Class- X Mathematics Basic (241) Marking Scheme SQP-2022-23

Time Allowed: 3 Hours

Maximum Marks: 80

	Section A	
1	(c) a ³ b ²	1
2	(c) 13 km/hours	1
3	(b) -10	1
4	(b) Parallel.	1
5	(c) k = 4	1
6	(b) 12	1
7	(c) $\angle B = \angle D$	1
8	(b) 5 : 1	1
9	(a) 25°	1
10	(a) $\frac{2}{\sqrt{3}}$	1
11	(c) $\sqrt{3}$	1
12	(b) 0	1
13	(b) 14 : 11	1
14	(c) 16 : 9	1
15	(d) 147π cm ²	1
16	(c) 20	1
17	(b) 8	1
18	(a) $\frac{3}{26}$	1
19	(d) Assertion (A) is false but Reason (R) is true.	1

20	(a) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of Assertion (A).				
	Section B				
21	For a pair of linear equations to have infinitely many solutions : $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2} \implies \frac{k}{12} = \frac{3}{k} = \frac{k-3}{k}$				
	$\frac{k}{12} = \frac{3}{k} \Rightarrow k^2 = 36 \Rightarrow k = \pm 6$	1⁄2			
	Also, $\frac{3}{k} = \frac{k-3}{k} \Rightarrow k^2 - 6k = 0 \Rightarrow k = 0, 6.$ Therefore, the value of <i>k</i> , that satisfies both the conditions, is k = 6.	1/2 1/2			
22	(i) In $\triangle ABD$ and $\triangle CBE$ $\angle ADB = \angle CEB = 90^{\circ}$ $\angle ABD = \angle CBE$ (Common angle)	1⁄2			
	$P \Rightarrow \Delta ABD \sim \Delta CBE (AA criterion)$	1⁄2			
	A E (ii) In ΔPDC and ΔBEC ∠PDC = ∠BEC = 90° ∠PCD = ∠BCE (Common angle)	1⁄2			
	$\Rightarrow \Delta PDC \sim \Delta BEC$ (AA criterion)	1⁄2			
	[OR] In ΔABC, DE AC				
	BD/AD = BE/EC(i) (Using BPT) In ΔABE, DF AE	1⁄2			
	BD/AD = BF/FE(ii) (Using BPT) From (i) and (ii)	1/2 1/2			
	$B \xrightarrow{F} E C \qquad BD/AD = BE/EC = BF/FE$ $Thus, \frac{BF}{FE} = \frac{BE}{EC}$	1/2			
23	Let O be the centre of the concentric circle of radii 5 cm and 3 cm respectively. Let AB be a chord of the larger circle touching the smaller circle at P				
	$\left(\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	1⁄2			
	$OA^2 = OP^2 + AP^2 \Rightarrow 25 = 9 + AP^2$ $\Rightarrow AP^2 = 16 \Rightarrow AP = 4 \text{ cm}$	1/2 1/2			
	A = 2AP = 8 cm	72 1/2			
24	Now, $\frac{(1+\sin\theta)(1-\sin\theta)}{(1+\cos\theta)(1-\cos\theta)} = \frac{(1-\sin^2\theta)}{(1-\cos^2\theta)}$				
	$= \frac{\cos^2\theta}{\sin^2\theta} = \left(\frac{\cos\theta}{\sin\theta}\right)^2$				
	$= \cot^2 \theta$				
	$=\left(\frac{7}{8}\right)^2 = \frac{49}{64}$	1⁄2			

25	Perimeter of quadrant = $2r + \frac{1}{4} \times 2\pi r$	1⁄2
	$\Rightarrow \text{Perimeter} = 2 \times 14 + \frac{1}{2} \times \frac{22}{7} \times 14$	1/2
	⇒ Perimeter = 28 + 22 =28+22 = 50 cm	1
	[OR]	
	Area of the circle = Area of first circle + Area of second circle	
	$\Rightarrow \pi R^2 = \pi (r_1)^2 + \pi (r_1)^2$	1/2
	$\Rightarrow \pi R^2 = \pi (24)^2 + \pi (7)^2 \Rightarrow \pi R^2 = 576\pi + 49\pi$	1/2
	$\Rightarrow \pi R^2 = 625\pi \Rightarrow R^2 = 625 \Rightarrow R = 25$ Thus, diameter of the circle = 2R = 50 cm.	1
	Section C	
26	Let us assume to the contrary, that $\sqrt{5}$ is rational. Then we can find a and b ($\neq 0$) such	
20	that $\sqrt{5} = \frac{a}{b}$ (assuming that a and b are co-primes).	1
	So, $a = \sqrt{5}b \Rightarrow a^2 = 5b^2$	
	Here 5 is a prime number that divides a^2 then 5 divides a also (Using the theorem, if a is a prime number and if a divides p^2 , then a divides p, where a is a positive integer)	1⁄2
	Thus 5 is a factor of a Since 5 is a factor of a, we can write a = 5c (where c is a constant). Substituting a = 5c We get $(5c)^2 = 5b^2 \Rightarrow 5c^2 = b^2$	1⁄2
	This means 5 divides b^2 so 5 divides b also (Using the theorem, if a is a prime number and if a divides p^2 , then a divides p, where a is a positive integer). Hence a and b have at least 5 as a common factor.	1/2
	But this contradicts the fact that a and b are coprime. This is the contradiction to our assumption that p and q are co-primes.	
	So, $\sqrt{5}$ is not a rational number. Therefore, the $\sqrt{5}$ is irrational.	1⁄2
27	$6x^2 - 7x - 3 = 0 \Rightarrow 6x^2 - 9x + 2x - 3 = 0$	1/
	$\Rightarrow 3x(2x - 3) + 1(2x - 3) = 0 \Rightarrow (2x - 3)(3x + 1) = 0$ $\Rightarrow 2x - 3 = 0 \& 3x + 1 = 0$	1/2
	x = 3/2 & x = -1/3 Hence, the zeros of the quadratic polynomials are 3/2 and -1/3.	1⁄2
	For verification	
	Sum of zeros = $\frac{-\text{ coefficient of } x}{\text{ coefficient of } x^2}$ \Rightarrow 3/2 + (-1/3) = - (-7) / 6 \Rightarrow 7/6 = 7/6	1
	Product of roots = $\frac{\text{constant}}{\text{coefficient of } x^2}$ \Rightarrow 3/2 x (-1/3) = (-3) / 6 \Rightarrow -1/2 = -1/2	1
	Therefore, the relationship between zeros and their coefficients is verified.	
28	Let the fixed charge by Rs x and additional charge by Rs y per day Number of days for Latika = $6 = 2 + 4$	
	Hence, Charge $x + 4y = 22$	
	x = 22 - 4y(1) Number of days for Anand = 4 = 2 + 2	1/2
	Hence, Charge $x + 2y = 16$	
	$x = 16 - 2y \dots (2)$ On comparing equation (1) and (2), we get,	1/2

		1
	$22 - 4y = 16 - 2y \Rightarrow 2y = 6 \Rightarrow y = 3$ Substituting y = 3 in equation (1), we get,	1
	$x = 22 - 4$ (3) $\Rightarrow x = 22 - 12 \Rightarrow x = 10$ Therefore, fixed charge = Rs 10 and additional charge = Rs 3 per day	1
	[OR]	
	AB = 100 km. We know that, Distance = Speed × Time. AP - BP = $100 \Rightarrow 5x - 5y = 100 \Rightarrow x-y=20(i)$ AQ + BQ = $100 \Rightarrow x + y = 100(ii)$	1/2 1/2
	Adding equations (i) and (ii), we get, x - y + x + y = 20 +100 \Rightarrow 2x = 120 \Rightarrow x = 60	1
	Substituting x = 60 in equation (ii), we get, $60 + y = 100 \Rightarrow y = 40$	1
	Therefore, the speed of the first car is 60 km/hr and the speed of the second car is 40 km/hr.	
29	Since OT is perpendicular bisector of PQ. Therefore, PR=RQ=4 cm Now, OR = $\sqrt{\mathbf{OP}^2 - \mathbf{PR}^2} = \sqrt{5^2 - 4^2} = 3$ cm Now, $\angle TPR + \angle RPO = 90^\circ$ (::TPO=90°)	1/2 1/2
	R C R C R C C R C C C C C C C C	1/2 1/2
	So, $\frac{TP}{PO} = \frac{RP}{RG}$ $\Rightarrow \frac{TP}{5} = \frac{4}{3} \Rightarrow TP = \frac{20}{3} cm$	1/2 1/2
30	$LHS = \frac{\tan\theta}{1 - \cot\theta} + \frac{\cot\theta}{1 - \tan\theta} = \frac{\tan\theta}{1 - \frac{1}{\tan\theta}} + \frac{\frac{1}{\tan\theta}}{1 - \tan\theta}$	1/2
	$= \frac{\tan^2 \theta}{\tan \theta - 1} + \frac{1}{\tan \theta (1 - \tan \theta)}$ $= \frac{\tan^3 \theta - 1}{\tan^3 \theta - 1}$	1/2
	$= \frac{(\tan \theta - 1)(\tan^3 \theta + \tan \theta + 1)}{(\tan^3 \theta + \tan \theta + 1)}$	
	$\tan \theta (\tan \theta - 1)$	1⁄2
	$=\frac{(\tan^3\theta + \tan\theta + 1)}{\tan\theta}$	
	$= \tan\theta + 1 + \sec = 1 + \tan\theta + \sec\theta$	1/2
	$= 1 + \frac{\sin\theta}{\cos\theta} + \frac{\cos\theta}{\sin\theta}$	
	$= 1 + \frac{\sin^2\theta + \cos^2\theta}{\sin\theta\cos\theta}$	1/2
L		•

	$= 1 + \frac{1}{\sin \theta \cos \theta} = 1 + \sec \theta \csc \theta$	
	[OR]	1⁄2
	$\sin \theta + \cos \theta = \sqrt{3} \Rightarrow (\sin \theta + \cos \theta)^2 = 3$	
	$\Rightarrow \sin^2\theta + \cos^2\theta + 2\sin\theta\cos\theta = 3$	1⁄2
	$\Rightarrow 1 + 2\sin\theta\cos\theta = 3 \Rightarrow 1\sin\theta\cos\theta = 1$	1⁄2
	Now $\tan\theta + \cot\theta = \frac{\sin\theta}{\cos\theta} + \frac{\cos\theta}{\sin\theta}$	1⁄2
		1/2
	$= \frac{\sin^2\theta + \cos^2\theta}{\sin\theta\cos\theta}$	1/2
	$= \frac{1}{\sin\theta\cos\theta} = \frac{1}{1} = 1$	
		1⁄2
31	(i) $P(8) = \frac{5}{36}$	1
	(ii) $P(13) = \frac{0}{36} = 0$	1
	(iii) P(less than or equal to 12) = 1	1
	Section D	
32	Let the average speed of passenger train = $x \text{ km/h}$.	
	and the average speed of express train = $(x + 11)$ km/h	1/2
	As per given data, time taken by the express train to cover 132 km is 1 hour less than the passenger train to cover the same distance. Therefore,	, _
	$\frac{132}{x} - \frac{132}{x+11} = 1$	1
	$\Rightarrow \frac{132(x+11-x)}{x(x+11)} = 1 \Rightarrow \frac{132x11}{x(x+11)} = 1$	1⁄2
	$\Rightarrow 132 \times 11 = x(x+11) \Rightarrow x^2 + 11x - 1452 = 0$	
	$\Rightarrow x^2 + 44x - 33x - 1452 = 0$	1
	$\Rightarrow x (x + 44) - 33(x + 44) = 0 \Rightarrow (x + 44)(x - 33) = 0$	1
	$\Rightarrow x = -44, 33$	1⁄2
	As the speed cannot be negative, the speed of the passenger train will be 33 km/h and the speed of the express train will be $33 + 11 = 44$ km/h.	1⁄2
	[OR]	
	Let the speed of the stream be x km/hr So, the speed of the best in upstream $(18 - y) km/hr$	1/2
	So, the speed of the boat in upstream = $(18 - x) \text{ km/hr}$ & the speed of the boat in downstream = $(18 + x) \text{ km/hr}$	1/2
	ATQ, $\frac{\text{distance}}{\text{upstream speed}} - \frac{\text{distance}}{\text{downstream speed}} = 1$	/2
	$\Rightarrow \frac{24}{24} - \frac{24}{24} = 1$	1
	18 - x $18 + x$	

	F /	4 7	Г 40 : (15	A 1		T
		$\frac{1}{18+x} = 1 \implies 24$				1
	$\Rightarrow 24 \left[\frac{2x}{(18-x)(18+x)} \right] = 1 \Rightarrow 24 \left[\frac{2x}{(18-x)(18+x)} \right] = 1$					
	$\Rightarrow 48x = 324 - x^{2} \Rightarrow x^{2} + 48x - 324 = 0$					1
	$\Rightarrow (x + 54)(x - 6) = 0 \Rightarrow x = -54 \text{ or } 6$					1/2
		eam can never be	negative, the	speed of the stream is 6 km/hr.		1/2
33	Figure Given, To prove, constructions Proof					1⁄2 11⁄2 2
	Application					1
34			/olume of one	e conical depression = $\frac{1}{3} \times \pi r^2 h$	l	1⁄2
			$=\frac{1}{3}$	$x \frac{22}{7} x 0.5^2 x 1.4 \text{ cm}^3 = 0.366 \text{ cm}^3$	1 ³	1½
		١	Volume of 4 c	onical depression = $4 \times 0.366 c$	cm ³	
			= 1	.464 cm ³		1/2
		╷	Volume of cub	oidal box = L x B x H		1⁄2
		V V V V	=	15 x 10 x 3.5 cm ³ = 525 cm ³		1½
	Remaining volume of box = Volume of cuboidal box –					
		١	Volume of 4 c	onical depressions		1/2
			=	$525 \text{ cm}^3 - 1.464 \text{ cm}^3 = 523.5 \text{ cm}^3$	cm ³	1
			[OR]			
	30.cm	Let h	be height of	the cylinder, and r the common	radius of	
			ylinder and he	•	SA of	1/
		hemi	sphere	face area = CSA of cylinder + C	5A 01	1⁄2
		$45 \text{ m} = 2\pi \text{I}$	$rh + 2\pi r^2 = 2\pi$			2
	·······	= 2 >	x ²² / ₇ x 30 (145	+ 30) cm ²		1
		= 2 >	x $rac{22}{7}$ x 30 x 17	5 cm ²		1/2
			7 000 cm² = 3.3			1
	Γ					
35	Class Interval	Number of policy	holders (f)	Cumulative Frequency (cf)		
	Below 20	2		2		
	20-25	4		6		
	25-30	18		24		
	30-35	21		45		
	35-40	33		78		
	40-45	11		89		
	45-50 3 92					
	50-55 6 98					
	55-60 2 100					1
		<u> </u>				1

		$00 \Rightarrow n/2 = 50$, Therefore, median class = $35 - 40$,			
	Class size, $h = 5$, Lower limit of median class, $I = 35$,				
	frequency $f = 33$, cumulative frequency $cf = 45$				
	⇒Median = I + $\begin{bmatrix} \frac{n}{2} - cf \\ f \end{bmatrix}$ × h				
		$lian = 35 + \left[\frac{50 - 45}{33}\right] \times 5$	1½ 1		
	= 35 +	$-\frac{25}{33} = 35 + 0.76$			
	= 35.7	22	1		
		Section E			
	1	Since the production increases uniformly by a fixed number every year, the			
36		number of Cars manufactured in 1st, 2nd, 3rd,, years will form an AP.			
		So, $a + 3d = 1800 \& a + 7d = 2600$	1/2		
		So $d = 200 \& a = 1200$	1/2		
	2	$t_{12} = a + 11d \Rightarrow t_{30} = 1200 + 11 \times 200$	1/2		
		\Rightarrow t ₁₂ = 3400	1/2		
	3	$S_n = \frac{n}{2} [2a + (n-1)d] \Rightarrow S_{10} = \frac{10}{2} [2x \ 1200 + (10-1) \ 200]$	1/2		
		\Rightarrow S ₁₀ = $\frac{13}{2}$ [2 x 1200 + 9 x 200]	1/2		
		\Rightarrow S ₁₀ = $5 \times [2400 + 1800]$	$\frac{1}{1/2}$		
		\Rightarrow S ₁₀ = 5 x 4200 = 21000	1/2		
		[OR]	/2		
		Let in n years the production will reach to 31200			
		$S_n = \frac{n}{2} [2a + (n-1)d] = 31200 \Rightarrow \frac{n}{2} [2x \ 1200 + (n-1)200] = 31200$	1/2		
		$\Rightarrow \frac{n}{2} [2 \times 1200 + (n-1)200] = 31200 \Rightarrow n [12 + (n-1)] = 312$	1/2		
		$\Rightarrow n^2 + 11n - 312 = 0$	/2		
		\Rightarrow n ² + 24n - 13n - 312 = 0	1/2		
		\Rightarrow (n +24)(n -13) = 0			
		\Rightarrow n = 13 or – 24. As n can't be negative. So n = 13	1/2		
37	Case	Study – 2			

	Let A (0, b) be a point on the y – axis then AL = AP					
	$\Rightarrow \sqrt{(5-0)^2 + (10-b)^2} = \sqrt{(8-0)^2 + (6-b)^2}$					
		$\Rightarrow (5)^{2} + (10 - b)^{2} = (8)^{2} + (6 - b)^{2}$	1⁄2			
		$\Rightarrow 25 + 100 - 20b + b^2 = 64 + 36 - 12b + b^2 \Rightarrow 8b = 25 \Rightarrow b = \frac{25}{8}$	1⁄2			
		So, the coordinate on y axis is $\left(0, \frac{25}{8}\right)$	1⁄2			
38	Case	Study – 3				
	R C C					
	1	$1 \sin 60^\circ = \frac{PC}{PA} $				
		$\Rightarrow \frac{\sqrt{3}}{2} = \frac{18}{PA} \Rightarrow PA = 12\sqrt{3} m$	1⁄2			
	2	$\sin 30^\circ = \frac{PC}{PB}$	1⁄2			
		$\Rightarrow \frac{1}{2} = \frac{18}{PB} \Rightarrow PB = 36 \text{ m}$				
			1/2			
	3	$\tan 60^\circ = \frac{PC}{AC} \Rightarrow \sqrt{3} = \frac{18}{AC} \Rightarrow AC = 6\sqrt{3} m$	1			
		$\tan 30^\circ = \frac{PC}{CB} \Rightarrow \frac{1}{\sqrt{3}} = \frac{18}{CB} \Rightarrow CB = 18\sqrt{3} m$	1/2			
		Width AB = AC + CB = $6\sqrt{3} + 18\sqrt{3} = 24\sqrt{3}$ m	1/2			
		[OR]				
		$RB = PC = 18 \text{ m} \& PR = CB = 18 \sqrt{3} \text{ m}$	1⁄2			
		$\tan 30^\circ = \frac{QR}{PR} \Rightarrow \frac{1}{\sqrt{3}} = \frac{QR}{18\sqrt{3}} \Rightarrow QR = 18 \text{ m}$	1			
		QB = QR + RB = 18 + 18 = 36m. Hence height BQ is 36m	1/2			