Model Quetion Paper

	11th Standard				Date: 07-Sep-19		
				Down No.			
	AAAA	SKV MATRIC HR SE	C. SCHOOL, KOLUNDAMPET -	60662000			
	MATHEMATICS						
	Exam Time : 03:00:00 Hrs Total Marks : 90 PART - I 20 x 1 = 20						
					2	$0 \times 1 = 20$	
	swer All Questions:-	h a d) and f= (f(1 a) (4 b) (2	(a) (2 d) (2 d)). Then f is				
1)	1) Let X={1,2,3,4}, Y={a,b,c,d} and f={f(1,a),(4,b),(2,c),(3,d),(2,d)}. Then f is (a) an one-to-one function (b) an onto function (c) a function which is not one-to-one (d) not a function						
2)	The shaded region in the adjoining diagram represents.						
2)	The shaded region in the	ie aujoining diagram represe	nts.				
	(a) A\B	(b) A	(c) B'	(d) B\A			
3)	$Let \ R \ be \ the \ set \ of \ all \ real \ numbers. \ Consider \ the \ following \ subsets \ of \ the \ plane \ R \ x \ R : \ S = \{(x, y) : y = x + 1 \ and \ 0 < x < 2\} \ and \ set \$						
	$T = \{(x,y) : x - y \text{ is an integer}\}$ Then which of the following is true?						
	(a) T is an equivalence in	relation but S is (b) Neither S	nor T is an (c) Both S and T are	(d) is an equi	valence relation	ı but T is	
	not an equivalence relation	on equivalence re	elation equivalence relation	not an equivalen	nce relation.		
4) Let $X = \{1, 2, 3, 4\}$ and $R = \{(1, 1), (1, 2), (1, 3), (2, 2), (3, 3), (2, 1), (3, 1), (1, 4), (4, 1)\}$. Then R is							
	(a) reflexive	(b) symmetric	(c) transitive	(d) equivale	nce		
5)	If 3 is the logarithm of	343 then the base is					
	(a) 5	(b) 7	(c) 6	(d) 9			
6)	The equation whose roots are numerically equal but opposite in sign to the roots $3x^2-5x-7=0$ is						
	(a) $3x^2-5x-7=0$ (b) $3x^2+5x-7=0$ (c) $3x^2-5x+7=0$ (d) $3x^2+x-7$						
7)	The value of log ₃ 11.lo	g ₁₁ 13.log ₁₃ 15log ₁₅ 27.log ₂₇	81 is				
	(a) 1	(b) 2	(c) 3	(d) 4			
8)	If $\cos 28^0 + \sin 28^0 = k^3$, the	nen $\cos 17^0$ is equal to					
	(a) $\frac{k^3}{\sqrt{2}}$	(b) $-\frac{k^3}{\sqrt{2}}$	(c) $\pm \frac{k^3}{\sqrt{2}}$	(d) $-\frac{k^3}{\sqrt{3}}$			
0)	V -	V-	$\sqrt{2}$	$\sqrt{3}$			
9)	Which of the following	g is not true?			1		
	(a) $\sin\theta = -\frac{3}{4}$	(b) $\cos \theta = -1$	(c) tan <i>θ</i> =25	(d) sec	$\theta = \frac{1}{4}$		
10)	$\frac{\cos 6x + 6\cos 4x + 15\cos 2x + 1}{\cos 5x + 5\cos 3x + 10\cos x}$	0 equal to					
	$\cos 5x + 5\cos 3x + 10\cos x$ (a) $\cos 2x$	(b) cosx	(c) cos3x	(d) 2cosx	•		
11)	In \triangle ABC, $\hat{C} = 90^{\circ}$ then	` /	(0) 000011	(a) 2005.1	•		
,	(a) 2R sinB	(b) 2 sinB	(c) 0	(d) 2a sinB			
12)	Γhe sum of the digits at the 10 th place of all numbers formed with the help of 2, 4, 5, 7 taken all at a time is						
12)	(a) 432	(b) 108	(c) 36	(d) 1			
13)		olygon having 44 diagonals i	` '	(4)	~		
,	(a) 4	(b) 4!	(c) 11	(d) 22			
14)	The product of first n odd natural numbers equals						
1.)			(.) n C P				
	(a) ${}^{2n}C_n \times {}^nP_n$	(b) $\left(\frac{1}{2}\right)^n \frac{C}{2n} \frac{P}{n \times n}$	(c) $\left(\frac{1}{4}\right)^n \times \frac{C}{n} \times \frac{P}{n}$	((d) ${}^{n}C_{n} \times {}^{n}P_{n}$		
15)							
10)		The nth term of the sequence 1, 2, 4, 7, 11, is $n(n+1)(n+2)$			$n^2 - n + 2$		
	(a) $n + 3n^2 + 2n$	(b) $n_3-3n +3n$	(c) $\frac{n(n+1)(n+2)}{3}$	(d	$\frac{n^2-n+2}{2}$		
16)	The value of $1 - \frac{1}{2} \left(\frac{2}{3}\right) + \frac{1}{3} \left(\frac{2}{3}\right)^2 - \frac{1}{4} \left(\frac{2}{3}\right)^2 + \dots is$						
	(a) $log\left(\frac{5}{3}\right)$	(b) $\frac{3}{2}log\left(\frac{5}{3}\right)$	(c) $\frac{5}{3}log\left(\frac{5}{3}\right)$	(d) $\frac{2}{3}log$	$\left(\frac{2}{3}\right)$		
17) They value of $1 - \frac{1}{2}(\frac{3}{4}) + \frac{1}{3}(\frac{3}{4})^2 - \frac{1}{4}(\frac{3}{4})^3 + \dots$ is:							
	R(xo)cesslog (na)th: 15%	(b) $\frac{4}{3}log(\frac{7}{4})$	(c) $\frac{1}{3}log(\frac{7}{4})$	(d) $\frac{4}{3}log$	$g(\frac{4}{7})$		

- 18) Equation of the straight line that forms an isosceles triangle with coordinate axes in the I-quadrant with perimeter $4 + 2\sqrt{2}$ is
 - (a) x+y+2=0
- (b) x+y-2=0
- (c) $x + y \sqrt{2} = 0$
- 19) Equation of the straight line perpendicular to the line x y + 5 = 0, through the point of intersection the y-axis and the given
 - (a) x-y-5=0
- (b) x+v-5=0
- (c) x+y+5=0
- (d) x+y+10=0
- 20) If one of the lines given by $6x^2 xy + 4cy^2 = 0$ is 3x + 4y = 0, then c equals to

(d) 1

PART - II

 $7 \times 2 = 14$

Answer Any Seven And Compulsory Question is 30:-

- 21) State whether the following sets are finite or infinite.
 - $\{x \in N: x \text{ is a rational number}\}\$
- 22) State whether the following relations are functions or not. If it is a function check for one-to-oneness and ontoness. If it is not a function state why?

If $A = \{a,b,c\}$ and $f = \{(a,c) (b,c) (c,b)\} : (f : A \rightarrow A)$.

- 23) Prove log a+log a²+log a³+... logaⁿ = $\frac{n(n+1)}{2}loga$
- 24) Show that $\frac{(\cos\theta \cos 3\theta)(\sin 8\theta + \sin 2\theta)}{(\sin 5\theta \sin \theta)(\cos 4\theta \cos 6\theta)} = 1$
- 25) Find the degree measure corresponding to the following radian measure; $\frac{10\pi}{\sigma}$
- 26) How many three-digit odd numbers can be formed using the digits 0, 1, 2, 3, 4, 5? if Repetition of digits is not allowed
- 27) A student appears in an objective test which contain 5 multiple choice questions. Each question has four choices out of which one correct answer.
 - (i) What is the maximum number of different answers can the students give?
 - (ii) How will the answer change if each question may have more than one correct answers?
- 28) Compute 102⁴
- 29) Write the nth term of the following sequences 6,10,4,12,2,14,0,16,-2...
- 30) Find the value of a for which the straight lines x + y 4 = 0, 3x + 2 = 0 and x y + 3a = 0 are concurrent.

PART - III $7 \times 3 = 21$

Answer All Questions and Compulsory Question is 40

31) By taking suitable sets A, B, C, verify the following results:

$$A \times (B \cap C) = (A \times B) \cap (A \times C)$$

32) Consider the functions:

i)
$$f(x) = x^2$$
,

ii)
$$f(x) = \frac{1}{2}x^2$$
,

iii)
$$f(x) = 2x^2$$

- 33) Simplify $\frac{1}{3-\sqrt{8}} \frac{1}{\sqrt{8}-\sqrt{7}} + \frac{1}{\sqrt{7}-\sqrt{6}} \frac{1}{\sqrt{6}-\sqrt{5}} + \frac{1}{\sqrt{5}-2}$
- Find all values of x for which $\frac{x^3(x-1)}{x-2} > 0$.
- 35) if a cos θ -b sin θ = C Show that a sin θ +b cos θ = $\pm \sqrt{a^2 + b^2 c^2}$
- 36) If $\cos(\alpha \beta) + \cos(\beta \gamma) + \cos(\gamma \alpha) = \frac{-3}{2}$ then prove that $\cos\alpha + \cos\beta + \cos\gamma = \sin\alpha + \sin\beta + \sin\gamma = 0$
- 37) Prove that ${}^{35}C_5 + \sum_{r=0}^{4} {}^{(39-r)}C_4 = {}^{40}C_5$
- Find the Constant term of $\left(2x^3 \frac{1}{3x^2}\right)^5$
- Write the first 4 terms of the logarithmic series of $\log \left(\frac{1-2x}{1+2x} \right)$
- 40) Find the value of λ for which the equation $12x^2-10xy+2y^2+11x$ 5y+ λ =0 represents a pair of straight lines.

PART- III Processing math: 15%

41) a) Discuss the following relations for reflexivity, symmetricity and transitivity:

On the set of natural numbers, the relation R is defined by "xRy if x + 2y = 1".

(OR

b) Show that the statement, "if f and gof are one-to-one, then g is one to-one" is not true.

42) a) Solve: $log_2 x - 3log_{\frac{1}{2}} x = 6$

(OR)

b) Resolve the following rational expressions into partial fractions.

$$\frac{x^2 + 2x + 1}{x^2 + 5x + 6}$$

43) a) Prove that $\frac{\sin x + \sin 3 + \sin 5x + \sin 7x}{\cos x + \cos 3x + \cos 5x + \cos 7x} = \tan 4x$

(OR)

b) Find the values of other five trigonometric functions for the following $\tan \theta = -2$, θ lies in the II quadrant

44) a) Prove that for any a and b, $-\sqrt{a^2 + b^2} \le a \sin \theta + b \cos \theta \le \sqrt{a^2 + b^2}$

(OR)

b) In a triangle ABC, prove that $\frac{a^2+b^2}{a^2+c^2} = \frac{1+\cos(A-B)\cos C}{1+\cos(A-C)\cos B}$

- 45) a) Count the numbers between 999 and 10000 subject to the condition that there are
 - (i) no restriction.
 - (ii) no digit is repeated.
 - (iii) at least one of the digits is repeated.

(OR)

b) By the principle of mathematical induction, prove that for $n \ge 1$

$$1 \cdot 2 + 2 \cdot 3 + \ldots + n(n+1) = \frac{n(n+1)(n+2)}{3}$$

46) a) Find the value of n if the sum to n terms of the series $\sqrt{3} + \sqrt{75} + \sqrt{243} + \dots$ is $435\sqrt{3}$.

(OR

b) If p - q is small compared to either p or q, then show that $n\sqrt{\frac{p}{q}} = \frac{(n+1)p + (n-1)q}{(n-1)p + (n+1)q}$

Hen e find $8\sqrt{\frac{15}{16}}$

47) a) If θ is a parameter, find the equation of the locus of a moving point, whose coordinates are $x=a\cos^3$, $y=a\sin^3\theta$.

(OR)

- b) Find the distance between the parallel lines
- (i) 12x + 5y = 7 and 12x + 5y + 7 = 0.
- (ii) 3x 4y + 5 = 0 and 6x 8y 15 = 0.

All the

Best!!!

Created by

Principal MANI N M.Sc., B.Ed,

PG Asst. RANJITH R M.Sc., B.Ed.,
