PATTUKKOTTAI-PALANIAPPAN-MATHS

MATHS QUARTERLY MODEL EXAM -2022-23

PART-I

TOTAL MARKS:90

CLASS 12 TIME:3Hrs

5 | 2 2 H ma

12. If $\sin^{-1} x = 2 \sin^{-1} \alpha$ has a solution, then

(1)
$$|\alpha| \leq \frac{1}{\sqrt{2}}$$
 (2) $|\alpha| \geq \frac{1}{\sqrt{2}}$ (3) $|\alpha| < \frac{1}{\sqrt{2}}$ (4) $|\alpha| > \frac{1}{\sqrt{2}}$
13. The area of quadrilateral formed with foci of the hyperbolas $\frac{x^2}{a^2} \frac{y^2}{b^2} + 1$ and $\frac{x^2}{a^2} \frac{y^2}{b^2} + 1$
is
(1) $4(a^2 + b^2)$ (2) $2(a^2 + b^2)$ (3) $a^2 + b^2$ (4) $\frac{1}{2}(a^2 + b^2)$
14. If the two tangents drawn from a point *P* to the parabola $y^2 = 4x$ are at right angles then the
locus of *P* is
(1) $2x + 1 = 0$ (2) $x = 1$ (3) $2x + 1 = 0$ (4) $x = 1$
15. The values of *m* for which the line *y* $mx + 2\sqrt{5}$ touches the hyperbola $16x^2 - 9y^2$ 144 are
the roots of x^2 $(a + b)x = 4$ 0, then the value of $(a + b)$ is
(1) 2 (2) 4 (3) 0 (4) -2
16. The radius of the circle $3x^2 + by^2 + 4bx - 6by + b^2$ 0 is
(1) 1 (2) 3 (3) $\sqrt{10}$ (4) $\sqrt{11}$
17. If \vec{a} and \vec{b} are unit vectors such that $[\vec{a}, \vec{b}, \vec{a} \times \vec{b}] = \frac{1}{4}$, then the angle between \vec{a} and \vec{b} is
(1) $\frac{\pi}{6}$ (2) $\frac{\pi}{4}$ (3) $\frac{\pi}{3}$ (4) $\frac{\pi}{2}$
18. Distance from the origin to the plane $3x - 6y + 2z + 7 = 0$ is
(1) 0 (2) 1 (3) 2 (4) 3
19. If the direction cosines of a line are $\frac{1}{c}, \frac{1}{c}, \frac{1}{c}$, then
(1) $c = \pm 3$ (2) $c = \pm\sqrt{3}$ (3) $c > 0$ (4) $0 < c < 1$
20. If $\vec{a}, \vec{b}, \vec{c}$ are three unit vectors such that \vec{a} is perpendicular to \vec{b} , and is parallel to *c* then
 $\vec{a} \times (\vec{b} \times \vec{c})$ is equal to
(1) \vec{a} (2) \vec{b} (3) \vec{c} (4) $\vec{0}$
PARTH
Note: (i) Answer any SEVEN questions
(ii) Question number 30 is compulsory
21. Find the matrix *A* for which $A\begin{bmatrix} 5 & 3\\ 1 & 2\end{bmatrix} \begin{bmatrix} 14 & 7\\ 7 & 7\end{bmatrix}$.

23. If $\omega \neq 1$ is a cube root of unity, show that $(1 \quad \omega + \omega^2)^6 + (1 + \omega \quad \omega^2)^6 \quad 128.$

24. Form a polynomial equation with integer coefficients with $\sqrt{\frac{\sqrt{2}}{\sqrt{3}}}$ as a root.

PATTUKKOTTAI· PALANIAPPAN MATHS 9443407917

PATTUKKOTTAI· PALANIAPPAN MATHS

- **25.** Is $\cos^{-1}(x) = \pi \cos^{-1}(x)$ true? Justify your answer.
- 26 Find the centre and radius of the circle $3x^2 + a + 1y^2 + 6x + 9y + a + 4 = 0$.
- 27. Find the equation of the parabola with vertex (-1, -2), axis parallel to y -axis and passing through (3, 6).

 $7 \times 3 = 21$

- 28. If the vectors $a\hat{i} + a\hat{j} + c\hat{k}$, $\hat{i} + \hat{k}$ and $c\hat{i} + c\hat{j} + b\hat{k}$ are coplanar, prove that c is the geometric mean of a and b
- **29.** Find the acute angle between the lines. 2x = 3y = -z and 6x = -y = -4z.
- **30.** If A is a non-singular square matrix of order n, then $|\operatorname{adj}(\operatorname{adj} A)| = |A|^{(n-1)^2}$

PART-III

Note: (i) Answer any SEVEN questions (ii) Question number 40 is compulsory

- **31.** Find the inverse of the non-singular matrix $A \begin{bmatrix} 0 & 5 \\ 1 & 6 \end{bmatrix}$, by Gauss-Jordan method.
- 32 In a competitive examination, one mark is awarded for every correct answer while $\frac{1}{4}$ mark is deducted for every wrong answer. A student answered 100 questions and got 80 marks. How many questions did he answer correctly ? (Use Cramer's rule to solve the problem).
- **33.** Find the least value of he positive integer *n* for which $(\sqrt{3} + i)^n$ (i) real (ii) purely imaginary.

34. If *p* is real, discuss the nature of the roots of the equation $4x^2 + 4px + p + 2 = 0$, in terms of *p*.

35. Find the value of $\cos\left[\frac{1}{2}\cos^{-1}\left(\frac{1}{8}\right)\right]$

36. Prove that the length of the latus rectum of the hyperbola $\frac{x^2}{a^2} = \frac{y^2}{b^2} = 1$ is $\frac{2b^2}{a}$.

37. If the normal at the point ' t_1 ' on the parabola $y^2 = 4ax$ meets the parabola again at the point

' t_2 ', then prove that $t_2 = \left(t_1 + \frac{2}{t}\right)_1$.

- **38.** If $\vec{a} = \hat{i} + 2\hat{j} + 3\hat{k}$, $\vec{b} = 2\hat{i} \hat{j} + \hat{k}$, $\vec{c} = 3\hat{i} + 2\hat{j} + \hat{k}$ and $\vec{a} \times (\vec{b} \times \vec{c}) = l\vec{a} + m\vec{b} + n\vec{c}$, find the values of l, m, n.
- **39.** If a plane meets the coordinate axes at A, B C such that the centroid of the triangle ABC is the point (u, v, w), find the equation of the plane.
- 40. Find the principal argument Arg z, when $z = \frac{2}{1+i\sqrt{3}}$.

PATTUKKOTTAI· PALANIAPPAN MATHS 9443407917

PART-IV

Note: Answer all the questions

41a) If $ax^2 + bx + c$ is divided by x+3, x = 5, and x-1, the remainders are 21,61 and 9 respectively. Find *a*, *b* and *c*. (Use Gaussian elimination method.)

(OR)

- b) Find the value of k for which the equations $kx \quad 2y+z \quad 1$, $x \quad 2ky+z \quad 2$, $x \quad 2y+kz \quad 1$ have
 - (i) no solution (ii) unique solution (iii) infinitely many solution

42 a) If z x+iy is a complex number such that Im (^{2z+1}/_{iz+1}) 0, show that the locus of z is 2x²+2y²+x 2y 0. (OR)
b) If ^{1+z}/_{1 z} cos 2θ+i sin 2θ, show that z i tan θ.

- **43 a)** Find all zeros of the polynomial x^6 $3x^5$ $5x^4 + 22x^3$ $39x^2$ 39x + 135, if it is known that 1+2i and $\sqrt{3}$ are two of its zeros.
 - b) Solve the equation $6x^4$ $5x^3$ $38x^2$ 5x+6 0 if it is known that $\frac{1}{3}$ is a solution.
- 44 a) Find the value of $\cos^{-1}\left(\cos\left(\frac{4\pi}{3}\right)\right) + \cos^{-1}\left(\cos\left(\frac{5\pi}{4}\right)\right)$. (OR)
 - **b)** Solve: $\cot^{-1}x \quad \cot^{-1}(x+2) \quad \frac{\pi}{12}, \ x > 0$
- 45 a) Find the equation of the circle passing through the points (1,1), (2,-1), and (3,2).

(OR)

- **b)** Find the vertex, focus, equation of directrix and 1 ngth of the latus rectum of $y^2 + 4y + 8x + 12 = 0$
- 46a) Prove by vector method that the perpendiculars (attitudes) from the vertices to the opposite sides of a triangle are concurrent.(OR)
 - b) Find parametric form of vector equation and Cartesian equations of the plane passing through the points (2, 2, 1), (1, -2, 3) and parallel to the straight line passing through the points (2, 1, -3) and (-1, 5, -8).
- 47 a) A tunnel through a mountain for a four lane highway is to have a elliptical opening. The total width of the highway (not the opening) is to be 16m, and the height at the edge of the road must be sufficient for a truck 4m high to clear if the highest point of the opening is to be 5m approximately How wide must the opening be?

(OR)

b) Prove by vector method that $\sin(\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta$.

PATTUKKOTTAI· PALANIAPPAN MATHS 9443407917