Answer key prepared by: Sibi M \& Prathap S M HST Maths, GHSS Puthoor, Kollam (Dt)

Questio n Number	Sub Qn	Detailed Answer	Scores
1	a	70	1
	b	140	1
2	a	5, 8, 11,....	1
	b	$\mathrm{X}_{12}=38$	1
3		$\mathrm{P}(5,8)$	2
4	a	$\mathrm{P}(1)=0$	1
	b	(x-1) Q ()	1
5	a	$D=\frac{62-38}{8-5}=8$	2
	b	No, 100 is not a multiple of the common differnce	1
6	a	$\mathrm{H}=8 \mathrm{~cm}$	1
	b	$V=\frac{1}{3} a^{2} h=480 \mathrm{~cm}^{3}$	2
7			3
8	a	4 units	1
	b	$\mathrm{C}(4,4), \mathrm{D}(6,4)$	2
9	a	Let the numbers be x and $x+8$ $x(x+8)=768$	1
	b	$x^{2}+8 x=768$ On Solving, $\mathrm{x}=24$ Numbers are 24 and 32	2
10	a	Inside the circle	1
	b	$A B$ parallel to $D C$, Hence $A D=B C$ $A B C D$ is an isosceles trapezium We can draw a circle passing through A, B, C and D (An isosceles trapezium is always cyclic)	2
11	a	$<\mathrm{ADB}=<\mathrm{ACB}=65$	1

	b	$A D=\frac{9}{\sin 65}=\frac{9}{0.9}=10$	2
12	a	$\mathrm{R}=\mathrm{l}=15 \mathrm{~cm}$	1
	b	$\frac{3}{15}=\frac{x}{360} \quad x=72$	1
	c	Area $=\frac{X}{360} * \pi r^{2}=45 \pi \mathrm{~cm}^{2}$	2
13	a	$m=\frac{-3}{4}$	1
	b	$3 x+4 y-34=0$	2
	c	$P(x, y) Q(x-4, y+3), \quad$ Slope of $P Q=\frac{-3}{4}$, Q is a point on this line	1
14	a	3	1
	b	2	1
	c	$S=20^{2}+2 \times 20=440$	1
	d	$S+1=n^{2}+2 n+1=(n+1)^{2}$ is a perfect square	1
15	a	RS $=5 \mathrm{~cm}$	1
	b	$\mathrm{PQ}=5+5 \sqrt{3}=5(1+\sqrt{3})$	1
	c	$\text { Angles } 2 \mathrm{x}, 3 \mathrm{x}, 7 \mathrm{x}$ $x=15$ Angles are 3045 and 105 , Using the above figure $\mathrm{PR}: R Q: P Q=5 \sqrt{2}: 10: 5(\sqrt{3}+1)=\sqrt{2}: 2: \sqrt{3}+1$	2
16			4
17	a	$\mathrm{l}+\mathrm{b}=28$	1
	b	$\begin{aligned} & \text { Let length }=\mathrm{x} \text { breadth }=28-\mathrm{x}, \text { diagonal }=20 \\ & x^{2}+(28-x)^{2}=20^{2} \\ & x^{2}-28 x+192=0 \\ & x=16 \mathrm{~cm} \end{aligned}$	3

Answer key prepared by: Sibi M \& Prathap S M HST Maths, GHSS Puthoor, Kollam (Dt)

		Length $=16 \mathrm{~cm}$, breadth $=12 \mathrm{~cm}$	
18	a	In Triangle PMS, angles are $30,60,90$ Given $\mathrm{SM}=3 \mathrm{~cm}$ Hence $\mathrm{PS}=6 \mathrm{~cm}$	1
	b	$\mathrm{PR}=\mathrm{PS}+\mathrm{ST}+\mathrm{TR}=6+3+\mathrm{r}=9+\mathrm{r}$	1
	c	$\triangle P M S \sim \triangle P A R \quad \frac{M S}{A R}=\frac{P S}{P R} \quad \frac{3}{r}=\frac{6}{r+9} \quad \mathrm{r}=9 \mathrm{~cm}$	2
19	a	Total number of pairs $=11 \times 12=132$ pairs	1
	b	$\mathrm{P}($ Both Red $)=48 / 132=4 / 11$	1
	c	$P($ both White $)=20 / 132=5 / 33$	1
	d	$P(\text { atleast one red })=1-P(\text { both white })=1-\frac{5}{33}=\frac{28}{33}$	1
20	a	Midpoint of AC= $\mathrm{P}(3,2)$	1
	b	Diagonal AC is parallel to x - axis, Diagonal BD is parllel to y axis $\mathrm{BD}=6$ units, $\mathrm{PD}=\mathrm{PB}=3$ units Hence, $D(3,5) \& B(3,-1)$	2
	c	$\mathrm{AB}=5$ units	1
21	a	$\mathrm{P}(2)=9$	1
	b	$Q(x)=P(x)-P(2)=3 x^{\wedge} 2-5 x-2$	1
	c	$\mathrm{Q}(\mathrm{x})=(\mathrm{x}-2)(3 \mathrm{x}+1)$	2
22	a	Mid point of $\mathrm{AB}=\mathrm{C}(4,3)$	1
	b	Radius $=5$ units, $\quad(x-4)^{2}+(y-3)^{2}=5^{2}$	2
	c	C is the midpoint of OD, Hence $D(8,6)$	1
23			5
24	a	$\mathrm{PA}=\mathrm{AB}-\mathrm{PB}=10-2=8 \mathrm{~cm}$	1

	b	Area of $\mathrm{PQRS}=P S^{2}=P A \times P B=8 \times 2=16$	2
	c	Area of the square with side $\mathrm{PM}=\quad P M^{2}=P O \times P B=3 \times 2=6$	1
	d	Ratio of areas $=16: 6=8: 3$	1
25	a		2
	b	$\begin{aligned} & \text { Tower }=\mathrm{AB}, \text { Building }=\mathrm{CD} \quad \mathrm{AC}=\mathrm{BE}=20 \mathrm{~m} \\ & \mathrm{CD}=20 \sqrt{3}=34.6 \mathrm{~m} \end{aligned}$	1
	c	$\begin{aligned} & \mathrm{DE}=\mathrm{BE}=20 \mathrm{~m} \\ & \mathrm{AB}=\mathrm{CE} \\ & =\mathrm{CD}-\mathrm{DE}= \\ & =34.6-20 \\ & =14.6 \mathrm{~m} \end{aligned}$	2
26	a	Wage of $20^{\text {th }}$ Worker $=X_{20}=l+\frac{d}{2}=600+\frac{10}{2}=605$	2
	b	Median $=X_{23}=x_{20}+3 d=605+30=635$	3
27	a	$\begin{aligned} & X_{1}+x_{21}=140 \\ & x_{11}+x_{11}=140 \\ & X_{11}=70 \end{aligned}$	1
	b	Common difference $=6$ Sequence : $10,16,22$	2
	c	$S_{11}=11 * x_{6}=11 * 40=440$	1
	d	$\begin{aligned} & 20,25,30 \ldots \ldots . . \\ & \begin{array}{c} \mathrm{x} _6=20+5^{*} 5=45 \\ S_{11}=495 \end{array} \end{aligned}$	2
28	a	Diameter of the sphere $=$ side of the cube $=12 \mathrm{~cm}$ radius $=6 \mathrm{~cm}$	1
	b	Total Surface Area $=4 \pi r^{2}=144 \pi$	2

		$\text { Volume }=\frac{4}{3} \pi r^{3}=288 \pi$	
	c	$\begin{aligned} & \mathrm{H}=12 \mathrm{~cm}, \mathrm{r}=6 \mathrm{~cm} \\ & V=\frac{1}{3} \pi r^{2} h=\frac{1}{3} \pi \times 6^{2} \times 12=144 \pi \end{aligned}$	2
29	a	16	1
	b	2,6,18....	1
	c	4 -	1
	d	-1	1
	e	0	1
	f	0 -	1

