Qn. No	Scorin	ig Key	Score		
	A-Answer any three questions fi	rom 1 to 4. Each carries 1 score	1		
1.	i) Gene migration or gene flow,				
	ii) Genetic drift,		1		
	iii) Mutation,				
	iv) Genetic recombination and				
	v) Natural selection(Any one)				
2	Morula		1		
3	single nucleotide polymorphism		1		
4	menopause		1		
	B-Answer all questions from 5 to 6. Each carries 1 score				
5	lohannesburg				
6	Penicillin		1		
	A-Answer any two questions from 7 to 9. Each carries 2 score				
7	Presence of an additional con-	y of the chromosome number 21	0.5×4=		
-	(trisomy of 21)	y of the enformesione number 21	2		
	 Short statured 				
	 Small round head 				
	 Eurrowed tongue 				
	Partially open mouth				
	 Partially open mouth Palm is broad with characteristic palm crosses 				
	Paim is broad with characteristic paim crease.				
	Physical, psychomotor and mental development is retarded.				
	(Any four characteristic feature)				
8	This associations helps				
	• to absorbs phosphorus from soil and passes it to the plant.				
	 Resistance to root-borne path 	ogens,			
	 Tolerance to salinity and drought, 				
	 Overall increase in plant grow 	th and development			
9	A-Salmonella typhi		0.5×4=		
	B-Malaria		2		
	C-Fungi				
	D-Ascaris/Round worm				
	B-Answer any two questions from	m 10 to 13. Each carries 2 score			
10	Active Immunity	Passive Immunity	3		
	When a host is exposed to	When ready-made antibodies			
	antigens, which may be in the	are directly given to protect			
	form of living or dead microbes	the body against foreign			
	or other proteins, antibodies	agents, it is called passive			
	are produced in the host	immunity			
	body	,			
	Active immunity is slow and	Passive immunity is quick and			
	takes time to give its full	takes short time to give its full			
	effective response	effective response			
	Examples:	Examples:			
	01-Injecting the microbes	01-The vellowish fluid			
	deliberately during	colostrum secreted by mother			
	immunisation or infectious	during the initial days of			
		auting the initial days of			

SECOND YEAR HIGEHR SECONDARY MODEL EXAMINATION MARCH-2022 Part-III

<u>navas9895@</u>	<u>gman.com</u>	1103 010109	<u>19 Classes</u>		
	organisms gaining access into	lactation has abundant			
	body during natural infection	antibodies (IgA) to protect the			
	induce active	infant			
	impunity	02 The facture also receives			
	ininiunity.	02-The loelus also receives			
		some antibodies from their			
		mother, through the placenta			
		during pregnancy			
11	a)Chemical evolution		1		
	h) S L Miller				
10					
12	a)Mammary tubule				
	b)Mammary duct				
13	a) It is the crossing of a progeny with its recessive parent .				
	b)It is used to find unknown genotype of an individual.				
A new any three guestions from 14, to 17. Each service 2 service					
14	14 (i) Avoid undue near processor				
14	(i) Avoid undue peer pressure		÷		
	(II)Education and counselling				
	(III)Seeking help from parents and	d peers	1		
	(iv)Looking for danger signs				
	(v)Seeking professional and medical help (Any three measures)				
15	Pedigree analysis.				
	It is the analysis of trait in a several generations of a family is				
	called nedigree analysis				
	i)Mating botwoon relatives (conconquineous mating)				
	inviating between relatives (consanguineous mating)				
	ii)Sex unspecified		0.5		
	III)Female		0.5		
	iv)Mating		0.5		
16	a) $Z = slope of the line (regression$	n coefficient)	0.5		
16	a)Z = slope of the line (regression C = Y-intercept	n coefficient)	0.5		
16	a)Z = slope of the line (regression C = Y-intercept b)Within a region species rich	n coefficient) ness increased with increasing	0.5 0.5		
16	 a)Z = slope of the line (regression C = Y-intercept b)Within a region species rich explored area, but only up to a line 	n coefficient) ness increased with increasing mit	0.5 0.5 1		
16	 a)Z = slope of the line (regression C = Y-intercept b)Within a region species rich explored area, but only up to a line c) 0 1 to 0 2 	n coefficient) ness increased with increasing mit	0.5 0.5 1		
16	 a)Z = slope of the line (regression C = Y-intercept b)Within a region species rich explored area, but only up to a linc) 0.1 to 0.2 	n coefficient) ness increased with increasing mit	0.5 0.5 1 1		
16 17	 a)Z = slope of the line (regression C = Y-intercept b)Within a region species rich explored area, but only up to a line c) 0.1 to 0.2 Homologous organs 	n coefficient) ness increased with increasing mit Analogous organs	0.5 0.5 1 1		
16 17	 a)Z = slope of the line (regression C = Y-intercept b)Within a region species rich explored area, but only up to a line c) 0.1 to 0.2 Homologous organs Homologus organs are organs 	n coefficient) ness increased with increasing mit Analogous organs Analogous Organs having same	0.5 0.5 1 1		
16 17	 a)Z = slope of the line (regression C = Y-intercept b)Within a region species rich explored area, but only up to a linc) 0.1 to 0.2 Homologous organs Homologus organs are organs having same structure and 	n coefficient) ness increased with increasing mit Analogous organs Analogous Organs having same function but different structure	0.5 0.5 1 1		
16 17	 a)Z = slope of the line (regression C = Y-intercept b)Within a region species rich explored area, but only up to a linc) 0.1 to 0.2 Homologous organs Homologus organs are organs having same structure and origin but different functions. 	n coefficient) ness increased with increasing mit Analogous organs Analogous Organs having same function but different structure and origin	0.5 0.5 1 1		
16 17	 a)Z = slope of the line (regression C = Y-intercept b)Within a region species rich explored area, but only up to a linc) 0.1 to 0.2 Homologous organs Homologus organs are organs having same structure and origin but different functions. Eg:1) whales, bats, Cheetah 	n coefficient) ness increased with increasing mit Analogous Organs having same function but different structure and origin Eg;1) Wings of butterfly and of	0.5 0.5 1 1		
16 17	 a)Z = slope of the line (regression C = Y-intercept b)Within a region species rich explored area, but only up to a linc) 0.1 to 0.2 Homologous organs Homologus organs are organs having same structure and origin but different functions. Eg:1) whales, bats, Cheetah and human (all mammals) 	n coefficient) ness increased with increasing mit Analogous Organs having same function but different structure and origin Eg;1) Wings of butterfly and of birds	0.5 0.5 1 1 1		
16 17	 a)Z = slope of the line (regression C = Y-intercept b)Within a region species rich explored area, but only up to a linc) 0.1 to 0.2 Homologous organs Homologus organs are organs having same structure and origin but different functions. Eg:1) whales, bats, Cheetah and human (all mammals) share similarities in the pattern 	n coefficient) ness increased with increasing mit Analogous Organs having same function but different structure and origin Eg;1) Wings of butterfly and of birds Eg;2) the eve of the octopus	0.5 0.5 1 1 1		
16 17	 a)Z = slope of the line (regression C = Y-intercept b)Within a region species rich explored area, but only up to a linc) 0.1 to 0.2 Homologous organs Homologus organs are organs having same structure and origin but different functions. Eg:1) whales, bats, Cheetah and human (all mammals) share similarities in the pattern of hones of forelimbs 	n coefficient) ness increased with increasing mit Analogous organs Analogous Organs having same function but different structure and origin Eg;1) Wings of butterfly and of birds Eg;2) the eye of the octopus and of mammals	0.5 0.5 1 1 1		
16 17	 a)Z = slope of the line (regression C = Y-intercept b)Within a region species rich explored area, but only up to a linc) 0.1 to 0.2 Homologous organs Homologus organs are organs having same structure and origin but different functions. Eg:1) whales, bats, Cheetah and human (all mammals) share similarities in the pattern of bones of forelimbs Eq:2) the there and tendrils of 	n coefficient) ness increased with increasing mit Analogous Organs having same function but different structure and origin Eg;1) Wings of butterfly and of birds Eg;2) the eye of the octopus and of mammals	0.5 0.5 1 1 1		
16 17	 a)Z = slope of the line (regression C = Y-intercept b)Within a region species rich explored area, but only up to a linc) 0.1 to 0.2 Homologous organs Homologus organs are organs having same structure and origin but different functions. Eg:1) whales, bats, Cheetah and human (all mammals) share similarities in the pattern of bones of forelimbs Eg;2) the thorn and tendrils of Deutement functions. 	n coefficient) ness increased with increasing mit Analogous organs Analogous Organs having same function but different structure and origin Eg;1) Wings of butterfly and of birds Eg;2) the eye of the octopus and of mammals Eg;3) the flippers of Penguins	0.5 0.5 1 1 1		
16 17	 a)Z = slope of the line (regression C = Y-intercept b)Within a region species rich explored area, but only up to a linc) 0.1 to 0.2 Homologous organs Homologus organs are organs having same structure and origin but different functions. Eg:1) whales, bats, Cheetah and human (all mammals) share similarities in the pattern of bones of forelimbs Eg;2) the thorn and tendrils of Bougainvillea and Cucurbita 	n coefficient) ness increased with increasing mit Analogous Organs having same function but different structure and origin Eg;1) Wings of butterfly and of birds Eg;2) the eye of the octopus and of mammals Eg;3) the flippers of Penguins and Dolphins	0.5 0.5 1 1 1		
16 17	 a)Z = slope of the line (regression C = Y-intercept b)Within a region species rich explored area, but only up to a linc) 0.1 to 0.2 Homologous organs Homologus organs are organs having same structure and origin but different functions. Eg:1) whales, bats, Cheetah and human (all mammals) share similarities in the pattern of bones of forelimbs Eg;2) the thorn and tendrils of Bougainvillea and Cucurbita represent homology 	n coefficient) ness increased with increasing mit Analogous Organs organs Analogous Organs having same function but different structure and origin Eg;1) Wings of butterfly and of birds Eg;2) the eye of the octopus and of mammals Eg;3) the flippers of Penguins and Dolphins Eg;4) Sweet potato (root	0.5 0.5 1 1 1		
16 17	 a)Z = slope of the line (regression C = Y-intercept b)Within a region species rich explored area, but only up to a linc) 0.1 to 0.2 Homologous organs Homologus organs are organs having same structure and origin but different functions. Eg:1) whales, bats, Cheetah and human (all mammals) share similarities in the pattern of bones of forelimbs Eg;2) the thorn and tendrils of Bougainvillea and Cucurbita represent homology Eg;3) vertebrate hearts or 	n coefficient) ness increased with increasing mit Analogous Organs organs Analogous Organs having same function but different structure and origin Eg;1) Wings of butterfly and of birds Eg;2) the eye of the octopus and of mammals Eg;3) the flippers of Penguins and Dolphins Eg;4) Sweet potato (root modification) and potato (stem	0.5 0.5 1 1 1		
16 17	 a)Z = slope of the line (regression C = Y-intercept b)Within a region species rich explored area, but only up to a linc c) 0.1 to 0.2 Homologous organs Homologus organs are organs having same structure and origin but different functions. Eg:1) whales, bats, Cheetah and human (all mammals) share similarities in the pattern of bones of forelimbs Eg;2) the thorn and tendrils of Bougainvillea and Cucurbita represent homology Eg;3) vertebrate hearts or brains (Any one example) 	n coefficient) ness increased with increasing mit Analogous organs Analogous Organs having same function but different structure and origin Eg;1) Wings of butterfly and of birds Eg;2) the eye of the octopus and of mammals Eg;3) the flippers of Penguins and Dolphins Eg;4) Sweet potato (root modification) and potato (stem modification)	0.5 0.5 1 1 1		
16 17	a)Z = slope of the line (regression C = Y-intercept b)Within a region species rich explored area, but only up to a lin c) 0.1 to 0.2 Homologous organs Homologus organs are organs having same structure and origin but different functions. Eg:1) whales, bats, Cheetah and human (all mammals) share similarities in the pattern of bones of forelimbs Eg;2) the thorn and tendrils of Bougainvillea and Cucurbita represent homology Eg;3) vertebrate hearts or brains (Any one example)	n coefficient) ness increased with increasing mit Analogous organs Analogous Organs having same function but different structure and origin Eg;1) Wings of butterfly and of birds Eg;2) the eye of the octopus and of mammals Eg;3) the flippers of Penguins and Dolphins Eg;4) Sweet potato (root modification) and potato (stem modification) (Any one example)	0.5 0.5 1 1 1		
16	a)Z = slope of the line (regression C = Y-intercept b)Within a region species rich explored area, but only up to a lin c) 0.1 to 0.2 Homologous organs Homologus organs are organs having same structure and origin but different functions. Eg:1) whales, bats, Cheetah and human (all mammals) share similarities in the pattern of bones of forelimbs Eg;2) the thorn and tendrils of Bougainvillea and Cucurbita represent homology Eg;3) vertebrate hearts or brains (Any one example)	n coefficient) ness increased with increasing mit Analogous Organs having same function but different structure and origin Eg;1) Wings of butterfly and of birds Eg;2) the eye of the octopus and of mammals Eg;3) the flippers of Penguins and Dolphins Eg;4) Sweet potato (root modification) and potato (stem modification) (Any one example)	0.5 0.5 1 1 1		
16 17	a)Z = slope of the line (regression C = Y-intercept b)Within a region species rich explored area, but only up to a lin c) 0.1 to 0.2 Homologous organs Homologus organs are organs having same structure and origin but different functions. Eg:1) whales, bats, Cheetah and human (all mammals) share similarities in the pattern of bones of forelimbs Eg;2) the thorn and tendrils of Bougainvillea and Cucurbita represent homology Eg;3) vertebrate hearts or brains (Any one example)	n coefficient) ness increased with increasing mit Analogous organs Analogous Organs having same function but different structure and origin Eg;1) Wings of butterfly and of birds Eg;2) the eye of the octopus and of mammals Eg;3) the flippers of Penguins and Dolphins Eg;4) Sweet potato (root modification) and potato (stem modification) (Any one example)	0.5 0.5 1 1 1		
16	a)Z = slope of the line (regression C = Y-intercept b)Within a region species rich explored area, but only up to a lin c) 0.1 to 0.2 Homologous organs Homologus organs are organs having same structure and origin but different functions. Eg:1) whales, bats, Cheetah and human (all mammals) share similarities in the pattern of bones of forelimbs Eg;2) the thorn and tendrils of Bougainvillea and Cucurbita represent homology Eg;3) vertebrate hearts or brains (Any one example) Homologus organs are developed due to divergent	n coefficient) ness increased with increasing mit Analogous organs Analogous Organs having same function but different structure and origin Eg;1) Wings of butterfly and of birds Eg;2) the eye of the octopus and of mammals Eg;3) the flippers of Penguins and Dolphins Eg;4) Sweet potato (root modification) and potato (stem modification) (Any one example) Analogous are developed due	0.5 0.5 1 1 1		
16 17	a)Z = slope of the line (regression C = Y-intercept b)Within a region species rich explored area, but only up to a lin c) 0.1 to 0.2 Homologous organs Homologus organs are organs having same structure and origin but different functions. Eg:1) whales, bats, Cheetah and human (all mammals) share similarities in the pattern of bones of forelimbs Eg;2) the thorn and tendrils of Bougainvillea and Cucurbita represent homology Eg;3) vertebrate hearts or brains (Any one example) Homologus organs are developed due to divergent	n coefficient) ness increased with increasing mit Analogous organs Analogous Organs having same function but different structure and origin Eg;1) Wings of butterfly and of birds Eg;2) the eye of the octopus and of mammals Eg;3) the flippers of Penguins and Dolphins Eg;4) Sweet potato (root modification) and potato (stem modification) (Any one example) Analogous are developed due to Convergent evolution	0.5 0.5 1 1 1 1		
16	a)Z = slope of the line (regression C = Y-intercept b)Within a region species rich explored area, but only up to a lin c) 0.1 to 0.2 Homologous organs Homologus organs are organs having same structure and origin but different functions. Eg:1) whales, bats, Cheetah and human (all mammals) share similarities in the pattern of bones of forelimbs Eg;2) the thorn and tendrils of Bougainvillea and Cucurbita represent homology Eg;3) vertebrate hearts or brains (Any one example) Homologus organs are developed due to divergent evolution.	n coefficient) ness increased with increasing mit Analogous Organs having same function but different structure and origin Eg;1) Wings of butterfly and of birds Eg;2) the eye of the octopus and of mammals Eg;3) the flippers of Penguins and Dolphins Eg;4) Sweet potato (root modification) and potato (stem modification) (Any one example) Analogous are developed due to Convergent evolution	0.5 0.5 1 1 1 1		
16	a)Z = slope of the line (regression C = Y-intercept b)Within a region species rich explored area, but only up to a lin c) 0.1 to 0.2 Homologous organs Homologus organs are organs having same structure and origin but different functions. Eg:1) whales, bats, Cheetah and human (all mammals) share similarities in the pattern of bones of forelimbs Eg;2) the thorn and tendrils of Bougainvillea and Cucurbita represent homology Eg;3) vertebrate hearts or brains (Any one example) Homologus organs are developed due to divergent evolution.	n coefficient) ness increased with increasing mit Analogous Organs having same function but different structure and origin Eg;1) Wings of butterfly and of birds Eg;2) the eye of the octopus and of mammals Eg;3) the flippers of Penguins and Dolphins Eg;4) Sweet potato (root modification) and potato (stem modification) (Any one example) Analogous are developed due to Convergent evolution	0.5 0.5 1 1 1 1		
16 17 18	a)Z = slope of the line (regression C = Y-intercept b)Within a region species rich explored area, but only up to a lin c) 0.1 to 0.2 Homologous organs Homologus organs are organs having same structure and origin but different functions. Eg:1) whales, bats, Cheetah and human (all mammals) share similarities in the pattern of bones of forelimbs Eg;2) the thorn and tendrils of Bougainvillea and Cucurbita represent homology Eg;3) vertebrate hearts or brains (Any one example) Homologus organs are developed due to divergent evolution. B-Answer The following c	n coefficient) ness increased with increasing mit Analogous Organs having same function but different structure and origin Eg;1) Wings of butterfly and of birds Eg;2) the eye of the octopus and of mammals Eg;3) the flippers of Penguins and Dolphins Eg;4) Sweet potato (root modification) and potato (stem modification) (Any one example) Analogous are developed due to Convergent evolution uestion. Carries 3 Scores HnRNA) contain both	0.5 0.5 1 1 1 1		

<u>navas9895@</u>	and a second sec	<u>y classes</u>		
	subjected to a processing			
	Splicing	-		
	Here the introns are removed and exons are joined in a defined	1		
	order.			
	<u>capping</u>			
	In capping an unusual nucleotide (methyl guanosine	1		
	triphosphate) is added to the 5'-end of hnRNA.			
	Tailing			
	In tailing, adenyiate residues (200-300) are added at 3'-end in a			
	template independent manner.			
10	Answer any one question from 19 to 20. Carries 5 scores			
19	a) central Dogma in molecular biology is the unidirectional flow of	1		
	information from DNA-RNA-Protein/ or/ the genetic information	-		
	flows from DNA>RNA>Protein.	2		
	Processes in central Dogma in molecular biology			
	DNA Replication			
	DNA Transcription			
	DNA Translation (Any two processes)			
	b)Regulation of gene expression in Eukaryotes			
	ii) Processing level (regulation of splicing)	0.5		
	iii) Transport of mRNA from nucleus to the cytoplasm	0.5		
	iv) Translational level	0.5		
20	(a)			
		0.5		
	A-Ampuna	0.5		
	B-Ovary	0.5		
	C-Fimbriae	0.5		
	D-Cervical canal			
	b) Surgical contraceptive method in male : Vasectomy	1		
	Surgical contraceptive method in male : Tubectomy	1		
	 The part which is cut or tied up in Vasectomy: Vas deferens 	0.5		
	• The part which is cut or tied up in Tubectomy:	0.5		
	oviduct/fallopian tube			
1				