RAVI MATHS TUITION CENTER ,GKM COLONY, CH- 82. PH: 8056206308 10th QUARTERLY EXAM MODEL PAPER 1

10th Standard
 Maths

Exam Time : 02:30:00 Hrs
Reg.No. :

Total Marks : 90					

$14 \times 1=14$

1) If $n(A \times B)=6$ and $A=\{1,3\}$ then $n(B)$ is
(a) 1
(b) 2
(c) 3
(d) 6
2) Euclid's division lemma states that for positive integers a and b, there exist unique integers q and r such that $a=b q+r$, where r must satisfy
(a) 1 $<$ r $<$ b
(b) $0<$ r $<$ b
(c) $0 \leq \mathrm{r}<$ b
(d) $0<\mathrm{r} \leq$ b
3) The sum of the exponents of the prime factors in the prime factorization of 1729 is
(a) 1
(b) 2
(c) 3
(d) 4
4) The least number that is divisible by all the numbers from 1 to 10 (both inclusive) is
(a) 2025
(b) 5220
(c) 5025
(d) 2520
5) A system of three linear equations in three variables is inconsistent if their planes
(a) intersect only at a point
(b) intersect in a line
(c) coincides with each other
(d) do not intersect
6) If $(x-6)$ is the HCF of $x^{2}-2 x-24$ and $x^{2}-k x-6$ then the value of k is
(a) 3
(b) 5
(c) 6
(d) 8
7) If in triangles ABC and EDF, $\frac{A B}{D E}=\frac{B C}{F D}$ then they will be similar, when
(a) $\angle B=\angle E$
(b) $\angle A=\angle D$
(c) $\angle B=\angle D$
(d) $\angle A=\angle F$
8) In $\angle \mathrm{LMN}, \angle \mathrm{L}=60^{\circ}, \angle \mathrm{M}=50^{\circ}$, If $\triangle \mathrm{LMN} \sim \triangle \mathrm{PQR}$ then the value of $\angle \mathrm{R}$ is
(a) 40°
(b) 70°
(c) 30°
(d) 110°
9) The area of triangle formed by the points $(-5,0),(0,-5)$ and $(5,0)$ is
(a) 0 sq.units
(b) 25 sq.units
(c) 5 sq.units
(d) none of these
10) The straight line given by the equation $x=11$ is
(a) parallel to X axis
(b) parallel to Y axis
(c) passing through the origin
(d) passing through the point $(0,11)$
11) The value of is $\sin ^{2} \theta+\frac{1}{1+\tan ^{2} \theta}$ equal to
(a) $\tan ^{2} \theta$
(b) 1
(c) $\cot ^{2} \theta$
(d) 0
12) $\tan \theta \operatorname{cosec}^{2} \theta-\tan \theta$ is equal to
(a) $\sec \theta$
(b) $\cot ^{2} \theta$
(c) $\sin \theta$
(d) $\cot \theta$
13) Which of the following is not a measure of dispersion?
(a) Range
(b) Standard deviation
(c) Arithmetic mean
(d) Variance
14) The sum of all deviations of the data from its mean is
(a) Always positive
(b) always negative
(c) zero
(d) non-zero integer

ANSWER 10. Q.NO 28 COMPULSORY
15) A relation ' f ' is defined by $f(x)=x^{2}-2$ where $x \in\{-2,-1,0,3\}$
(i) List the elements of f
(ii) Is f a function?
16) Find k if fo $g(k)=5$ where $f(k)=2 k-1$.
17) Determine the value of d such that $15 \equiv 3(\bmod d)$.
18) Find the sum of
$1+3+5+. .+55$
19) Solve $2 x-3 y=6, x+y=1$
20) Solve $2 m^{2}+19 m+30=0$
21) Show that $\triangle P S T \sim \triangle P Q R$

22) Observe figure and find $\angle \mathrm{P}$

23) Find the area of the triangle whose vertices are $(-3,5),(5,6)$ and $(5,-2)$
24) Find the equation of a straight line passing through $(5,-3)$ and $(7,-4)$.
25) Prove that $\tan ^{2 \theta}-\sin ^{2 \theta}=\tan ^{2 \theta} \sin ^{2 \theta}$
26) prove that $\sec \theta-\cos \theta=\tan \theta \sin \theta$
27) Find the range and coefficient of range of the following data: $25,67,48,53,18,39,44$.
28) The range of a set of data is 13.67 and the largest value is 70.08 . Find the smallest value.

ANSWER 10. Q.NO 42 COMPULSORY
29) If the function $f: R \rightarrow R$ defined by
$f(x)=\left\{\begin{array}{l}2 x+7, x<-2 \\ x^{2}-2,-2 \leq x<3 \\ 3 x-2, x \geq 3\end{array}\right.$,
(i) $f(4)$
(ii) $f(-2)$
(iii) $\mathrm{f}(4)+2 \mathrm{f}(1)$
(iv) $\frac{f(1)-3 f(4)}{f(-3)}$
30) Find the sum of all natural numbers between 300 and 600 which are divisible by 7 .
31) Find the sum to n terms of the series $5+55+555+\ldots$
32) In $\triangle \mathrm{ADC}=$, if $\mathrm{DE} \| \mathrm{BC}, \mathrm{ADx}=, \mathrm{DB} \mathrm{x}=-2$, and $\mathrm{EC}=\mathrm{x}=-1$ then find the lengths of the sides AB and AC .

33) Let $\mathrm{A}=$ The set of all natural numbers less than $8, \mathrm{~B}=$ The set of all prime numbers less than $8, \mathrm{C}=$ The set of even prime number. Verify that
$A \cap B) \times C=(A \times C) \cap(B \times C)$
34) The ratio of $6^{\text {th }}$ and $8^{\text {th }}$ term of an A.P is 7:9 Find the ratio of 9 th term to $13^{\text {th }}$ term
35) Find the square root of the following polynomials by division method
$121 x^{4}-198 x^{3}-183 x^{2}+216 x+144$
36) Solve the following quadratic equations by completing the square method

$$
\underline{5 x+7}=3 x+2
$$

37) A girl looks the reflection of the top of the lamp post on the mirror which is 66 m away from the foot of the lamppost. The girl whose height is 12.5 m is standing 2.5 m away from the mirror. Assuming the mirror is placed on the ground facing the sky and the girl, mirror and the lamppost are in a same line, find the height of the lamp post.
38) In fig. if $\mathrm{PQ}\|\mathrm{BCandPR}\| \mathrm{CD}$ prove that

$\frac{A B}{A D}=\frac{A Q}{A B}$
39) In the figure, the quadrilateral swimming pool shown is surrounded by concrete patio. Find the area of the patio.

40) Find the equation of a straight line through the point of intersection of the lines $8 x+3 y=18,4 x+5 y=9$ and bisecting the line segment joining the points $(5,-4)$ and $(-7,6)$.
41) prove the following identities.
$\frac{\sin A-\sin B}{\cos A+\cos B}+\frac{\cos A-\cos B}{\sin A+\sin B}=0$
42) if $\sin \theta+\cos \theta=\mathrm{p}$ and $\sec \theta=\mathrm{p}$ and $\sec \theta+\operatorname{cosec} \theta=\mathrm{q}$, then prove that $\mathrm{q}\left(\mathrm{p}^{2}-1\right)=2 \mathrm{p}$
43) a) Construct a triangle similar to a given triangle PQR with its sides equal to $\frac{2}{3}$ of the corresponding sides of the triangle PQR (scale factor $\frac{2}{3}$).

(OR)

b) Construct a $\triangle \mathrm{PQR}$ such that $\mathrm{QR}=6.5 \mathrm{~cm}, \angle \mathrm{P}=60^{\circ}$ and the altitude from P to QR is of length 4.5 cm .
44) a) Draw the graph of $y=x^{2}-4$ and hence solve $x^{2}-x-12=0$

(OR)

b) Draw the graph of $y=x^{2}+3 x+2$ and use it to solve $x^{2}+2 x+1=0$

RAVI MATHS TUITION CENTER ,GKM COLONY, CH- 82. PH: 8056206308 10th QUARTERLY EXAM MODEL PAPER 2

10th Standard
 Maths

Reg.No. :

$12 \times 1=12$

1) Let $n(A)=m$ and $n(B)=n$ then the total number of non-empty relations that can be defined from A to B is
(a) m^{n}
(b) n^{m}
(c) $2^{\mathrm{mn}}-1$
(d) 2^{mn}
2) If $\{(a, 8),(6, b)\}$ represents an identity function, then the value of a and b are respectively
(a) $(8,6)$
(b) $(8,8)$
(c) $(6,8)$
(d) $(6,6)$
3) If $\mathrm{A}=2^{65}$ and $\mathrm{B}=2^{64}+2^{63}+2^{62}+\ldots+20$ Which of the following is true?
(a) B is 2^{64} more than A
(b) A and B are equal
(c) B is larger than A by 1
(d) A is larger than B by 1
4) The next term of the sequence $\frac{3}{16}, \frac{1}{8}, \frac{1}{12}, \frac{1}{18}$,$\ldots .$. is
(a) $\frac{1}{24}$
(b) $\frac{1}{27}$
(c) $\frac{2}{3}$
(d) $\frac{1}{81}$
5) If the roots of the equation $q^{2} x^{2}+p^{2} x+r^{2}=0$ are the squares of the roots of the equation $q x^{2}+p x+r=0$, then q, p, r are in
\qquad .
(a) A.P
(b) G.P
(c) Both A.P and G.P
(d) none of these
6) The number of points of intersection of the quadratic polynomial $x^{2}+4 x+4$ with the X axis is
(a) 0
(b) 1
(c) 0 or 1
(d) 2
7) In a given figure $\mathrm{ST} \| \mathrm{QR}, \mathrm{PS}=2 \mathrm{~cm}$ and $\mathrm{SQ}=3 \mathrm{~cm}$.

Then the ratio of the area of $\triangle \mathrm{PQR}$ to the area $\triangle \mathrm{PST}$ is

(a) $25: 4$
(b) $25: 7$
(c) $25: 11$
(d) $25: 13$
8) The perimeters of two similar triangles $\triangle A B C$ and $\triangle P Q R$ are 36 cm and 24 cm respectively. If $P Q=10 \mathrm{~cm}$, then the length of $A B$ is
(a) $6 \frac{2}{3}$
(b) $\frac{10 \sqrt{6}}{3} \mathrm{~cm}$
(c) $60 \frac{2}{3} \mathrm{~cm}$
(d) 15 cm
9) The equation of a line passing through the origin and perpendicular to the line
(a) $7 x-3 y+4=0$
(b) $3 x-7 y+4=0$
(c) $3 x+7 y=0$
(d) $7 x-3 y=0$
10) A straight line has equation $8 y=4 x+21$. Which of the following is true
(a) The slope is 0.5 and the y
(b) The slope is 5 and the y
(c) The slope is 0.5 and the y
(d) The slope is 5 and the y intercept is 2.6 intercept is 1.6
intercept is 1.6
intercept is 2.6
11) Variance of first 20 natural numbers is
(a) 32.25
(b) 44.25
(c) 33.25
(d) 30
12) If the standard deviation of x, y, z is p then the standard deviation of $3 x+5,3 y+5,3 z+5$ is
(a) $3 \mathrm{p}+5$
(b) $3 p$
(c) $\mathrm{p}+5$
(d) $9 p+15$

ANSWER 10. Q.NO 28 COMPULSORY
$11 \times 2=22$
13) Find f o g and g of when $f(x)=2 x+1$ and $g(x)=x^{2}-2$
14) Determine the general term of an A.P. whose 7th term is -1 and 16 th term is 17 .
15) Check whether the following sequences are in A.P. or not?
$3 \sqrt{2}, 5 \sqrt{2}, 7 \sqrt{2}, 9 \sqrt{2}, \ldots \ldots$
16) If the difference between the roots of the equation $x^{2}-13 x+k=0$ is 17 . find k
17) If α and β are the roots of $x^{2}+7 x+10=0$ find the values of $\frac{\alpha}{\beta}+\frac{\beta}{\alpha}$
18) Show that the points $P(-1.5,3), Q(6,-2), R(-3,4)$ are collinear.
19) Calculate the slope and y intercept of the straight line $8 x-7 y+6=0$
20) prove that $\sqrt{\frac{1+\cos \theta}{1-\cos \theta}}=\operatorname{cosec} \theta+\cot \theta$
21) shoe that $\left(\frac{1+\tan ^{2} A}{1+\cot ^{2} A}\right)=\left(\frac{1-\tan A}{1-\cot A}\right)^{2}$
22) Find the range of the following distribution..

Age (in years)	$16-18$	$18-20$	$20-22$	$22-24$	$24-26$	$26-28$
Number of students 0	4	6	8	2	2	

ANSWER 10. Q.NO 42 COMPULSORY
$5 \mathrm{X} 10=50$
23) The general term of a sequence is defined as
$\mathrm{a}_{\mathrm{n}}=\left\{\begin{array}{c}n(n+3) ; n \epsilon N \text { is odd } \\ n^{2}+1 ; n \epsilon N \text { is even }\end{array}\right.$
Find the eleventh and eighteenth terms.
24) Find the first term of a G.P. in which $S_{6}=4095$ and $r=4$
25) Find the GCD of $6 x^{3}-30 x^{2}+60 x-48$ and $3 x^{3}-12 x^{2}+21 x-18$.
26) Find
$\frac{x^{2}-16}{x+1} \div \frac{x-4}{x+4}$
27) Let $A=\{1,2,3,7\}$ and $B=\{3,0,-1,7\}$, which of the following are relation from A to B ?
(i) $\mathrm{R}_{1}=\{(2,1),(7,1)\}$
(ii) $\mathrm{R}_{2}=\{(-1,1)\}$
(iii) $\mathrm{R}_{3}=\{(2,-1),(7,7),(1,3)\}$
(iv) $\mathrm{R}_{4}=\{(7,-1),(0,3),(3,3),(0,7)$
28) If $f(x)=x^{2}, g(x)=3 x$ and $h(x)=x-2$, Prove that (fog) oh $=f o$ ($g \circ h$).
29) A function $f:[-5,9] \rightarrow R$ is defined as follows:
$f(x)=\left[\begin{array}{ll}6 x+1 & \text { if }-5 \leq x<2 \\ 5 x^{2}-1 & \text { if } 2 \leq x<6 \\ 3 x-4 & \text { if } 6 \leq x \leq 9\end{array}\right.$
Find $\frac{2 f(-2)-f(6)}{f(4)+f(-2)}$.
30) How many consecutive odd integers beginning with 5 will sum to 480 ?
31) In a G.P. the product of three consecutive terms is 27 and the sum of the product of two terms taken at a time is $\frac{57}{2}$.Find the three terms.
32) Solve $\sqrt{y+1}+\sqrt{2 y-5}=3$
33) Draw the graph of $y=x^{2}-4$ and hence solve $x^{2}+1=0$
34) Draw the graph of $y=(x-1)(x+3)$ and hence solve $x^{2}-x-6=0$
35) Simplyfy

$$
\frac{p^{2}-10 p+21}{p-7} \times \frac{p^{2}+p-12}{(p-3)^{2}}
$$

36)

In the figure, find the area of
triangle AGF

37) Find the equation of a straight line joining the point of intersection of $3 x+y+2=0$ and $x-2 y-4=0$ to the point of intersection of $7 x-3 y=-12$ and $2 y=x+3$
38) prove the following identities.
$\frac{\sin ^{3} A+\cos ^{3} A}{\sin A+\cos A}+\frac{\sin ^{3} A-\cos ^{3} A}{\sin A-\cos A}=2$
39) if $\sqrt{3} \sin \theta-\cos \theta=0$, then slow that $\tan 3 \theta=\frac{3 \tan \theta-\tan ^{3} \theta}{1-3 \tan ^{2} \theta}$
40) Find the range and coefficient of range of the following data.
$63,89,98,125,79,108,117,68$
41) Find the variance and standard deviation of the wages of 9 workers given below: Rs.310, Rs.290, Rs.320, Rs.280, Rs.300, Rs.290, Rs.320, Rs.310, Rs. 280.
42) The diameter of circles (in mm) drawn in a design are given below.

Diameters	$3-36$	$37-40$	$41-44$	$45-48$	$49-52$
Number of circles	15	17	21	22	25

Calculate the standard deviation.
43) a) Construct a triangle similar to a given triangle LMN with its sides equal to $\frac{4}{5}$ of the corresponding sides of the triangle LMN (scale factor $\frac{4}{5}$).

(OR)

b) Construct a $\triangle \mathrm{ABC}$ such that $\mathrm{AB}=5.5 \mathrm{~cm}, \angle \mathrm{C}=25^{\circ}$ and the altitude from C to AB is 4 cm .
44) a) Find the values of a and b if the following polynomials are perfect squares
$a x^{4}+b x^{3}+361 x^{2}+220 x+100$

(OR)

In figure $\mathrm{DE} \| \mathrm{BC}$ andCD. Prove that $\mathrm{AD}^{2}=\mathrm{AB} X \mathrm{XF}$

RAVI MATHS TUITION CENTER, PH - 8056206308 QUARTERLY MODEL PAPER 3
 10th Standard
 Maths

 Reg.No. :
 $14 \times 1=14$

Exam Time : 02:30:00 Hrs

1) If $n(A \times B)=6$ and $A=\{1,3\}$ then $n(B)$ is
(a) 1
(b) 2
(c) 3
(d) 6
2) If $A=\{1,2\}, B=\{1,2,3,4\}, C=\{5,6\}$ and $D=\{5,6,7,8\}$ then state which of the following statement is true..
(a) $(\mathrm{A} \times \mathrm{C}) \subset(\mathrm{B} \times \mathrm{D})$
(b) $(\mathrm{B} \times \mathrm{D}) \subset(\mathrm{A} \times \mathrm{C})$
(c) $(\mathrm{A} \times \mathrm{B}) \subset(\mathrm{A} \times \mathrm{D})$
(d) $(\mathrm{D} x \mathrm{~A}) \subset(\mathrm{BxA})$
3) Using Euclid's division lemma, if the cube of any positive integer is divided by 9 then the possible remainders are
(a) $0,1,8$
(b) $1,4,8$
(c) $0,1,3$
(d) $0,1,3$
4) The sum of the exponents of the prime factors in the prime factorization of 1729 is
(a) 1
(b) 2
(c) 3
(d) 4
5) A system of three linear equations in three variables is inconsistent if their planes
(a) intersect only at a point
(b) intersect in a line
(c) coincides with each other
(d) do not intersect
6) If $(x-6)$ is the HCF of $x^{2}-2 x-24$ and $x^{2}-k x-6$ then the value of k is
(a) 3
(b) 5
(c) 6
(d) 8
7) If in triangles ABC and EDF, $\frac{A B}{D E}=\frac{B C}{F D}$ then they will be similar, when
(a) $\angle B=\angle E$
(b) $\angle A=\angle D$
(c) $\angle B=\angle D$
(d) $\angle A=\angle F$
8) In $\angle \mathrm{LMN}, \angle \mathrm{L}=60^{\circ}, \angle \mathrm{M}=50^{\circ}$, If $\triangle \mathrm{LMN} \sim \triangle \mathrm{PQR}$ then the value of $\angle \mathrm{R}$ is
(a) 40°
(b) 70°
(c) 30°
(d) 110°
9) A man walks near a wall, such that the distance between him and the wall is 10 units. Consider the wall to be the Y axis. The path travelled by the man is
(a) $x=10$
(b) $\mathrm{y}=10$
(c) $\mathrm{x}=0$
(d) $y=0$
10) The straight line given by the equation $x=11$ is
(a) parallel to X axis
(b) parallel to Y axis
(c) passing through the origin
(d) passing through the point $(0,11)$
11) The value of is $\sin ^{2} \theta+\frac{1}{1+\tan ^{2} \theta}$ equal to
(a) $\tan ^{2} \theta$
(b) 1
(c) $\cot ^{2} \theta$
(d) 0
12) $\tan \theta \operatorname{cosec}^{2} \theta-\tan \theta$ is equal to
(a) $\sec \theta$
(b) $\cot ^{2} \theta$
(c) $\sin \theta$
(d) $\cot \theta$
13) Which of the following is not a measure of dispersion?
(a) Range
(b) Standard deviation
(c) Arithmetic mean
(d) Variance
14) The sum of all deviations of the data from its mean is
(a) Always positive
(b) always negative
(c) zero
(d) non-zero integer

$$
14 \times 2=28
$$

15) Find f o g and g of when $f(x)=2 x+1$ and $g(x)=x^{2}-2$
16) Let $A=\{0,1,2,3\}$ and $B=\{1,3,5,7,9\}$ be two sets. Letf: $A \rightarrow B$ be a function given by $f(x)=2 x+1$. Represent this function as an arrow .
17) Find the quotient and remainder when a is divided by b
$a=-12, b=5$
18) Solve $8 x \equiv 1(\bmod 11)$
19) Solve $2 x-3 y=6, x+y=1$
20) Solve $2 x^{2}-2 \sqrt{6} x+3=0$
21) Show that $\triangle \operatorname{PST} \sim \triangle \mathrm{PQR}$

22) Find the area of the triangle whose vertices are $(-3,5),(5,6)$ and $(5,-2)$
23) Find the equation of the straight line passing through $(5,7)$ and is

Parallel to X axis
24) prove that $\frac{\sin A}{1+\cos A}=\frac{1-\cos A}{\sin A}$
25) if $\cos \theta+\sin \theta=\sqrt{2} \cos \theta$, then prove that $\cos \theta-\sin \theta=\sqrt{2} \sin \theta$
26) Show that $\tan ^{4} \theta+\tan ^{2} \theta=\sec ^{4} \theta-\sec ^{2} \theta$.
27) Find the range and coefficient of range of the following data: $25,67,48,53,18,39,44$.
28) The range of a set of data is 13.67 and the largest value is 70.08 . Find the smallest value.

$$
9 \times 5=45
$$

29) Let $A=\{1,2,3,4\}$ and $B=\{2,5,8,11,14\}$ be two sets. Let $f: A \rightarrow B$ be a function given by $f(x)=3 x-1$. Represent this function
(i) by arrow diagram
(ii) in a table form
(iii) as a set of ordered pairs
(iv) in a graphical form
30) If the function $f: R \rightarrow R$ defined by
$f(x)=\left\{\begin{array}{l}2 x+7, x<-2 \\ x^{2}-2,-2 \leq x<3 \\ 3 x-2, x \geq 3\end{array}\right.$,
(i) $f(4)$
(ii) $f(-2)$
(iii) $f(4)+2 f(1)$
(iv) $\frac{f(1)-3 f(4)}{f(-3)}$
31) Find the sum of all natural numbers between 300 and 600 which are divisible by 7 .
32) How many terms of the series $1+4+16+\ldots$ make the sum 1365 ?
33) Find the GCD of the polynomials $x^{3}+x^{2}-x+2$ and $2 x^{3}-5 x^{2}+5 x-3$.
34) Find the square root of the following expressions $16 x^{2}+9 y^{2}-24 x y+24 x-18 y+9$
35) In $\triangle \mathrm{ADC}=$, if $\mathrm{DE} \| \mathrm{BC}, \mathrm{ADx}=, \mathrm{DB} \mathrm{x}=-2$, and $\mathrm{EC}=\mathrm{x}=-1$ then find the lengths of the sides AB and AC .

36)

$\mathrm{DE} \| \mathrm{AC}$ and $\mathrm{DC} \| \mathrm{AP}$. Prove that $\frac{B E}{C E}=\frac{B C}{C P}$

37) a) Construct a triangle $\triangle \mathrm{PQR}$ such that $\mathrm{QR}=5 \mathrm{~cm}, \angle \mathrm{P}=30$ and the altitude from P to QR is of length 4.2 cm .

$$
9 \times 8=72
$$

38) The function ' t ' which maps temperature in Celsius (C) into temperature in Fahrenheit (F) is defined by $t(C)=F$ where $F-\frac{9}{5}$
$\mathrm{C}+32$. Find,
(i) $\mathrm{t}(0)$
(ii) $\mathfrak{t}(28)$
(iii) $\mathrm{t}(-10)$
(iv) the value of C whenn $\mathrm{t}(\mathrm{C})=212$
(v) the temperature when the Celsius value is equal to the Farenheit value.
39) Solve $\sqrt{y+1}+\sqrt{2 y-5}=3$
40) Which rational expression should be subtracted from $\frac{x^{2}+6 x+8}{x^{8}+8}$ to get $\frac{3}{x^{2}-2 x+4}$
41) Find the equation of a straight line through the intersection of lines $5 x-6 y=2,3 x+2 y=10$ and perpendicular to the line $4 x-$ $7 y+13=0$
42) if $\sin \theta+\cos \theta=\mathrm{p}$ and $\sec \theta=\mathrm{p}$ and $\sec \theta+\operatorname{cosec} \theta=\mathrm{q}$, then prove that $\mathrm{q}\left(\mathrm{p}^{2}-1\right)=2 \mathrm{p}$
43) A teacher asked the students to complete 60 pages of a record note book. Eight students have completed only $32,35,37,30,33$, 36, 35 and 37 pages. Find the standard deviation of the pages yet to be completed by them.
${ }^{44)}$ Construct a triangle similar to a given triangle LMN with its sides equal to $\frac{4}{5}$ of the corresponding sides of the triangle LMN (scale factor $\frac{4}{5}$).
44) Draw the graph of $y=x^{2}-4$ and hence solve $x^{2}-x-12=0$
45) Draw the graph of $y=x^{2}+3 x+2$ and use it to solve $x^{2}+2 x+1=0$

Prepared by

RAVI MATHS TUITION CENTER
My YouTube channel name SR MATHS TEST PAPERS (RAVI MATHS)
Answers uploaded soon in YouTube

RAVI MATHS TUITION CENTER, PH $\mathbf{-} 8056206308$ QUARTERLY MODEL PAPERS

10th Standard
Maths

Reg.No. :

$:$| | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |

$$
14 \times 1=14
$$

Exam Time : 02:30:00 Hrs

1) The range of the relation $R=\left\{\left(x, x^{2}\right) \mid x\right.$ is a prime number less than 13$\}$ is
(a) $\{2,3,5,7\}$
(b) $\{2,3,5,7,11\}$
(c) $\{4,9,25,49,121\}$
(d) $\{1,4,9,25,49,121\}$
2) Let $n(A)=m$ and $n(B)=n$ then the total number of non-empty relations that can be defined from A to B is
(a) m^{n}
(b) n^{m}
(c) $2^{\mathrm{mn}}-1$
(d) 2^{mn}
3) If the HCF of 65 and 117 is expressible in the form of $65 \mathrm{~m}-117$, then the value of m is
(a) 4
(b) 2
(c) 1
(d) 3
4) The least number that is divisible by all the numbers from 1 to 10 (both inclusive) is
(a) 2025
(b) 5220
(c) 5025
(d) 2520
5) Which of the following should be added to make $x^{4}+64$ a perfect square
(a) $4 x^{2}$
(b) $16 x^{2}$
(c) $8 x^{2}$
(d) $-8 x^{2}$
6) The solution of $(2 x-1)^{2}=9$ is equal to
(a) -1
(b) 2
(c) $-1,2$
(d) None of these
7) In a given figure $\mathrm{ST} \| \mathrm{QR}, \mathrm{PS}=2 \mathrm{~cm}$ and $\mathrm{SQ}=3 \mathrm{~cm}$.

Then the ratio of the area of $\triangle P Q R$ to the area $\triangle P S T$ is

(a) $25: 4$
(b) $25: 7$
(c) $25: 11$
(d) $25: 13$
8) How many tangents can be drawn to the circle from an exterior point?
(a) one
(b) two
(c) infinite
(d) zero
9) The point of intersection of $3 x-y=4$ and $x+y=8$ is
(a) $(5,3)$
(b) $(2,4)$
(c) $(3,5)$
(d) $(4,4)$
10) The slope of the line joining $(12,3),(4, a)$ is $\frac{1}{8}$. The value of ' a ' is
(a) 1
(b) 4
(c) -5
(d) 2
11) $(1+\tan \theta+\sec \theta)(1+\cot \theta-\operatorname{cosec} \theta)$ is equal to
(a) 0
(b) 1
(c) 2
(d) -1
12) $a \cot \theta+b \operatorname{cosec} \theta=p$ and $b \cot \theta+a \operatorname{cosec} \theta=q$ then $p^{2}-q^{2}$ is equal to
(a) $a^{2}-b^{2}$
(b) $b^{2-a^{2}}$
(c) $a^{2+} b^{2}$
(d) $\mathrm{b}-\mathrm{a}$
13) The mean of 100 observations is 40 and their standard deviation is 3 . The sum of squares of all deviations is
(a) 40000
(b) 160900
(c) 160000
(d) 30000
14) The standard deviation of a data is 3 . If each value is multiplied by 5 then the new variance is
(a) 3
(b) 15
(c) 5
(d) 225
$11 \times 2=22$
15) Find k if fog $g(k)=5$ where $f(k)=2 k-1$.
16) Check whether the following sequences are in A.P. or not?
$x+2,2 x+3,3 x+4, \ldots$.
17) Find the sum of
$1^{2}+2^{2}+\ldots+19^{2}$
18) Solve $x^{4}-13 x^{2}+42=0$
19) If α, β are the roots of the equation $2 x^{2}-x-1=0$, then form the equation whose roots are $\frac{1}{\alpha}, \frac{1}{\beta}$
20) Find the area of the quadrilateral formed by the points $(8,6),(5,11),(-5,12)$ and $(-4,3)$.
21) Calculate the slope and y intercept of the straight line $8 x-7 y+6=0$
22) prove that $\frac{\sec \theta}{\sin \theta}-\frac{\sin \theta}{\cos \theta}=\cot \theta$
23) prove that $(\operatorname{cosec} \theta-\sin \theta)(\sec \theta-\cos \theta)(\tan \theta+\cot \theta)=1$
24) Find the standard deviation of the following data $7,4,8,10,11$. Add 3 to all the values then find the standard deviation for the new values.
25) Find the standard deviation of the data 2, 3, 5, 7, 8. Multiply each data by 4 . Find the standard deviation of the new values.
$5 \times 5=25$
26) Let $\mathrm{A}=\{1,2,3\}, \mathrm{B}=\{4,5,6,7\}$, and $\mathrm{f}=\{(1,4),(2,5),(3,6)\}$ be a function from A to B. Show that f is one - one but not onto function.
27) Let f be a function from R to R defined by $f(x)=x-5$. Find the values of a and b given that $(a, 4)$ and $(1, b)$ belong to f.
28) A functionf: $[-7,6) \rightarrow R$ is defined as follows.

$$
\begin{aligned}
& f(x)=\left\{\begin{array}{cc}
x^{2}+2 x+1 & -7 \leq x<-5 \\
x+5 & -5 \leq x \leq 2 \\
x-1 & 2<x<6
\end{array}\right. \\
& \frac{4 f(-3)+f 2(4)}{f(-6)-3 f(1)}
\end{aligned}
$$

29) Find the sum to n terms of the series $5+55+555+\ldots$
30) Solve $\mathrm{pqx}^{2}-(\mathrm{p}+\mathrm{q})^{2} \mathrm{x}+(\mathrm{p}+\mathrm{q})^{2}=0$
$16 \times 8=128$
31) Given $A=\{1,2,3\}, B=\{2,3,5\}, C=\{3,4\}$ and $D=\{1,3,5\}$, check if $(A \cap C) \times(B \cap D)=(A \times B) \cap(C \times D)$ is true?
32) Consider the functions $f(x), g(x), h(x)$ as given below. Show that ($f o g$) oh=fo(g oh) in each case.
$f(x)=x-1, g(x)=3 x+1$ and $h(x)=x^{2}$
33) The sum of three consecutive terms that are in A.P. is 27 and their product is 288 . Find the three terms.
34) Find the sum of all natural numbers between 602 and 902 which are not divisible by 4.
35) In a G.P. the $9^{\text {th }}$ term is 32805 and $6^{\text {th }}$ term is 1215 . Find the 12 th term
36) The sum of the squares of the first n natural numbers is 285 , while the sum of their cubes is 2025 . Find the value of n.
37) Find the square root of $289 x^{4}-612 x^{3}+970 x^{2}-684 x+361$
38) The number of seats in a row is equal to the total number of rows in a hall. The total number of seats in the hall will increase by 375 if the number of rows is doubled and the number of seats in each row is reduced by 5 . Find the number of rows in the hall at the beginning.
39) In fig. if $P Q\|B C a n d P R\| C D$ prove that

$$
\frac{A B}{A D}=\frac{A Q}{A B}
$$

40)

Find the equation of a straight line through the point of intersection of the lines $8 x+3 y=18,4 x+5 y=9$ and bisecting the line segment joining the points $(5,-4)$ and $(-7,6)$.
41) if $\frac{\cos \alpha}{\cos \beta}=\mathrm{m}$ and $\frac{\cos \alpha}{\sin \beta}=\mathrm{n}$, then prove that $\left(\mathrm{m}^{2}+\mathrm{n}^{2}\right) \cos ^{2}$
42) a) The rainfall recorded in various places of five districts in a week are given below..

Rainfall (in mm)	45	50	55	60	65	70
Number of places	5	134	9	5	4	

Find its standard deviation.
b) Construct a triangle similar to a given triangle PQR with its sides equal to $\frac{7}{3}$ of thecorresponding sides of the triangle PQR (scale factor $\frac{7}{3}$)
c) Draw a triangle ABC of base $\mathrm{BC}=5.6 \mathrm{~cm}, \angle \mathrm{~A}=40^{\circ}$ and the bisector of $\angle \mathrm{A}$ meets BC at D such that $\mathrm{CD}=4 \mathrm{~cm}$.
d) Draw the graph of $y=2 x^{2}-3 x-5$ and hence solve $2 x^{2}-4 x-6=0$
43) a) Draw the graph of $y=(x-1)(x+3)$ and hence solve $x^{2}-x-6=0$

Prepared by RAVI MATHS TUITION CENTER My YouTube channel name SR MATHS TEST PAPERS (RAVI MATHS)
 Answers uploaded soon in YouTube

RAVI MATHS TUITION CENTER PH -8056206308 10TH QTLY MODEL 5

10th Standard
 Maths

Exam Time : 02:30:00 Hrs

Reg.No. : | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Total Marks : 90 | | | | | |

$14 \times 1=14$

1) If $g=\{(1,1),(2,3),(3,5),(4,7)\}$ is a function givrn by $g(x)=\alpha x+\beta$ then the values of α and β are
(a) $(-1,2)$
(b) $(2,-1)$
(c) $(-1,-2)$
(d) $(1,2)$
2) $f(x)=(x+1)^{3}-(x-1)^{3}$ represents a function which is
(a) linear
(b) cubic
(c) reciprocal
(d) quadratic
3) If the sequence $t_{1}, t_{2}, t_{3} \ldots$ are in A.P. then the sequence $t_{6}, t_{12}, t_{18}, \ldots$ is
(a) a Geometric
(b) an Arithmetic
(c) neither an Arithmetic Progression nor a Geometric Progression Progression Progression
(d) a constant sequence
4) The value of $\left(1^{3}+2^{3}+3^{3}+\ldots 15^{3}\right)-(1+2+3+\ldots+15)$ is
(a) 14400
(b) 14200
(c) 14280
(d) 14520
5) The number of points of intersection of the quadratic polynomial $x^{2}+4 x+4$ with the X axis is
(a) 0
(b) 1
(c) 0 or 1
(d) 2
6) In a given figure $\mathrm{ST} \| \mathrm{QR}, \mathrm{PS}=2 \mathrm{~cm}$ and $\mathrm{SQ}=3 \mathrm{~cm}$.

Then the ratio of the area of $\triangle \mathrm{PQR}$ to the area $\triangle \mathrm{PST}$ is

(a) $25: 4$
(b) $25: 7$
(c) $25: 11$
(d) $25: 13$
7) The perimeters of two similar triangles $\triangle A B C$ and $\triangle P Q R$ are 36 cm and 24 cm respectively. If $P Q=10 \mathrm{~cm}$, then the length of $A B$ is
(a) $6 \frac{2}{3}$
(b) $\frac{10 \sqrt{6}}{3} \mathrm{~cm}$
(c) $60 \frac{2}{3} \mathrm{~cm}$
(d) 15 cm
8) A straight line has equation $8 y=4 x+21$. Which of the following is true
(a) The slope is 0.5 and the y
(b) The slope is 5 and the y
(c) The slope is 0.5 and the y
(d) The slope is 5 and the y intercept is 2.6
intercept is 1.6
intercept is 1.6
intercept is 2.6
9) When proving that a quadrilateral is a parallelogram by using slopes you must find
(a) The slopes of two
(b) The slopes of two pair of opposite
(c) The lengths of all
(d) Both the lengths and slopes of two sides sides sides sides
10) If the ratio of the height of a tower and the length of its shadow is $\sqrt{3}: 1$ then the angle of elevation of the sun has measure
(a) 45°
(b) 30°
(c) 90°
(d) 60°
11) If $(\sin \alpha+\operatorname{cosec} \alpha)^{2}+(\cos \alpha+\sec \alpha)^{2}=k+\tan ^{2} \alpha+\cot ^{2} \alpha$, then the value of k is equal to
(a) 9
(b) 7
(c) 5
(d) 3
12) If $\tan \theta=\cot \theta$ the value of $\sec \theta$ is
(a) 2
(b) 1
(c) $\frac{1}{\sqrt{3}}$
(d) $\sqrt{2}$
13) The standard deviation of a data is 3 . If each value is multiplied by 5 then the new variance is
(a) 3
(b) 15
(c) 5
(d) 225
14) If the mean and coefficient of variation of a data are 4 and 87.5% then the standard deviation is
(a) 3.5
(b) 3
(c) 4.5
(d) 2.5

ANSWER 10. Q.NO 28 COMPULSORY

$$
10 \times 2=20
$$

Determine the general term of an A.P. whose 7 th term is -1 and 16 th term is 17 .
16) Find the value of
$16+17+18+\ldots+75$
17) Solve the following system of linear equations in three variables $3 x-2 y+z=2,2 x+3 y-z=5, x+y+z=6$.
18) if $\cos \theta+\sin \theta=\sqrt{2} \cos \theta$, then prove that $\cos \theta-\sin \theta=\sqrt{2} \sin \theta$
19) Prove that see $A(1-\sin A)(\operatorname{see} A+\tan A)=1$.
20) $\frac{\sin \theta}{1+\cos \theta}+\frac{1+\cos \theta}{\sin \theta}=2 \operatorname{cosec} \theta$

ANSWER 10. Q.NO 42 COMPULSORY

$$
10 \times 5=50
$$

21) If $A=\{-2,-1,0,1,2\}$ and $f: A \rightarrow B$ is an onto function defined by $f(x)=x^{2}+x+1$ then find B.
22) Find the sum of first 15 terms of the A.P.8, $7 \frac{1}{4}, 6 \frac{1}{2}, 5 \frac{3}{4}, \ldots$.
23) Find the square root of the following expressions
$256(x-a)^{2}(x-b)^{4}(x-c)^{16}(x-d)^{20}$
24) Solve $\mathrm{pqx}^{2}-(\mathrm{p}+\mathrm{q})^{2} \mathrm{x}+(\mathrm{p}+\mathrm{q})^{2}=0$
25) Multiply $\frac{x^{4} b^{2}}{x-1}$ by $\frac{x^{2}-1}{a^{4} b^{3}}$
26) Without using Pythagoras theorem, show that the vertices (1, -4) , (2, - 3) and (4, -7) form a right angled triangle.
27) Show that the straight lines $x-2 y+3=0$ and $6 x+3 y+8=0$ are perpendicular.
28) The mean of a data is 25.6 and its coefficient of variation is 18.75 . Find the standard deviation.
29) Let $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ be a function defined by $\mathrm{f}(\mathrm{x})=\frac{x}{2}-1$, where $\mathrm{A}=\{2,4,6,10,12\}, \mathrm{B}=\{0,1,2,4,5,9\}$, Represent f by
(i) set of ordered pairs
(ii) a table
(iii) an arrow diagram
(iv) a graph
30) A function $f:[-5,9] \rightarrow R$ is defined as follows:
$f(x)=\left[\begin{array}{ll}6 x+1 & \text { if }-5 \leq x<2 \\ 5 x^{2}-1 & \text { if } 2 \leq x<6 \\ 3 x-4 & \text { if } 6 \leq x \leq 9\end{array}\right.$
Find $\frac{2 f(-2)-f(6)}{f(4)+f(-2)}$.
31) Find the sum of all natural numbers between 602 and 902 which are not divisible by 4 .
32) Find the sum of the Geometric series $3+6+12+\ldots+1536$
33) Find the least positive value of x such that
$89 \equiv(x+3)(\bmod 4)$
34) If $\mathrm{A}=\frac{x}{x+1}, \mathrm{~B}=\frac{1}{x+1}$, prove that $\frac{(A+B)^{2}+(A-B)^{2}}{A \div B}=\frac{2\left(x^{2}+1\right)}{x(x+1)^{2}}$
35) Find the square root of the expression $\frac{x^{2}}{y^{2}}-\frac{10 x}{y}+27-\frac{10 y}{x}+\frac{y^{2}}{x^{2}}$
36) A bus covers a distance of 90 km at a uniform speed. Had the speed been $15 \mathrm{~km} /$ hour more it would have taken 30 minutes less for the journey. Find the original speed of the bus.
37) Find the equation of a straight line passing through the point $P(-5,2)$ and parallel to the line joining the points $Q(3,-2)$ and $R(-5,4)$.
38) Find the equation of a straight line

Passing through $(-8,4)$ and making equal intercepts on the coordinate axes
Passing through $(-8,4)$ and making equal intercepts on the coordinate axes
39) prove the following identities.

$$
\sec ^{6} \theta=\tan ^{6} \theta+3 \tan ^{2} \theta \sec ^{2} \theta+1
$$

40) if $\frac{\cos \alpha}{\cos \beta}=\mathrm{m}$ and $\frac{\cos \alpha}{\sin \beta}=\mathrm{n}$, then prove that $\left(\mathrm{m}^{2}+\mathrm{n}^{2}\right) \cos ^{2}$
41) Find the variance and standard deviation of the wages of 9 workers given below: Rs.310, Rs.290, Rs.320, Rs.280, Rs.300, Rs.290, Rs.320, Rs.310, Rs. 280.
42) A wall clock strikes the bell once at $1 o^{\prime}$ clock, 2 times at $2 o^{\prime}$ clock, 3 times at 3 o' clock and so on. How many times will it strike in a particular day. Find the standard deviation of the number of strikes the bell make a day.
43) a) Construct a triangle similar to a given triangle ABC with its sides equal to $\frac{6}{5}$ of thecorresponding sides of the triangle ABC (scale factor $\frac{6}{4}$).

(OR)

b) Construct a $\triangle \mathrm{ABC}$ such that $\mathrm{AB}=5.5 \mathrm{~cm}, \angle \mathrm{C}=25^{\circ}$ and the altitude from C to AB is 4 cm .
44) a) Graph the following quadratic equations and state their nature of solutions.

$$
x^{2}+x+7=0
$$

(OR)

b) Graph the following quadratic equations and state their nature of solutions.

$$
x^{2}-6 x+9=0
$$

Prepared by RAVI MATHS TUITION CENTER My YouTube channel name SR MATHS TEST PAPERS (RAVI MATHS)
 Answers uploaded soon in YouTube

