Reg. No. :

Name :

FY-31

FIRST YEAR HIGHER SECONDARY EXAMINATION, JUNE 2022

Part – III

ELECTRONICS

Time : 2 Hours Cool-off time : 15 Minutes

Maximum : 60 Scores

General Instructions to Candidates :

- There is a 'Cool-off time' of 15 minutes in addition to the writing time.
- Use the 'Cool-off time' to get familiar with questions and to plan your answers.
- Read questions carefully before answering.
- Read the instructions carefully.
- Calculations, figures and graphs should be shown in the answer sheet itself.
- Malayalam version of the questions is also provided.
- Give equations wherever necessary.
- Electronic devices except non-programmable calculators are not allowed in the Examination Hall.

വിദ്യാർത്ഥികൾക്കുള്ള പൊതുനിർദ്ദേശങ്ങൾ :

- നിർദ്ദിഷ്ട സമയത്തിന് പുറമെ 15 മിനിറ്റ് 'കൂൾ ഓഫ് ടൈം' ഉണ്ടായിരിക്കും.
- 'കൂൾ ഓഫ് ടൈം' ചോദ്യങ്ങൾ പരിചയപ്പെടാനും ഉത്തരങ്ങൾ ആസൂത്രണം ചെയ്യാനും ഉപയോഗിക്കുക.
- ഉത്തരങ്ങൾ എഴുതുന്നതിന് മുമ്പ് ചോദ്യങ്ങൾ ശ്രദ്ധാപൂർവ്വം വായിക്കണം.
- നിർദ്ദേശങ്ങൾ മുഴുവനും ശ്രദ്ധാപൂർവ്വം വായിക്കണം.
- കണക്ക് കൂട്ടലുകൾ, ചിത്രങ്ങൾ, ഗ്രാഫുകൾ, എന്നിവ ഉത്തരപേപ്പറിൽ തന്നെ ഉണ്ടായിരിക്കണം.
- ചോദ്യങ്ങൾ മലയാളത്തിലും നല്ലിയിട്ടുണ്ട്.
- ആവശ്യമുള്ള സ്ഥലത്ത് സമവാക്യങ്ങൾ കൊടുക്കണം.
- പ്രോഗ്രാമുകൾ ചെയ്യാനാകാത്ത കാൽക്കുലേറ്ററുകൾ ഒഴികെയുള്ള ഒരു ഇലക്ട്രോണിക് ഉപകരണവും പരീക്ഷാഹാളിൽ ഉപയോഗിക്കുവാൻ പാടില്ല.

1. Select the symbol of inductor.

2. If V_m is the maximum value, the rms value of AC voltage is equal to

(a)
$$\frac{V_m}{2}$$
 (b) $\frac{V_m}{\pi}$

(c)
$$\frac{V_m}{\sqrt{2}}$$
 (d) $\frac{2V_m}{\pi}$

- 3. The band gap energy for germanium is _____.
 - (a) 0.7 eV (b) 1.1 eV
 - (c) 0.3 eV (d) 0.8 eV

4. The cut in voltage of silicon diode is _____. (a) 0.3 V (b) 1.1 V

(c) 0.7 V (d) 1 V

5. From the following values select the one which may possibly be the current gain of a transistor in common base configuration.

- (a) 19 (b) 29
- (c) 0.8 (d) 1

6. Select the photosensor from the following :

- (a) Solar cell (b) LED
- (c) LCD (d) Thermistor

1 മുതൽ 10 വരെയുള്ള എല്ലാ ചോദ്യങ്ങൾക്കും ഉത്തരമെഴുതുക. 1 സ്കോർ വീതം.

 $(10 \times 1 = 10)$

2. പരമാവധി മൂല്യം $\rm V_m$ ആണെങ്കിൽ AC വോൾട്ടേജിന്റെ $\,\rm rms$ മൂല്യം _____ ആകുന്നു.

(a)
$$\frac{V_m}{2}$$
 (b) $\frac{V_m}{\pi}$
(c) $\frac{V_m}{\sqrt{2}}$ (d) $\frac{2V_m}{\pi}$

(a)
$$0.7 \text{ eV}$$
 (b) 1.1 eV

(c) 0.3 eV (d) 0.8 eV

4.	സില	ചിക്കൺ ഡയോഡിന്റെ കട്ട് ഇൻ വോൾട്ട് _.		_ ആകുന്നു.
	(a)	0.3 V	(b)	1.1 V
	(c)	0.7 V	(d)	1 V

 താഴെ പറയുന്നവയിൽ ഒരു കോമൺ ബേസ് ട്രാൻസിസ്റ്ററിന്റെ കറന്റ് ഗയിൻ ആകാൻ സാധൃതയുള്ള മൂല്യം ഏതാണ്.

3

(a)	19	(b)	29
(c)	0.8	(d)	1

6. താഴെ പറയുന്നവയിൽ ഫോട്ടോ സെൻസർ ഏതാണ്?

(a)	സോളാർ സെൽ	(b)	LED

(c) LCD (d) തെർമിസ്റ്റർ

7. For a half wave rectifier the peak inverse voltage is _____.

(a)
$$V_m$$
 (b) $2V_m$
(c) $\frac{V_m}{2}$ (d) $\frac{V_m}{\pi}$

8. Which transistor configuration is used for amplification ?

- (a) CC configuration (b) CE configuration
- (c) CB configuration (d) None of these

9.	The	resonant frequency of a LC tank circuit is		·
	(a)	$2\pi\sqrt{LC}$	(b)	$\frac{1}{2\pi RC}$
	(c)	$\frac{1}{2\pi LC}$	(d)	$\frac{1}{2\pi\sqrt{LC}}$

10.	The	binary equivalent of the decimal '7' is _		_ ·
	(a)	100	(b)	101
	(c)	110	(d)	111

Answer any 6 questions from 11 to 19. Each carries 2 Scores.	$(6 \times 2 = 12)$
--	---------------------

- Classify the following into passive and active components : Transistor, Capacitor, Inductor, Diode, Resistor, IC
- 12. What do you mean by doping in semiconductors ?
- 13. What do you mean by depletion layer in a PN junction ?
- 14. Draw the symbols of NPN and PNP transistors marking all the terminals.

7. ഒരു ഹാഫ് വേവ് റെക്ലിഫയറിന്റെ പീക് ഇൻവേഴ്സ് വോൾട്ടേജ് _____ ആകുന്നു.

(a)
$$V_m$$
 (b) $2V_m$
V V

(c)
$$\frac{\mathbf{v}_{\mathrm{m}}}{2}$$
 (d) $\frac{\mathbf{v}_{\mathrm{m}}}{\pi}$

 ഏതു ട്രാൻസിസ്റ്റർ ക്രമീകരണമാണ് അതിനെ ആംപ്ലിഫയർ ആയി ഉപയോഗിക്കാൻ സഹായിക്കുന്നത്?

- (a) CC ക്രമീകരണം (b) CE ക്രമീകരണം
- (c) CB ക്രമീകരണം (d) ഇവയൊന്നുമല്ല

9. ഒരു LC ടാങ്ക് സെർക്കീട്ടിന്റെ റെസൊണന്റ് ഫ്രീക്വൻസി _____ ആകുന്നു.

(a)	$2\pi\sqrt{LC}$	(b)	$\frac{1}{2\pi RC}$
(c)	$\frac{1}{2\pi LC}$	(d)	$\frac{1}{2\pi\sqrt{LC}}$

10.	ʻ7' n	എന്ന ഡെസിമൽ സംഖൃക്കു തുലൃമായ ഒെ	റിസംഖൃ ആകുന്നു.	
	(a)	100	(b)	101
	(c)	110	(d)	111

11 മുതൽ 19 വരെയുള്ള ചോദ്യങ്ങളിൽ ഏതെങ്കിലും 6 എണ്ണത്തിന് ഉത്തരമെഴുതുക. 2 സ്കോർ വീതം. (6 × 2 = 12)

- താഴെ പറയുന്നവയിൽ പാസ്സീവ്, ആക്ടീവ് കമ്പോണന്റുകൾ തരം തിരിക്കുക. ട്രാൻസിസ്റ്റർ, കപ്പാസിറ്റർ, ഇൻഡക്ടർ, ഡയോഡ്, റസിസ്റ്റർ, ഐ.സി.
- 12. സെമികണ്ടക്ടറുകളിൽ ഡോപിംഗ് എന്നാൽ എന്താണ്?

13. PN ജംഗ്ഷനിൽ ഡിപ്ലീഷൻ പാളി എന്നത് എന്താണ്?

14. NPN, PNP ട്രാൻസിസ്റ്ററുകളുടെ സിമ്പലുകൾ വരച്ച് എല്ലാ ടെർമിനലുകളും അടയാളപ്പെടുത്തുക.

- 15. Draw the symbol and any two applications of LED.
- 16. What is the basic principle of a solar cell? Give its symbol.
- 17. (a) Give an expression for ripple factor in connection with rectifiers. (1)
 - (b) What is the value of ripple factor for a half wave rectifier ? (1)
- 18. What do you mean by damped oscillations?
- 19. What are the two conditions for sustained oscillations which are called Barkhausen criterion ?

Answer any 6 questions from 20 to 29. Each carries 3 Scores. $(6 \times 3 = 18)$

- 20. Find the Colour Code of the resistor whose value is 1 k Ω with a tolerance of $\pm 10\%$.
- 21. If 'n' number of resistors each of value 'R' Ω are connected (a) in series and (b) in parallel. Find the effective resistances in each case.
- 22. Differentiate conductors, insulators and semiconductors based on energy band diagram.

23.	(a)	What should be done to forward bias a PN junction ?	(2)
	(b)	What happens to the charge-carriers (free electrons and holes) when a PN junction is forward biased ?	(1)
24.	(a)	Draw the forward bias characteristics of a PN junction diode.	(2)

- (b) What do you mean by the cut in voltage of a diode ? (1)
- FY-31

- 15. LED യുടെ സിമ്പലും ഏതെങ്കിലും രണ്ട് ഉപയോഗങ്ങളും സൂചിപ്പിക്കുക.
- 16. ഒരു സോളാർ സെല്പിന്റെ അടിസ്ഥാന തത്വം എന്ത് ? അതിന്റെ സിമ്പൽ വരയ്ക്കുക.
- 17. (a) റെക്ലിഫയറിലെ റിപ്പിൾ ഫാക്ടറിന്റെ സമവാകൃം എന്ത് ? (1)
 - (b) ഒരു ഹാഫ് വേവ് റെക്ലിഫയറിന്റെ റിപ്പിൾ ഫാക്ടർ എത്ര ആകുന്നു ? (1)
- 18. ഡാംപ്ഡ് ഓസിലേഷനുകൾ എന്നാൽ എന്താണ്?
- 19. ബാർക് ഹ്യൂസൻ വ്യവസ്ഥകൾ എന്നു വിളിക്കുപ്പെടുന്ന, ഓസ്സിലേഷനുകൾ സുസ്ഥിരമാകാൻ വേണ്ട വ്യവസ്ഥകൾ എന്തെല്ലാം ?

20 മുതൽ 29 വരെയുള്ള ചോദൃങ്ങളിൽ ഏതെങ്കിലും 6 എണ്ണത്തിന് ഉത്തരമെഴുതുക. 3 സ്കോർ വീതം. (6 × 3 = 18)

- $20. 1 \ \mathrm{k}\Omega$ മൂല്യവും $\pm 10\%$ ടോളറൻസും ഉള്ള ഒരു റെസിസ്റ്ററിന്റെ കളർ കോഡ് എഴുതുക.
- 'R'Ω മൂല്യം വീതമുള്ള 'n' എണ്ണം റസിസ്റ്ററുകൾ (a) സീരീസ് രീതിയിൽ (b) പാരലൽ രീതിയിൽ ഘടിപ്പിച്ചിരിക്കുന്നു. ഈ രണ്ടു ഘട്ടങ്ങളിലുമുള്ള എഫക്ലീവ് റസിസ്റ്റൻസുകൾ കണ്ടുപിടിക്കുക.
- 22. കണ്ടക്ടറുകൾ, ഇൻസുലേറ്ററുകൾ, സെമികണ്ടക്ടറുകൾ എന്നിവയെ എനർജി ബാൻഡ് ചിത്രം ഉപയോഗിച്ച് താരതമ്യം ചെയ്യുക.
- 23. (a) ഒരു PN ജംഗ്ഷനെ ഫോർവേർഡ് ബയസ് ചെയ്യുന്നതെങ്ങനെ ? (2)
 - (b) ഒരു PN ജംഗ്ഷനെ ഫോർവേർഡ് ബയസ് ചെയ്യുമ്പോൾ അതിലെ ചാർജ് കാരിയറുകൾക്ക് (ഇലക്ട്രോണുകൾക്കും ഹോളുകൾക്കും) എന്ത് സംഭവിക്കുന്നു ? (1)
- 24. (a) ഒരു PN ജംഗ്ഷൻ ഡയോഡിന്റെ ഫോർവേഡ് ബയസ് കാരക്ടറിസ്റ്റിക് വരയ്ക്കുക. (2)
 (b) ഒരു ഡയോഡിന്റെ കട്ട്-ഇൻ വോൾട്ട് എന്നാൽ എന്താണ് ? (1)
- FY-31

- 25. Compare emitter, base and collector regions of a transistor based on doping concentration and physical size.
- 26. (a) Draw the inverting configuration of Op-Amp. (2)
 - (b) Give an expression for the gain of inverting configuration of Op-Amp. (1)
- 27. What are the three main characteristics of an Op-Amp?
- 28. Give the symbol, truth table and the output expression of an AND gate.
- 29. Draw a connection diagram to show how a galvanometer can be converted into a voltmeter.

	Ans	wer any 5 questions from 30 to 37. Each carries 4 Scores.	$(5\times 4=20)$
30.	Thre		
	(a)	The effective resistance of the circuit.	(2)
	(b)	The total current through the circuit.	(2)
31.	An A	AC signal is represented by the equation $V = 141 \sin 314 t$.	
	Find		
	(a)	The maximum value of voltage.	(1)
	(b)	The rms value of voltage.	(1)
	(c)	The frequency of the signal.	(2)

- 32. With a neat circuit diagram explain the working of a NPN transistor. Thus show that $I_E = I_B + I_C$
- FY-31

- 25. വലുപ്പം, ഡോപിംഗ് അളവ് എന്നിവയുടെ അടിസ്ഥാനത്തിൽ ട്രാൻസിസ്റ്ററുകളെ എമിറ്റർ, ബേസ്, കളക്ടർ മേഖലകൾ താരതമ്യം ചെയ്യുക.
- 26. (a) ഒരു ഓപ്-ആംപിന്റെ ഇൻവെർട്ടിംഗ് ക്രിമീകരണം വരയ്ക്കുക. (2)
 - (b) ഇൻവെർട്ടിംഗ് ക്രിമീകരണത്തിലുള്ള ഓപ്-ആംപിന്റെ ഗെയിൻ കണക്കാക്കുന്നതിനുള്ള സമവാകൃം എഴുതുക. (1)
- 27. ഒരു ഓപ്-ആംപിന്റെ പ്രധാന മൂന്ന് സവിശേഷതകൾ എന്തെല്ലാം ?
- 28. ഒരു ആൻഡ് ഗേറ്റിന്റെ സിംപൽ, ട്രൂത്ത് ടേമ്പിൾ ഔട്ട്പുട്ട് സമവാക്യം എന്നിവ സൂചിപ്പിക്കുക.
- 29. ഒരു ഗാൽവനോ മീറ്ററിനെ വോൾട്ട്മീറ്ററായി പരിവർത്തിപ്പിക്കുന്നതിനുള്ള സെർക്കീട്ടിന്റെ ഡയഗ്രം വരയ്ക്കുക.

30 മുതൽ 37 വരെയുള്ള ചോദൃങ്ങളിൽ ഏതെങ്കിലും 5 എണ്ണത്തിന് ഉത്തരമെഴുതുക. 4 സ്കോർ വീതം. (5 × 4 = 20)

- 30. സീരീസിൽ ഘടിപ്പിച്ചിരിക്കുന്ന മൂന്ന് 100 Ω റസിസ്റ്ററുകളുള്ള സെർക്കീട്ടിൽ 300 V പവർസപ്പൈ നൽകുകയാണെങ്കിൽ.
 - (a) സെർക്കീട്ടിന്റെ എഫക്ടീവ് റസിസ്റ്റൻസ് എത്രയാണ്. (2)
 - (b) സെർക്കീട്ടിലൂടെയുള്ള ആകെ കറന്റ് എത്ര ? (2)
- 31. ഒരു AC സിഗ്നലിനെ V = 141 sin 314 t എന്ന സമവാകൃം കൊണ്ട് സൂചിപ്പിച്ചിരിക്കുന്നു എങ്കിൽ
 - (a) പരമാവധി വോൾട്ടേജ് മൂല്യം എത്ര ?
 (1)

 (b) വോൾട്ടേജിന്റെ rms മൂല്യം എത്ര ?
 (1)
 - (c) സിഗ്നലിന്റെ ഫ്രീക്വൻസി എത്ര ? (2)
- 32. ഒരു NPN ട്രാൻസിസ്റ്ററിന്റെ പ്രവർത്തനം സെർക്കീട്ടിന്റെ സഹായത്തോടെ വിശദീകരിക്കുക.
 - $I_E = I_B + I_C$ എന്നത് വിശദമാക്കുക.

33.	(a)	Draw the circuit diagram, input and output waveforms of a half wave rectifier.	(2)
	(b)	Explain its working.	(2)
34.	(a)	Draw a circuit diagram of a rectifier with two diodes and a centre-tap transformer.	
		Show its input and output waveforms.	(3)
	(b)	What is the peak inverse voltage of a centre-tap full wave rectifier ?	(1)
35.	(a)	Draw a neat circuit diagram of a RC phase shift oscillator.	(2)
	(b)	What are the functions of RC sections in this circuit ?	(2)
36.	(a)	Why do we call NAND gate and NOR gate as universal gates ?	(1)
	(b)	Draw the symbol, output expression and truth table of a NAND gate.	(3)
37.	(a)	How does an 'XOR' gate differs from 'OR' gate in terms of their outputs ?	(2)
	(b)	Draw the symbol and output expression of an XOR gate.	(2)

33.	(a)	ഒരു ഹാഫ്വേവ് റെക്ട്രിഫയറിന്റെ ചിത്രം വരയ്ക്കുക. അതിന്റെ ഇൻപുട്ട്, ഔട്ട്പുട്ട്	
		വേവ്ഫോമുകളും വരയ്ക്കുക.	(2)
	(b)	ഇതിന്റെ പ്രവർത്തനം വിശദമാക്കുക.	(2)
34.	(a)	രണ്ട് ഡയോഡുകളും ഒരു സെന്റർ-ടാപ് ട്രാൻസ്ഫോർമറും ഉപയോഗിച്ച്	•
		ഉണ്ടാക്കാവുന്ന ഫുൾ വേവ് റെക്ടിഫയറിന്റെ സെർക്കീട്ട് വരയ്ക്കുക. അതിന്റെ	
		ഇൻപുട്ട്, ഔട്ട്പുട്ട് വേവ്ഫോമുകളും കാണിക്കുക.	(3)
	(b)	ഒരു സെന്റർ-ടാപ് ഫുൾ-വേവ് റെക്ട്രിഫയറിന്റെ പീക്-ഇൻവേഴ്സ് വോൾട്ടേജ്	
		എത്രയാണ്?	(1)
35.	(a)	ഒരു RC ഫേസ് ഷിഫ്റ്റ് ഓസിലേറ്ററിന്റെ സെർക്കീറ്റ് ചിത്രം വരയ്ക്കുക.	(2)
	(b)	ഈ സെർക്കീട്ടിലെ RC മേഖലകളുടെ ധർമ്മം എന്ത് ?	(2)
36.	(a)	NOR ഗേറ്റ്, NAND ഗേറ്റ് എന്നിവയെ നാം യൂണിവേഴ്സൽ ഗേറ്റുകൾ എന്നു	
		വിളിക്കുന്നത് എന്തുകൊണ്ട് ?	(1)
	(b)	ഒരു NAND ഗേറ്റിന്റെ സിമ്പൽ, ഔട്ട്പുട്ട് സമവാക്യം, ട്രൂത്ത്ടേബിൾ എന്നിവ	
		വരയ്ക്കുക.	(3)
37.	(a)	ഔട്ട്പുട്ടുകളുടെ അടിസ്ഥാനത്തിൽ ഒരു 'XOR' ഗേറ്റ് 'OR' ഗേറ്റുമായി എങ്ങനെ)

(b) ഒരു XOR ഗേറ്റിന്റെ സിമ്പൽ, ഔട്ട്പുട്ട് സമവാകൃം എന്നിവ സൂചിപ്പിക്കുക. (2)

(2)

FY-31

വൃത്യാസപ്പെട്ടിരിക്കുന്നു ?

11