Time Allowed : 3 hours			Maximum Marks : 100
	PAR	r-1	
Note : (i). Answer all the que	estions.		$14 \times 1 = 14$
(ii). Choose the most a	appropriate answer form the	ne given four alternatives ar	nd write the option code
and the correspon	ding answer.		
1. A = { a , b , p } , B = { 2 , 3 } ,	$C = \{p, q, r, s\}$, then $n[(A + i)]$	$\cup C) \times B$] is	
(A) 8	(B) 20	(C) 12	(D) 16
2. Let A = { 1 , 2 , 3 , 4 } and B =	{4,8,9,10}. A function <i>f</i> : .	$A \rightarrow B$ given by $f = \{(1, 4), (2, 4)\}$	2,8),(3,9),(4,10)} is a
(A). Many – one function	(B).Identity function	(C). One to one function	(D). Into function
3. The least number that is div	visible by all the numbers fr	rom 1 to 10 (both inclusive) i	S
(A). 2025	(B). 5220	(C). 5025	(D). 2520
4. The value of $(1^3 + 2^3 + 3^3)$	$+ \dots + 15^3) - (1 + 2 + 3 +$	+ 15) is	
(A).14400	(B).14200	(C).14280	(D).14520
5. The sequence $-3, -3, -3$,	—3, is		
(A). an A.P only	(B). a G.P only	(C). neither A.P nor G.P	(D). both A.P and G.P
6. $\frac{x}{x^2 - 25} - \frac{8}{x^2 + 6x + 5}$ gives			
(A). $\frac{x^2 - 7x + 40}{(x - 5)(x + 5)}$	(B). $\frac{x^2 + 7x + 40}{(x-5)(x+5)(x+1)}$	(C). $\frac{x^2 - 7x + 40}{(x^2 - 25)(x + 1)}$	(D). $\frac{x^2 + 10}{(x^2 - 25)(x + 1)}$
7. Graph of a linear polynomial	is a		
(A). straight line	(B). circle	(C). Parabola	(D). hyperbola
8. If the discriminant of $3x^2 - 3x^2$	14x + k = 0 is 100 , then $k =$	=	
(A).8	(B). 32	(C). 16	(D). 24
9. If in ΔABC , $DE \parallel BC$, AB	= 3.6 cm , AC $= 2.4 cm$ and A	AD=2.1~cm , then the length c	of AE is
(A). 1.4 cm	(B). 1.8 cm	(C).1.2 cm	(D). 1.05 cm
10. In ΔLMN , $\angle L = 60^\circ$, $\angle M$	$M = 50^\circ$. If $\Delta LMN \sim \Delta PQR$, then the value of $\angle R$ is	
(A). 40°	(B). 70°	(C). 30°	(D). 110°

REGISTER NUMBER :

11. If $(5,7), (3,p)$ and $(6, 0)$	6) are collinear, then the va	alue of p is	
(A). 3	(B). 6	(C). 9	(D). 12
12. The point of intersection of	3x - y = 4 and x + y = 8	3 is	
(A).(5 , 3)	(B).(2,4)	(C).(3,5)	(D).(4,4)
13. The points $A(4, 4), B(3, 5)$	5), $C(-1, -1)$ form a		
(A). Right angle triangle	(B). Isosceles triangle	(C). Equilateral triangle	(D). Collinear
14. $tan\theta \ cosec^2\theta - tan\theta$ is equ	ial to		
(A). <i>secθ</i>	(B). $cot^2\theta$	(C). <i>sinθ</i>	(D). <i>cotθ</i>
	PART	- 11	
Note : Answer any 10 questic	10 imes 2 = 20		
15. Let $A = \{1, 2, 3\}$ and $B =$	$\{x \text{ is a prime number less } \}$	than 10 }. Find $A \times B$ and B	$\times A.$
16. Let $A = \{1, 2, 3, 4\}$ and	$B = N$. Let $f : A \to B$ be o	defined by $f(x) = x^3$, then	
(i). Find the range of f .	(ii). Identify t	he type of function.	
17. If $13824 = 2^a \times 3^b$, then	find a and b.		
18. Find the number of terms	in the A.P. 3 , 6 , 9 , 12 ,	, 111.	
19. Compute x , such that 10^4	$x^{\pm} \equiv x \pmod{19}.$		
20. Simplify: $\frac{x^3}{x-y} + \frac{y^3}{y-x}$			
21. Find the zeros of the quad	The formula of the second sec	+ 12	
22. Find the sum and product	of the roots of the equatior	$x : 8x^2 - 25 = 0$	
23. If Δ ABC \sim Δ DEF such that	t area of Δ ABC is 9 cm ² a	and the area of ΔDEF is 16	cm ² and
BC = 2.1 cm. Find the leng	gth of EF.		5 ⁵
24. In the given figure, AD is t	the bisector of $\angle A$. If BD = 4	cm, DC = 3cm and AB = 6cm, 1	B
		(1,2) P(k,2) and C(2)	$\frac{D}{4} cm D 3 cm$

25. If the area of the triangle formed by the vertices A (-1,2), B (k,-2) and C (7,4) (taken in \overline{brder})⁹ is

C

22 sq.units, find the value of *k*.

26. Show that the given points are collinear. (-3,-4) , (7 , 2) and (12 , 5).

27. Prove that $\sqrt{\frac{1+\cos\theta}{1-\cos\theta}} = \csc\theta + \cot\theta$

28. Show that the straight lines 3x - 5y + 7 = 0 and 15x + 9y + 4 = 0 are perpendicular.

29. Let $A = \{x \in W \mid x < 2\}$, $B = \{x \in N \mid 1 < x \le 4\}$ and $C = \{3, 5\}$. Verify that $A \times (B \cap C) = (A \times B) \cap (A \times C)$.

30. Let *A* = {1, 2, 3, 4 } *and B* = {2, 5, 8, 11, 14 } be two sets. Let *f* : *A* → *B* be a function given by *f* (*x*) = 3x - 1. Represent this function

- (i). by arrow diagram (ii). in a table form
- (iii). as a set of ordered pairs (iv). in a graphical form.

31. In a G.P , 9^{th} term is 32805 and 6^{th} term is 1215. Find the 12^{th} term.

- 32. Rekha has 15 square colour papers of sizes 10cm, 11cm, 12cm,....., 24cm. How much area can be decorated with these colour papers?.
- 33. Find the HCF of 396 , 504 , 636.
- 34. Find the GCD of the polynomials $x^3 + x^2 x + 2$, $2x^3 5x^2 + 5x 3$
- 35. Find the square root of $64x^4 16x^3 + 17x^2 2x + 1$
- 36. Simplify: $\frac{a^2 16}{a^3 8} \times \frac{2a^2 3a 2}{2a^2 + 9a + 4} \div \frac{3a^2 11a 4}{a^2 2a + 4}$
- 37. State and prove Angle Bisector Theorem.
- 38. Two poles of height 'a' metres and 'b' metres are 'p' metres apart. Prove that the height of the point of intersection of the lines joining the top of each pole to the foot of the opposite pole is given by $\frac{ab}{a+b}$ metres.
- 39. Find the area of the quadrilateral whose vertices are at (-9, -2), (-8, -4), (2, 2) and (1, -3).
- 40. Find the equation of the perpendicular bisector of the line joining the points A(-4, 2) and B(6, -4).
- 41. If $\frac{\cos \alpha}{\cos \beta} = m$ and $\frac{\cos \alpha}{\sin \beta} = n$ then prove that $(m^2 + n^2) \cos^2 \beta = n^2$.
- 42. Show that the given points form a parallelogram A(-2,0), B(2,4), C(4,1) and D(0,-3) form a parallelogram.

Note : Answer the following questions.

43.(a). Construct a triangle similar to a given triangle LMN with its sides equal to $\frac{3}{5}$ of the corresponding sides of the triangle LMN. (Scale factor $\frac{3}{5} < 1$).

(OR)

- (b). Draw a triangle ABC of base BC = 8 cm, $\angle A = 60^{\circ}$ and the bisector of $\angle A$ meets BC at D such that BD = 6cm.
- 44.(a). Varshika drew 6 circles with different sizes. Draw a graph for the relationship between the diameter and Circumference (approximately related) of each circle as shown in the table and use it to find the circumference of a circle when its diameter is 6 cm.

Diameter (x) cm	1	2	3	4	5
Circumference (y) cm	3.1	6.2	9.3	12.4	15.5

(OR)

(b). Draw the graph of xy = 24 , x , y > 0 . Using the graph find ,

(i). y when x = 3 and (ii). x when y = 6