SSLC EXAMINATION MARCH – 2020 CHEMISTRY - Scoring Key

(English)

Q	Answer / Hint						Total Score				
SECTION A											
1-5	1	2	3	4	5		1 Each				
	14	Hydrogen(H ₂₎	Magnetic separation	Isoprene	22.4 L	1 Each					
			SECTION	В							
6	(a) Charles' Law										
	(b) Boyle's Law										
7	(a) (ii) $/ 1s^2 2s^2 2p^6 3s^2 3p^6 3d^5 4s^1$						2				
	(b) The configurations with <i>half filled d subshell</i> (<i>d</i> ⁵) <i>show greater stability.</i>										
8	(a) Tin										
	(b) Low melting metal										
	(a) CH ₃ -CH=CH ₂										
9											
	(b) CH ₃ -CH ₂ -C≡CH										
10	(a) Ethanol is manufactured by fermenting dilute molasses by adding yeast. Or (Ethanol is also manufactured from starchy substances like barley, rice, tapioca etc.)										
10	(b) <i>Poisonous substances are added to ethanol</i> meant for industrial purposes to prevent its misuse as beverage. This product is known as 'denatured spirit'.										
			SECTION	C							
	(a) Sodium ions and Chloride ions / Na ⁺ and Cl ⁻ ions.										
11	(b) Chlorine / Cl gas / Cl ₂										
	(c) $Na^+ + \bar{e} \rightarrow Na$										
	(a) Lime stone (CaCO ₃) and Coke (C)										
12	(b) CO / Carbon monoxide										
	(c) $CaO + SiO_2 \rightarrow CaSiO_3$										
	(a) 16 g										
13	(b) Number of mole molecules = Mass given in grams / Gram molecular mass of the compound = $160 \text{ g} / 16 \text{ g}$ = $10 \text{ mole molecules}$										
	(c) 80 g										
14	(a) Ammonium Chloride (NH ₄ Cl) and Calcium hydroxide (Ca(OH) ₂)										
	(b) It turns <i>blue</i>										
	(c) Basic nature										

	(a) Six / 6			1			
15	(b) 2,4						
	(c) 2,4 – Dimethylhexane						
		SECTION I)				
	(a) Mg , MgSO ₄ , Cu , CuSO ₄ , Salt bridge, Connecting wire with voltmeter connected.						
16	Volt metre Salt bridge Cu rod MgSO ₄						
	(b) Mg / Magnesium						
	(c) $Cu^{2+} + 2\bar{e} \rightarrow Cu$			1			
17	(a) BA						
	(b) AC						
	(c) (ii) and (iii) or Both reactants and products co exist. The rates of both forward and backward reaction are equal.						
	(a) 1s ² 2s ² 2p6 3s ² 3p ⁶ 3d ⁵ 4s ² or [Ar] 3d ⁵ 4s ²						
	(b) 25						
18	(c) Block = d , Period = 4						
	(d) The difference in energy between the outermost s subshell and the penultimate d subshell is very small. Under suitable conditions, the electrons in d subshell also take part in chemical reactions. Hence it shows variable oxidation states.						
19	(a) CH ₃ -CH—CH ₃ OH						
	(b) C ₃ H ₈ O						
	(c) CH_3 -O- CH_2 - CH_3 (CH_3 - CH_2 - O- CH_3) , Methoxy ethane						
20	A Reactants	B Products	C Name of Reaction				
	CH ₄ +Cl ₂	CH₃Cl +HCl	Substitution				
	CH ₄ +2O ₂	CO ₂ +2H ₂ O	Combustion	4	4		
	CH ₃ -CH ₂ -CH ₃	$CH_2=CH_2+CH_4$	Thermal Cracking				
	$CH \equiv CH + H_2$ $CH_2 = CH_2$ Addition						