CBSE XTH EXAMINATION-2019
 SUBJECT : MATHEMATICS

HINTS \& SOLUTIONS

1. $\operatorname{HCF}(336,54)=6$.

LCM \times HCF $=336 \times 54$
LCM $=\frac{336 \times 54}{6}=3024$
2. $2 x^{2}-4 x+3=0$
$D=b^{2}-4 a c$
$=16-4(2)(3)$
= 16 - 24
$=-8 \quad \Delta<0$
Roots are not real or imaginery roots.
3. Given $\mathrm{AP} \frac{1}{\mathrm{a}}, \frac{3-\mathrm{a}}{3 \mathrm{a}}, \frac{3-2 \mathrm{a}}{3 \mathrm{a}}$ where $\mathrm{a} \neq 0$
$d=a_{2}-a_{1}$
$=\frac{3-a}{3 a}-\frac{1}{a}$
$=\frac{3-a-3}{3 a}$
$=\frac{-\mathrm{a}}{3 \mathrm{a}}=\frac{-1}{3}$
4. $\quad \operatorname{Sin}^{2} 60+2 \tan 45^{\circ}-\cos ^{2} 30^{\circ}$

Now we know $\sin 60=\frac{\sqrt{3}}{2}$
$\therefore \quad \operatorname{Sin}^{2} 60=\frac{3}{4}$
$\tan 45=1$
$\cos 30^{\circ}=\frac{\sqrt{3}}{2}$.
Substifating the value
$\frac{3}{4}+2(1)-\frac{3}{4}=2$
OR
$\operatorname{Sin} A=\frac{3}{4}$

$$
\begin{aligned}
& \operatorname{Cos} A=\sqrt{1-\sin ^{2} A}-\sqrt{1-\frac{9}{16}}=\frac{\sqrt{7}}{4} \\
& \operatorname{Sec} A=\frac{4}{\sqrt{7}}
\end{aligned}
$$

5. $M_{1}=M_{2}$

$$
\begin{aligned}
& \mathrm{AP}=\mathrm{PB} \\
& \sqrt{[\mathrm{x}-(-2)]^{2}}=\sqrt{(6-x)^{2}} \\
& \mathrm{x}+2=6-\mathrm{x} \\
& 2 \mathrm{x}=4 \\
& \mathrm{x}=2
\end{aligned}
$$

6.

Isosceles triangle right angled at C .
$A C=B C$
Now $A B^{2}=(A C)^{2}+(B C)^{2}$
$A B^{2}=(4)^{2}+(4)^{2}=32$
$A B=\sqrt{32}=4 \sqrt{2}$

OR

DE || BC
Using BPT $\quad \frac{A D}{D B}=\frac{A E}{E C}$

$$
\begin{aligned}
& \frac{\mathrm{AD}}{7.2}=\frac{1.8}{5.4} \\
& \mathrm{AD}=\frac{1.8 \times 7.2}{5.4}=2.4 \mathrm{~cm}
\end{aligned}
$$

Section - B

7. LCM of $306 \& 657$

$$
\begin{aligned}
& 306=2 \times 3 \times 3 \times 17 \\
& 657=3 \times 3 \times 73
\end{aligned}
$$

$\therefore \quad \mathrm{HCF}=3 \times 3=9$.
HCF \times LCM $=306 \times 657$
LCM $=\frac{306 \times 657}{9}=22338$
8. Given $A(x, 4), B(-4,6), C(-2,3)$ Collinear

Area of triangle $=0$
$\frac{1}{2}\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right]$
$\frac{1}{2}[x(6-3)+(-4)[3-4]-(-2)[y-6]]=0$
$x(3)+4+12-2 y=0$
$3 x-2 y+16=0$
$3 x-2 y=16$

OR

Let $\quad A(1,-1)$
B $(-4,6)$
C ($-3,-5$)
Area of triangle
$=\frac{1}{2}\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right]$
$\frac{1}{2}|[1(6-(-5))+(-4)(-5-(-1))+(-3)(-1-6)]|$
$\frac{1}{2}[11+16+21]$
$\frac{1}{2}$ [48]
24 sq units
9. Type of marble, Blue, black, green
$P($ Blue $)=\frac{1}{5}$
$P($ Black $)=\frac{1}{4}$
Let total marbles $=x$
$P($ green $)=1=[P($ Blue $)+P($ Black $)]$

$$
=1-\left[\frac{1}{5}+\frac{1}{4}\right]=1-\left[\frac{4+5}{20}\right]=1-\frac{9}{20}=\frac{11}{20}
$$

$P($ green $)=\quad \frac{11}{20}$
Now green marbles $=11$
Hence tofao no. of marbles $=20$
10. Given eq $x+2 y=5$ \& $3 x+k y+15=0$

$$
x+2 y-5=0
$$

For unique solution

$$
\begin{aligned}
& \frac{\mathrm{a}_{1}}{\mathrm{a}_{2}} \neq \frac{\mathrm{b}_{1}}{\mathrm{~b}_{2}} \\
& \frac{1}{3} \neq \frac{2}{\mathrm{k}}
\end{aligned}
$$

Hence $\mathrm{k} \neq 6$
Any real value except 6
11. Let the larger supplementary angle be x
\therefore other angle $=180-x$
A/c to problem
$x=180-x+18^{\circ}$
$2 x=198$
$\mathrm{X}=99^{\circ}$
$\therefore 99,81$

OR

Let present age of sumit $=3 x$
\therefore Present age of his son $=x$
Five years later sumit $=3 x+5$
Five years later Son $=x+5$
A/c to problem
$3 x+5=2 \frac{1}{2}[x+5]$
$3 x+5=\frac{5}{2}[x+5]$
$6 x+10=5 x+25$
$x=15$
Son's age $=15$ years
Sumit' age $=45$ years
12. Given

CI
25-30
30-35
35-40
40-45
45-50
frequency
25
$34 f_{0}$
$50 \mathrm{f}_{1}$
$42 \mathrm{f}_{2}$
50-55
38
14

Mode $=\ell+\frac{\mathrm{f}_{1}+\mathrm{f}_{0}}{2 \mathrm{f}_{1}-\mathrm{f}_{0}-\mathrm{f}_{2}} \times \mathrm{h}$
Modal class $=35-40$
$\ell=$ lower limit of modal class $=35$
$\mathrm{h}=$ class size $=35-30=5$
$\mathrm{f}_{1}=50$
$\mathrm{f}_{0}=34$
$\mathrm{f}_{2}=42$

$$
\begin{aligned}
\text { mode }= & 35+\frac{50-34}{100-34-42} \times 5 \\
& =35+\frac{16}{100-76} \times 5=35+\frac{80}{24}=\frac{920}{24}=38.34
\end{aligned}
$$

Section - C

13. Given $\sqrt{3}$ in an irrational number

We need to prove $2+5 \sqrt{3}$ is also an irrational number
Let $2+5 \sqrt{3}$ be a rational no in form of $\frac{p}{q}$

$$
\begin{aligned}
\therefore & 2+5 \sqrt{3}=\frac{p}{q} \\
& 2-\frac{p}{q}=5 \sqrt{3}
\end{aligned}
$$

Rational $\leftarrow \frac{2 q-p}{5 q}=\sqrt{3} \rightarrow$ Irrational
Now $\quad \frac{2 q-p}{5 q}$ is an rational number
But $\sqrt{3}$ is irrational
Since rational \neq Irrational
This is a contradiction
\therefore Our assumptions is incorrect
Hence $2+5 \sqrt{3}$ is irrational

OR

Given numbers 2048 and 960
Divide the larger number by smaller one
$2048=960(2)+128$
$960=128(7)+64$
$128=2(64)+0$
Now remainder is zero
$\therefore \quad 64$ is HCF
14. Given : two right triangles $A B C$ and $D B C$ are on the same hypotenuse $B C$
To Prove: $A P \times P C=B P \times P D$
Proof : In $\triangle A B C$ \& $\triangle D C P$
$\begin{array}{ll}\angle A=\angle D & \left\{\text { each } 90^{\circ}\right\} \\ \angle A P B=\angle D P C & \{\text { vertically opp } \angle A\}\end{array}$

By A-A similarity
$\triangle \mathrm{ABP} \sim \triangle \mathrm{DCP}$
$\frac{B P}{C P}=\frac{A P}{D P} \quad$ \{Corresponding sides of similar Δ are proportional \}
$A P \times P C=B P \times P D$

OR

In trapezium $\mathrm{PQ}|\mid \mathrm{RS}$ \&
Now in $\triangle P O Q$ \&
\& $\quad \triangle \mathrm{ROS}$
$\angle \mathrm{OPQ} \quad=\quad \angle \mathrm{ORS} \quad\{$ Let int \angle s $\}$

$$
\begin{array}{ll}
& \angle \mathrm{OQP}= \\
\text { Using } & \mathrm{A}-\mathrm{A} \text { criterion } \\
\therefore & \triangle \mathrm{POQ} \sim \triangle \mathrm{ROS} \\
\text { Now } & \therefore \frac{\text { ar } \mathrm{POQ}}{\text { ar } \mathrm{ROS}}=\left(\frac{\mathrm{PQ}}{\mathrm{RS}}\right)^{2} \\
& =\left(\frac{3 R S}{\mathrm{RS}}\right)^{2}=\frac{9}{1}
\end{array}
$$

15.

Given : In $\mathrm{C}(\mathrm{O}, \mathrm{r}) \quad \mathrm{PQ}|\mid \mathrm{RS}$ are two parallel tangents.
$A B$ is also tangent
To Prove : $\quad \angle A O B=90^{\circ}$
Construction : Join OD, OE \& OC
Proof: In $\triangle A O D$ \& $\triangle A O C$

$$
O D=O C \quad\{\text { equal radius }\}
$$

$$
\mathrm{OA}=\mathrm{OA} \quad\{\text { Common }\}
$$

$$
\begin{equation*}
A D=A C \quad\{\text { Tangent from ext point is equal }\} \tag{i}
\end{equation*}
$$

$\therefore \quad \triangle \mathrm{AOD} \cong \triangle \mathrm{AOC} \quad\{\mathrm{By}$ SSS congruency $\}$
$\therefore \quad \angle A O D=\angle A O C$
\{y Cpct\}
Similarly
In $\quad \triangle B O C \& \triangle B O E$
$O C=O E$
$O B=O B$
$B C=B E$
$\therefore \quad$ By SSS

$$
\begin{equation*}
\triangle \mathrm{BOC} \cong \triangle \mathrm{BOE} \tag{ii}
\end{equation*}
$$

$\therefore \angle \mathrm{BOC}=\angle \mathrm{BOE} \mathrm{By} \mathrm{cpct}$
Now $\quad \angle D O E=180^{\circ} \quad$ (angle on a straight line)
$\therefore \quad \angle \mathrm{AOD}+\angle \mathrm{AOC}+\angle \mathrm{BOE}+\angle \mathrm{BOC}=180^{\circ}$
From eq ${ }^{\text {n }}$ (i) \& (ii)
$2 \angle A O C+2 \angle B O C=180^{\circ}$
$2(\angle \mathrm{AOC}+\angle \mathrm{BOC})=180^{\circ}$
$\angle \mathrm{AOB}=90^{\circ}$
16. Let $A(-2,-5)=\left(x_{1}, y_{1}\right)$
$B(6,3)=\left(x_{2}, y_{2}\right)$

Let the ratio
Be $\lambda: 1$

Coordinate of $P=\left[\frac{\lambda(6)+1(-2)}{\lambda+1}, \frac{\lambda(3)+1(-5)}{\lambda+1}\right]$
$P=\left[\frac{6 \lambda-2}{\lambda+1}, \frac{3 \lambda-5}{\lambda+1}\right]$
Now P lies on line
$x-3 y=0$
$\frac{6 \lambda-2}{\lambda+1}-3\left(\frac{3 \lambda-5}{\lambda+1}\right)=0$
$\frac{6 \lambda-2}{\lambda+1}-\left(\frac{9 \lambda-15}{\lambda+1}\right)=0$
$\frac{6 \lambda-2-9 \lambda+15}{\lambda+1}=0$
$13-3 \lambda=0$
$13=3 \lambda$
$\frac{\lambda}{1}=\frac{13}{3}$
Line segment is divided in ratio $13: 3$.
\therefore Point of intersection
$x=\frac{6 \lambda-2}{\lambda+1}=\frac{6\left(\frac{13}{3}\right)-2}{\left(\frac{13}{3}\right)+1}$
$=\frac{\frac{24}{1}}{\frac{16}{3}}=\frac{72}{16}=\frac{9}{2}$
$Y=\frac{3 \lambda-5}{\lambda+1}=\frac{3\left(\frac{13}{3}\right)-5}{\frac{13}{3}+1}=\frac{8}{\frac{16}{3}}=\frac{24}{16}=\frac{3}{2}$
Point $=\left(\frac{9}{2}, \frac{3}{2}\right)$
17. Solve

$$
\left(\frac{3 \sin 43^{\circ}}{\cos 47^{\circ}}\right)^{2}-\frac{\cos 37^{\circ} \operatorname{cosec} 53^{\circ}}{\tan 5^{\circ} \tan 25^{\circ} \tan 45^{\circ} \tan 65^{\circ} \tan 85^{\circ}}
$$

$$
\left(\frac{3 \cos 47^{\circ}}{\cos 47^{\circ}}\right)^{2}-\frac{\cos 37^{\circ} \cdot \frac{1}{\sin 53^{\circ}}}{\tan 5^{\circ} \cdot \tan 25^{\circ}(1) \cot 25^{\circ} \cdot \cot 5^{\circ}}
$$

$$
9-\frac{\cos 37^{\circ} \cdot \frac{1}{\cos 37^{\circ}}}{1}=9-1=8
$$

18. Given Square $O A B C$ is inscribed in quadrant OPBQ.
$\mathrm{OA}=15$

Figure-4
To find area of shaded region.
Area of shaded region = Area of quadrant - Area of square
$=\frac{1}{4}\left(\pi r^{2}\right)-(\mathrm{OA})^{2}$
Now radius of quadrant = Length of diagonal
Now $O B=\sqrt{(O A)^{2}+(A B)^{2}}$
$r=O B=\sqrt{(15)^{2}+(15)^{2}}=15 \sqrt{2} \mathrm{~cm}$
\therefore Area of shaded region
$=\frac{1}{4}(3.14)(15 \sqrt{2})^{2}-(15)^{2}$
$=\frac{3.14 \times 225 \times 2}{4}-225 \mathrm{~cm}^{2}$
$=128.25 \mathrm{~cm}^{2}$

Given

$A B C D$ is a square with side $2 \sqrt{2} \mathrm{~cm}$.

To find Area of shaded region
Diameter of circle $=$ Length of diagonal of square
Now $B D=\sqrt{(2 \sqrt{2})^{2}+(2 \sqrt{2})^{2}}$

$$
\mathrm{BD}=4 \mathrm{~cm}
$$

Radius $\mathrm{OB}=2 \mathrm{~cm}$
Required Area $=$ Area of circle - Area of square
$=\pi r^{2}-a^{2}$
$=3.14 \times(2)^{2}-(2 \sqrt{2})^{2}$
$=12.56-8$
$=4.56 \mathrm{~cm}^{2}$
19.

Total height $=20 \mathrm{~cm}$
\therefore Height of cylinder $=20-\frac{7}{2}-\frac{7}{2}$

$$
=13 \mathrm{~cm} .
$$

And radius at ends $=\frac{7}{2} \mathrm{~cm}$.
\therefore Total volume of solid $=$ Vol of cylinder $+2 \times$ Vol of hemisphere
$=\pi r^{2} h+2 \times \frac{2}{3} \pi r^{3}$
$=\left(\frac{22}{7} \times \frac{7}{2} \times \frac{7}{2} \times 13\right)+\left(2 \times \frac{2}{3} \times \frac{22}{7} \times \frac{7}{2} \times \frac{7}{2} \times \frac{7}{2}\right)$
$=500.5+179.67 \mathrm{~cm}^{3}$
$=680.17 \mathrm{~cm}^{3}$.
20. Using step deviation method

C1	u_{i}	f_{i}	$d_{i}=u_{i}-a$	$u_{i}=\frac{d_{i}}{a}$	$f_{i} u_{i}$
Mass			$=u_{i}-47.5$		
$30-35$	32.5	14	-15	-3	-42
$35-40$	37.5	16	-10	-2	-32
$40-45$	42.5	28	-5	-1	-28
$45-50$	$47.5=a$	23	0	0	0
$50-55$	52.5	18	5	1	18
$55-60$	57.5	8	10	2	16
$60-65$	62.5	3	15	3	9

Let assnmed mean $\mathrm{a}=47.5$
Mean $=a+\frac{\sum f_{i} u_{i}}{\sum f_{i}} \times h$
$=47.5+\frac{(-59)}{110} \times 5$
$=47.5-2.68$
$=44.82$
21. Given Polynomial
$F(x)=3 x^{4}-9 x^{3}+x^{2}+15 x+k$

$$
g(x)=3 x^{2}-5
$$

Completely divisible
\therefore remainder $=0$

Given $\quad P(x)=7 y^{2}-\frac{11}{3} y-\frac{2}{3}$
$=\frac{1}{3}\left(21 y^{2}-11 y-2\right)$
$=\frac{1}{3}\left(21 y^{2}-14 y+3 y-2\right)$
$=\frac{1}{3}(7 y(3 y-2)+(3 y-2))$
$\frac{1}{3}(7 y+1)(3 y-2)$
to find zero we equate $P(x)=0$
Zeroes of polynomial $\Rightarrow \frac{2}{3} \& \frac{-1}{7}$
Now sum of zeroes $=-\frac{b}{a}$
$\frac{2}{3}+\left(-\frac{1}{7}\right)=-\left(\frac{-11}{3 \times 7}\right)=\frac{11}{21}$
$\frac{14-3}{21}=\frac{11}{21}=\frac{11}{21}$
Product of zeroes $=\frac{c}{a}$
$\left(\frac{2}{3}\right)\left(\frac{-1}{7}\right)=\frac{\frac{-2}{3}}{7}$
$\frac{-2}{21}=\frac{-2}{21}$
Hence verified
22. $x^{2}+p x+16=0$

For equal roots $D=0$
$b^{2}-4 a c=0$
$P^{2}-4(16)(1)=0$
$P^{2}=64$
$\mathrm{P}= \pm 8$
Now if $p=8$
$x^{2}+8 x+16=0$

$$
(x+4)^{2}=0
$$

$$
\begin{aligned}
& \text { if } p=-8 \\
& x^{2}-8 x+16=0 \\
& (x-4)^{2}=0
\end{aligned}
$$

$x=-4$
$x=4$

Section - D

23. Given : $A \quad \triangle A B C$ in which a line parallel to side $B C$ intersects other two sides $A B$ and $A C$ at D and E respectively.
To Prove :

$$
\frac{A D}{D B}=\frac{A E}{E C} .
$$

Construction : Join $B E$ and $C D$ and draw $D M \perp A C$ and $E N \perp A B$.
Proof: Area of $\triangle A D E=\frac{1}{2}$ (base \times height $)=\frac{1}{2} A D \times E N$.
Area of \triangle ADE is denoted as ar(ADE).
So, $\operatorname{ar}(\mathrm{ADE})=\frac{1}{2} \mathrm{AD} \times \mathrm{EN} \quad$ and $\quad \operatorname{ar}(\mathrm{BDE})=\frac{1}{2} \mathrm{DB} \times \mathrm{EN}$.
Therefore, $\frac{\operatorname{ar}(\mathrm{ADE})}{\operatorname{ar}(\mathrm{BDE})}=\frac{\frac{1}{2} \mathrm{AD} \times \mathrm{EN}}{\frac{1}{2} \mathrm{DB} \times \mathrm{EN}}=\frac{\mathrm{AD}}{\mathrm{DB}}$
Similarly, $\operatorname{ar}(A D E)=\frac{1}{2} A E \times D M$ and $\operatorname{ar}(D E C)=\frac{1}{2} E C \times D M$.
And $\frac{\operatorname{ar}(\mathrm{ADE})}{\operatorname{ar}(\mathrm{DEC})}=\frac{\frac{1}{2} \mathrm{AE} \times \mathrm{DM}}{\frac{1}{2} \mathrm{EC} \times \mathrm{DM}}=\frac{\mathrm{AE}}{\mathrm{EC}}$
Note that $\triangle B D E$ and \triangle DEC are on the same base DE and between the two parallel lines $B C$ and $D E$. So, $\operatorname{ar}(\mathrm{BDE})=\operatorname{ar}(\mathrm{DEC})$
Therefore, from (i), (ii) and (iii), we have :

$$
\frac{\Delta n}{n R}=\frac{\Delta F}{F C}
$$

Hence Proved.

24.

$\sin 30^{\circ}=\frac{B E}{A B}$
$\frac{1}{2}=\frac{B E}{200}$
$B E=100 \mathrm{M}$
Now BE = BF + FE

$$
[\because \mathrm{FE}=\mathrm{DC}=50 \mathrm{~m}]
$$

$$
100=B E+50
$$

$B F=50 m$
$\ln \triangle \mathrm{BFD} \Rightarrow \sin 45^{\circ}=\frac{B F}{B D}$
$\frac{1}{\sqrt{2}}=\frac{50}{x}$
$\mathrm{BD}=\mathrm{x}=50 \sqrt{2} \mathrm{~m}$
Distance of bird from Deepak is $50 \sqrt{2} \mathrm{~m}$
25. $h_{1}=$ height of cylinder $=220 \mathrm{~cm}$
$r_{1}=12 \mathrm{~cm}$
$\mathrm{v}_{1}=\pi \mathrm{r}_{1}{ }^{2} \mathrm{~h}_{1}$
$\mathrm{v}_{1}=\pi(144)(220)$
$=31680 \pi \mathrm{~cm}^{3}$
Now $\mathrm{h}_{2}=$ height of another cylinder $=60 \mathrm{~cm}$
$r_{2}=$ radius of another cylinder $=8 \mathrm{~cm}$
$v_{2}=\pi\left(r_{2}\right)^{2} h_{2}$
$=\pi(64)(60)$
$=3840 \pi \mathrm{~cm}^{3}$
Total vol of pole $=31680 \pi+3840 \pi$
$=111532.8 \mathrm{~cm}^{3}$
Required weight $=111532.8 \times 8 \mathrm{gm}=892.26 \mathrm{~kg}$
26. Construct
$\underbrace{\left(Q_{0}\right.}_{5}$

Steps of construction
(i) Draw $\mathrm{BC}=5 \mathrm{~cm}$.
(ii) Taking B and C as centre and radius equal to 5 cm draw arc and join $A B$ and $A C$, thus equilateral $\triangle A B C$ is formed.
(iii) With B as centre, draw a ray $B X$ making an acute angle $C B X$ with $B C$.

(iv) Along $B X$, mark off three points B_{1}, B_{2}, B_{2} such that $B_{1}=B_{1} B_{2}=B_{2} B_{2}$
(v) Join $B_{3} C$.
(vi) Draw $B_{2} C^{\prime} \| B_{3} C$, meeting $B C$ at C^{\prime}.
(vii) From C^{\prime} draw $\mathrm{C}^{\prime} \mathrm{A}^{\prime} \| \mathrm{CA}$, metting $B A$ at A^{\prime}. thus $\mathrm{BC}^{\prime} \mathrm{A}^{\prime}$ is required triangle, each of whose sides is $\frac{2}{3}$ of corresponding sides of $\triangle A B C$.

OR

(i) Draw a circle of radius 2 cm with centre O .
(ii) Draw another circle of radius 5 cm with same centre 0 .
(iii) Take a point P on second circle and join OP.
(iv) Draw \perp bisector of OP which intersect OP at O^{\prime}.
(v) Taking O^{\prime} as centre and OO^{\prime} as radius, draw a circle to intersect the first circle in two points say A and B.
(vi) Join PA and PB these are required triangle from P.
27.

CI	Frequency	Cumulative freuqency (less than type)
$30-40$	7	7
$40-50$	5	12
$50-60$	8	20
$60-70$	10	30
$70-80$	6	36
$80-90$	6	42
$90-100$	8	$50=\mathrm{N}$

28. $\frac{\tan \theta}{1-\cot \theta}+\frac{\cot \theta}{1-\tan \theta}=1+\sec \theta \operatorname{cosec} \theta$
$\frac{\frac{\sin \theta}{\cos \theta}}{1-\frac{\cos \theta}{\cos \theta}}+\frac{\frac{\cos \theta}{\sin \theta}}{1-\frac{\sin \theta}{\cos \theta}}$
$\frac{\sin \theta}{\cos \theta} \times \frac{\sin \theta}{\sin \theta-\cos \theta}+\frac{\cos \theta}{\sin \theta} \times \frac{\cos \theta}{\cos \theta-\sin \theta}$

```
\(\frac{\sin ^{2} \theta}{\cos \theta(\sin \theta-\cos \theta)}+\frac{\cos ^{2} \theta}{\cos \theta(\sin \theta-\cos \theta)}\)
\(\sin ^{3} \theta-\cos ^{3} \theta\)
\(\sin \theta \cos \theta(\sin \theta-\cos \theta)\)
\(\frac{(\sin \theta-\cos \theta)\left(\sin ^{2} \theta+\cos ^{2} \theta+\sin \theta \cos \theta\right)}{(\sin \theta \cos \theta)(\sin \theta-\cos \theta)}\)
\(\frac{1+\sin \theta \cos \theta}{\sin \theta \cos \theta}\)
\(1+\sec \theta \operatorname{cosec} \theta\)
```

```
\(\frac{\sin \theta}{\cot \theta+\operatorname{cosec} \theta}=\quad 2+\frac{\text { OR }}{\sin \theta}\)
LHS \(\frac{\sin \theta}{\cos \theta+1} \Rightarrow \frac{\sin ^{2} \theta}{1+\cos \theta} \times \frac{1-\cos \theta}{1-\cos \theta}\)
\(\Rightarrow \quad \frac{\sin ^{2} \theta(1-\cos \theta)}{1-\cos ^{2} \theta}\)
\(\Rightarrow \quad \frac{\sin ^{2} \theta(1-\cos \theta)}{\sin ^{2} \theta}\)
\(\Rightarrow \quad 1-\cos \theta\)
RHS \(2+\frac{\sin \theta}{\cot \theta-\operatorname{cosec} \theta}\)
\(\Rightarrow \quad 2+\frac{\sin \theta}{\frac{\cos \theta}{\sin \theta}-\frac{1}{\sin \theta}} \Rightarrow 2+\frac{\sin ^{2} \theta}{\cos \theta-1} \quad \Rightarrow \quad 2-\frac{\sin ^{2} \theta}{\cos \theta-1} \times \frac{\cos \theta+1}{\cos \theta+1}\)
\(\Rightarrow \quad 2-(1+\cos \theta)\)
\(\Rightarrow \quad 1-\cos \theta\)
        LHS = RHS
```

29. Let -82 be the a_{n} term
$a=-7, d=-12-(-7)=-12+7=-5$
$a_{n}=a+(n-1) d$
$-82=(-7)+(n-1)(-5)$
$\frac{75}{5}=n-1$
$15=n-1$
$\mathrm{n}=16$, so -82 is the $16^{\text {th }}$ term.
Let -100 be the a_{m} term
$a_{m}=a+(m-1) d$
$-100=(-7)+(m-1)(-5)$
$\frac{93}{5}=m-1$
$m=\frac{93}{5}+1=\frac{98}{5}$
as m is not a natural number so -100 will not be the term of the A.P.

OR

```
\(\mathrm{a}=45\)
\(d=39-45=-6\)
Let \(\mathrm{S}_{\mathrm{n}}=180=\frac{\mathrm{n}}{2}(2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d})\)
\(180=\frac{\mathrm{n}}{2}[90+(\mathrm{n}-1)(-6)]\)
\(180=\mathrm{n}[45+(\mathrm{n}-1)(-3)]\)
\(60=n[15+(n-1)(-1)]\)
\(60=15 n-n^{2}+n\)
\(\mathrm{n}^{2}-16 \mathrm{n}+60=0\)
\((n-10)(n-6)=0\)
\(\mathrm{n}=10\) or 6
```

Reason for double answer in that the given AP in decreaing AP and after some terms the terms are became negative.
30. Let the marks in Hindi and English are x, y respectively.

$$
x+y=30 \quad \Rightarrow \quad y=30-x
$$

ATQ

$$
\begin{aligned}
& (x+2)(y-3)=210 \\
& (x+2)(30-x-3)=210 \\
& (x+2)(27-x)=210 \\
& -x^{2}+25 x+54=210 \\
& x^{2}-25 x+156=0 \\
& (x-12)(x-13)=0 \\
& x=12 \text { or } 13
\end{aligned}
$$

If $x=12$ then $y=30-x=30-12=18$
If $x=13$ then $y=30-x=30-13=17$
So marks in Hindi and English is 12 and 18 or 13 and 17.

