2 + SO_4^{2-} + 4H^+ + 2e^- \rightarrow PbSO_4 + 2H_2O$			4		
		The overall cell reaction is: $Pb + PbO_2 + 2F$	$H_2SO_4 \rightarrow 2PbSO_4 + 2H_2O$				
29.	(i)	In homogeneous catalysis, the reactants ar	nd catalysts are in same phase. But in	2			
		heterogeneous catalysis, the reactants and	l catalysts are in different phases.				
		Or, any one example for each.			4		
	(ii)	Tyndall effect is the scattering of light bear		1			
		Working of ultra-microscope is based on the		1			
30.	(i)	Leaching of alumina from Bauxite: Here th					
		concentrated solution of NaOH at 473 – 52	-				
		(Al_2O_3) dissolves in NaOH to form sodium a	aluminate [Na[Al(OH)4] leaving behind the				
		impurities.					
		$Al_2O_3 + 2NaOH + 3H_2O \rightarrow 2Na[Al(OI)]$		2			
		The aluminate in solution is neutralised by precipitated.	passing CO ₂ gas and hydrated Al ₂ O ₃ is	3	4		
		$2Na[Al(OH)_4] + CO_2 \rightarrow Al_2O_3.xH_2O -$			4		
		The hydrated alumina is filtered, dried and heated to give back pure alumina (Al ₂ O ₃).					
		$Al_2O_3.xH_2O \xrightarrow{1470 \text{ K}} Al_2O_3 + x H_2O$ [Either the explanation or the equations is required]					
	(ii)	Cryolite or CaF ₂ is added to purified alumin					
	()	and to increase the conductivity.	6 P	1			
31.	(i)	Oligosaccharides are carbohydrates which	give 2 to 10 monosaccharide units on	2			
		hydrolysis. E.g. Sucrose, maltose, lactose e	-				
	(ii)	Glycogen is animal starch. OR, In animal bo		1	4		
		of Glycogen.					
	(iii)	Starch contains two components – amylose and amylopectin.					
B. Answer any 1 questions from 32 to 33. Each carries 4 scores							
32.	(i)	Thermoplastics	Thermosetting plastics				
		i) They can be repeatedly softening on	i) They become permanently hard on				
		heating and hardening on cooling.	heating.				
		ii) These are the linear or slightly	ii) These are cross linked or heavily	2			
		branched long chain molecules.	branched molecules.		_		
		iii) On heating a physical change occurs.	iii) On heating a chemical change occurs.		4		
		iv) Can be recycled and reused.	iv) Cannot be recycled or reused.				
		E.g.: polythene, polystyrene, polyvinyls	E.g. bakelite, urea-formaldelyde resins,				
		etc. polyesters like glyptal, terylene etc.					
	[Any one difference or example required] (ii) Monomer of neoprene is chloroprene OB 2-Chloro-1 3-butadiene			1			
(ii) Monomer of neoprene is chloroprene OR, 2-Chloro-1,3-butadiene.				1			

		Its structure is: CH ₂ =C-CH=CH ₂ Cl		1	
33.	(i)	Anionic Detergentsa) These are sodium salts of sulphonated long chain alcohols or hydrocarbons.b) Here the anionic part of the molecule is involved in the cleansing action.E.g. Sodium salts of 	Cationic Detergentsa) These are quaternary ammonium salts of amines with acetates, chlorides or bromides as anions.b) Here the cationic part is responsible for cleansing action.E.g. Cetyltrimethylammoniumbromide	3	4
	(ii)		d hydroxy anisole (BHA), SO ₂ , sulphites etc. [Any one required]	1	
			NRT V n 34 to 36. Each carries 6 scores		
34.	(i) (ii) (iii)	When strongly heated PCl₅ decomposes to form PCl₃ and Cl₂ PCl₅ → PCl₃ + Cl₂ Inter halogen compounds are compounds formed by combination of different halogen atoms. E.g.: ClF, BrF, IF, ClF₃, BrF₃, BrF₅ etc. [Any 2 examples required]		1 2 3	6
35.	(i) (ii)	H ₃ N NH ₃ H NH ₃ Cis isomer The different types of structural isomerism 1. Ionisation isomerism 2. Linkage ison Co-ordination isomerism. a) Ionization isomerism: It arises due inside and outside of co-ordination [Co(NH ₃) ₅ Br]SO ₄ . b) Linkage isomerism : It arises in a co-	merism 3. Solvate or hydrate isomerism 4. to the exchange of ions between the sphere. E.g. [Co(NH ₃) ₅ SO ₄]Br and	2	6

