SSLC MODEL EXAMINATION , MARCH - 2022
ME 127

| $\begin{aligned} & \text { Qn } \\ & \text { no } \end{aligned}$ |  | Key | Score |  |
| :---: | :---: | :---: | :---: | :---: |
| PART - I <br> Questions from 1 to 10 carries 1 score each |  |  |  |  |
| ( A ) |  |  |  |  |
| 1 | 6 , 10,14 |  | 1 | 1 |
| 2 | D |  | 1 | 1 |
| 3 | $(0,1)$ |  | 1 | 1 |
| 4 | $\frac{1}{2}$ |  | 1 | 1 |
| 5 | 1 : 4 |  | 1 | 1 |
| 6 | 3 |  | 1 | 1 |
| ( B ) |  |  |  |  |
| 7 | $\frac{3}{4}$ |  | 1 | 1 |
| 8 | 36 |  | 1 | 1 |
| 9 | $(3,1)$ |  | 1 | 1 |
| 10 | 4 |  | 1 | 1 |

PART - II
Questions from 11 to 18 carries 2 score each
(A)

| 11 | $7 \times 4^{\text {th }}$ term $=84$ | 1 | 2 |
| :---: | :--- | :--- | :---: |
|  | $4^{\text {th }}$ term $=\frac{84}{7}=12$ | 1 |  |
| 12 | (a) $\frac{3}{9}$ | 1 | 2 |
|  | (b) 3 |  |  |
| 13 | $\sin 40^{0}=\frac{B C}{20}$ | 1 | 2 |
| 14 | $\left(x+\frac{1}{2}\right)\left(x-\frac{1}{2}\right)$ | 1 |  |


| 15 | $\begin{aligned} & 24,25,26,27,28,30,32,33,36,38 \\ & \text { Median score }=\frac{28+30}{2}=29 \end{aligned}$ | 1 <br> 1 | 2 |
| :---: | :---: | :---: | :---: |
| (B) |  |  |  |
| 16 | $\begin{aligned} & \text { First term }=2+4=6 \\ & \text { Common difference }=4 \end{aligned}$ | 1 1 | 2 |
| 17 | Radius of the incircle $\times \frac{42}{2}=84$ $\text { Radius of the incircle }=\frac{84}{21}=4 \mathrm{~cm}$ | 1 1 | 2 |
| 18 | $(x-0)^{2}+(y-0)^{2}=5^{2} \quad$ or $\quad x^{2}+y^{2}=25$ | 2 | 2 |
| PART - IIIQuestions from 19 to 25 carries 4 score each |  |  |  |
| ( A$)$ |  |  |  |
| 19 | Construction | 4 | 4 |
| 20 | Length + Breadth $=30$ <br> If the length is taken as $15+x \mathrm{~cm}$ then breadth $=15-x \mathrm{~cm}$ $\begin{aligned} & (15+x)(15-x)=189 \\ & x=\sqrt{36}=6 \\ & \text { Length }=21 \mathrm{~cm} ., \text { Breadth }=9 \mathrm{~cm} \end{aligned}$ | 1 1 1 1 | 4 |
| 21 | (a) 5 cm <br> (b) Construction | 1 3 | 4 |
| 22 | (a) $(2+4-0,8+2-0)=(6,10)$ <br> (b) $\left(\frac{2+4}{2}, \frac{8+2}{2}\right)=(3,5)$ | 2 2 | 4 |
| 23 | (a) Diameter of the sphere $=6 \mathrm{~cm}$ <br> Volume of the sphere $=\frac{4}{3} \times \pi \times 3^{3}=36 \pi$ cubic.cm <br> (b) Volume of the hemisphere $=18 \pi$ cubic. cm | 1 2 1 | 4 |

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{(B)} \\
\hline 24 \& \begin{tabular}{l}
(a) Total number of pairs \(=10 \times 3=30\) \\
Number of favourable results \(=5 \times 2=10\) \\
Probability of both being odd \(=\frac{10}{30} \quad\) or \(\quad \frac{1}{3}\) \\
(b) \(1-\frac{10}{30}\) or \(\frac{2}{3}\)
\end{tabular} \& 1
1
1 \& 4 \\
\hline 25 \& \begin{tabular}{l}
(a) \(50^{0}\) \\
(b)
\[
\begin{aligned}
B C= \& 2 \times 7 \times \sin 50^{\circ} \\
\& =2 \times 7 \times 0.76=10.64 \mathrm{~cm}
\end{aligned}
\]
\end{tabular} \& 1
1
2 \& 4 \\
\hline \multicolumn{4}{|c|}{PART - IV
Questions from 26 to 32 carries 6 score each} \\
\hline \multicolumn{4}{|c|}{( A\()\)} \\
\hline 26 \& \begin{tabular}{l}
(a) Coordinates of \(\mathbf{B}=(9,2)\) \\
Coordinates of \(\mathrm{D}=(1,8)\) \\
(b) \(\sqrt{(9-1)^{2}+(8-2)^{2}}=10\) \\
(c) \(\left(\frac{1+9}{2}, \frac{8+2}{2}\right)=(5,5)\)
\end{tabular} \& 1
1
2
2 \& 6 \\
\hline 27 \& \begin{tabular}{l}
(a)
\[
\begin{aligned}
\& \angle A C B=70^{\circ} \\
\& \angle A D B=110^{\circ}
\end{aligned}
\] \\
(b) Construction
\end{tabular} \& 1
1
4 \& 6 \\
\hline 28 \& \begin{tabular}{l}
(a) \(10 \sqrt{2} \mathrm{~cm}\) \\
(b) \\
Height of the tower \(=10 \sqrt{3} \mathrm{~m}\)
\end{tabular} \& 1

5 \& 6 \\
\hline
\end{tabular}

| 29 | (a) Slant height of the cone $=30 \mathrm{~cm}$ Radius of the cone $=\frac{120}{360} \times 30=10 \mathrm{~cm}$ <br> (b) $\pi \times 10 \times 30=300 \pi$ sq.cm <br> (c) $\frac{240}{360} \times 30=20 \mathrm{~cm}$ | 1 2 2 | 6 |
| :---: | :---: | :---: | :---: |
| (B) |  |  |  |
| 30 | (a) $\frac{10 \times 11}{2}=55$ <br> (b) $\frac{n \times(n+1)}{2}=300$ $\begin{aligned} & n^{2}+n-600=0 \\ & n=\frac{-1 \pm \sqrt{1^{2}-4 \times 1 \times(-600)}}{2 \times 1} \\ & n=24 \end{aligned}$ | 2 1 1 1 1 | 6 |
| 31 | (a) $2^{2}-5 \times 2+6=0$ <br> (b) $(x-2)(x-3)$ <br> (c) 2,3 | 2 2 2 | 6 |
| 32 | (a) <br> (i) 18 <br> (ii) $\frac{700+710}{2}=705$ <br> (b)The daily wages between 700 and 800 are in arithmetic sequence $705+5 \times 10=755$ | 1 2 1 2 | 6 |
| PART - V <br> Questions from 33 to 35 carries 8 score each |  |  |  |
| 33 | (a) $3 n+1$ <br> (b) $20^{\text {th }}$ term $=3 \times 20+1=61$ <br> Smallest three digit number in the sequence $=3 \times 33+1=100$ | 2 1 1 |  |

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
(c) \(3 \times \frac{20 \times 21}{2}+1 \times 20=650\) \\
Sum of the first 20 terms of the arithmetic sequence with algebraic \\
form \(3 n+2=650+20=670\) \\
Difference between the sums \(=20\)
\end{tabular} \& 2

1
1 \& 8 \\

\hline 34 \& | (a) |
| :--- |
| (i) $90^{0}$ |
| (ii) POQB is cyclic. |
| $\angle O Q B=\angle O P B=90^{\circ}$ (opposite angles are supplementary) |
| (iii) $130{ }^{0}$ |
| (b) Construction . | \& 1

1
1
1
4 \& 8 \\

\hline 35 \& | (a) Construction . |
| :--- |
| (b) $\frac{5-2}{3-1}=\frac{3}{2}$ |
| (c) $\frac{y-2}{21-1}=\frac{3}{2}$ $\begin{aligned} & y-2=30 \\ & y=32 \end{aligned}$ | \& 3

2
1
1
1 \& 8 \\
\hline
\end{tabular}

