SSLC MODEL EXAMINATION, FEBRUARY 2017-18

CHEMISTRY •ANSWER KEY

Q No	ANSWER KEY							SCORE	TOTAL	CHOICE	
1	f	f								<u>1</u>	
2	22.4										Any four
3	Hot NaO	Hot NaOH solution									
4	Ester									<u>1</u>	
5	For industrial purposes , ethanol is sometimes mixed with poisonous substances . The mixture so obtained is called denatured spirit									1	
6	a) $1s^2 2s^2$	2p ⁶ 3		1	<u>2</u>						
	b) 13										
	Element	Element Atomic Mass		Amount taken in g			Number of atoms	Volume at STP L			
7	H ₂ 1		1	4g	(a) 2 x 6.022 x10 ²		$4 \times 6.022 \times 10^{23} \qquad \begin{array}{c} \textbf{(b)} \\ 2 \times 22.4 = \\ \underline{\textbf{44.8}} \end{array}$		1/2 1/2	2	
	Не	4	4	(c) 20 g	5 x 6.022 x1	0^{23}	$ \begin{array}{c} (d) \\ 5 \times 6.022 \times 10^{23} \end{array} $	112	1/2 1/2		
	a) Na								1		
8	b) Cu								1	<u>2</u>	
	Metal		Ore		Method of Refining the metal		1/2 1/2				
9	Copper			(a) <u>Cuprite</u>		(b) <u>Electrolytic refining</u>		,2 ,2	<u>2</u>	Any four	
	Zinc			(c) <u>Calamine</u>			(d) <u>Distillation</u>		1/2 1/2		
	(a) Ceme	(a) Cement combines with water and sets into a hardened mass(setting of cement)									
10	(b) Cement combines with water and sets into a hardened mass. It is an <i>exothermic reaction</i> . Hence a <i>large amount of heat energy</i> is liberated Direct contact with the skin will lead to burning. To prevent this, workers wear gloves								1	2	
				(Question er	ror . 7 O₂ is suit	able ii	nstead of 5 O ₂)				
11	(a) 3.5 mols If 7 O ₂ is used (a) 2.5 mols If 5 O ₂ is used								1	<u>3</u>	
	(b) 224 L										
12	(a) Test tube containing powdered copper. When solids are made into small pieces or powder, their surface area increases. As a result the number of molecules undergoing effective collisions also increases. Hence the rate of reaction increases.								2	<u>3</u>	
	(b) Increase the temperature								1		
	(a) The amount NO ₂ will increase										
13	(b) Reduce the pressure of the system. According to Le – Cheltelier's principle, if the pressure of a system of gaseous reacting species is altered, the system will try to nullify the effect of that change. The right side of the equation given has more gaseous moles than the left side. Decrease in pressure will favour the side with more gaseous moles. That is, the reaction proceeds faster towards the right side if the pressure is decreased (Or any other suitable response)							2	<u>3</u>		

14	(a) (i) Bauxite (Al ₂ O ₃ .2H ₂ O) (ii) Sodium aluminate(NaAlO ₂)solution (iii) PrecipitateAl(OH) ₃ (iv) Alumina (Al ₂ O ₃) (b) Here, Oxygen is liberated at the Anode. It reacts with the carbon anode forming	1/2 1/2	<u>3</u>	Any four								
	carbon dioxide . As a result , the anode gets consumed up . Hence Anode should be removed at regular intervals.	1										
15	(a) Soda lime glass / Soda glass/ Soft glass Silicon dioxide (SiO ₂) , Sodium carbonate (Na ₂ CO ₃) Calcium carbonate (CaCO ₃)	1										
	(b) Cobalt oxide	1										
(b) Coolit Oxide												
	(a) (A) [Ne] $3s^2 3p^5$, (D) [Ar] $3d^{10}4s^24p^5$	1										
	(b) B [Ar]4s ¹	1										
16	(c) B [Ar]4s ¹	1	<u>4</u>									
	(d) [Ar]3d ³	1		Any four								
	CH ₃ CH ₃											
	l I	1										
17	(a) CH ₃ -CH - CH-CH ₃		4									
17	(b) 2- Methyl pentane / 3- Methyl pentane	1										
	(c) -CHO	1										
	(d) Hex - 2 - yne	1										
	(a) A= Zinc (Zn) B = Nickel (Ni)	1	4									
	(b) From Zinc electrode to Nickel electrode	1										
18	(c) Nickel (Ni)	1										
10	(d) $Zn \rightarrow Zn^{2+} + 2\hat{e}$ $Ni^{2+} + 2\hat{e} \rightarrow Ni$	1										
	$Zn + Ni^{2+} \rightarrow Zn^{2+} + Ni$											
	(a) CH ₃ -O-CH ₂ -CH ₃ , CH ₃ -CH ₂ -CH ₂ -OH	1	4									
	(b) CH ₃ -O-CH ₂ -CH ₃	1										
19	(c) CH ₃ -COOH	1										
	(d) OH											
	CH ₃ -CH ₂ -CH-CH ₃ , CH ₃ -CH ₂ -CH ₂ -OH	1										
	(A)											
	(a) (i) CH_3 - CH_2 - CH_3 + Cl_2 \rightarrow CH_2 - CH_2 - Cl + HCl	1										
	(ii) CH_3 - $CH=CH_2 + Cl_2 \rightarrow CH_3$ - CH	1										
20	(B)		4									
	(b) Addition	1										
	(CH ₂ - CH)	1										
	Cl											
Prepared by Unmesh B , Govt. VHSS Kallara , Thiruvananthapuram												