\square

X STD - MATHEMATICS

Time Allowed : $\mathbf{3}$ hours
Maximum Marks : 100
PART - I

Note: (i). Answer all the questions.

$$
14 \times 1=14
$$

(ii). Choose the most appropriate answer form the given four alternatives and write the option code and the corresponding answer.

1. $\mathrm{A}=\{\mathrm{a}, \mathrm{b}, \mathrm{p}\}, \mathrm{B}=\{2,3\}, \mathrm{C}=\{\mathrm{p}, \mathrm{q}, \mathrm{r}, \mathrm{s}\}$, then $n[(A \cup C) \times B]$ is \qquad
(A) 8
(B) 20
(C) 12
(D) 16
2. Let $\mathrm{A}=\{1,2,3,4\}$ and $\mathrm{B}=\{4,8,9,10\}$. A function $f: A \rightarrow B$ given by $f=\{(1,4),(2,8),(3,9),(4,10)\}$ is a
(A). Many - one function
(B).Identity function
(C). One to one function
(D). Into function
3. The least number that is divisible by all the numbers from 1 to 10 (both inclusive) is. \qquad
(A). 2025
(B). 5220
(C). 5025
(D). 2520
4. The value of $\left(1^{3}+2^{3}+3^{3}+\cdots+15^{3}\right)-(1+2+3+\cdots \ldots \ldots+15)$ is \qquad
(A). 14400
(B). 14200
(C). 14280
(D). 14520
5. The sequence $-3,-3,-3,-3$, \qquad is \qquad
(A). an A.P only
(B). a G.P only
(C). neither A.P nor G.P
(D). both A.P and G.P
6. $\frac{x}{x^{2}-25}-\frac{8}{x^{2}+6 x+5}$ gives.
(A). $\frac{x^{2}-7 x+40}{(x-5)(x+5)}$
(B). $\frac{x^{2}+7 x+40}{(x-5)(x+5)(x+1)}$
(C). $\frac{x^{2}-7 x+40}{\left(x^{2}-25\right)(x+1)}$
(D). $\frac{x^{2}+10}{\left(x^{2}-25\right)(x+1)}$
7. Graph of a linear polynomial is a \qquad
(A). straight line
(B). circle
(C). Parabola
(D). hyperbola
8. If the discriminant of $3 x^{2}-14 x+k=0$ is 100 , then $k=$ \qquad
(A) .8
(B). 32
(C). 16
(D). 24
9. If in $\triangle A B C, D E \| B C, A B=3.6 \mathrm{~cm}, \mathrm{AC}=2.4 \mathrm{~cm}$ and $\mathrm{AD}=2.1 \mathrm{~cm}$, then the length of AE is \qquad
(A). 1.4 cm
(B). 1.8 cm
(C). 1.2 cm
(D). 1.05 cm
10. In $\triangle L M N, \angle L=60^{\circ}, \angle M=50^{\circ}$. If $\triangle L M N \sim \triangle P Q R$, then the value of $\angle R$ is. \qquad
(A). 40°
(B). 70°
(C). 30°
(D). 110°
11. If $(5,7),(3, p)$ and $(6,6)$ are collinear, then the value of p is \qquad
(A). 3
(B). 6
(C). 9
(D). 12
12. The point of intersection of $3 x-y=4$ and $x+y=8$ is \qquad
(A).(5,3)
(B). $(2,4)$
(C). $(3,5)$
(D). $(4,4)$
13. The points $A(4,4), B(3,5), C(-1,-1)$ form a
(A). Right angle triangle
(B). Isosceles triangle
(C). Equilateral triangle
(D). Collinear
14. $\tan \theta \operatorname{cosec}^{2} \theta-\tan \theta$ is equal to \qquad
(A). $\sec \theta$
(B). $\cot ^{2} \theta$
(C) $\sin \theta$
(D). $\cot \theta$

PART - II

Note : Answer any 10 questions. Question No. 28 is compulsory.
$10 \times 2=20$
15. Let $A=\{1,2,3\}$ and $B=\{x$ is a prime number less than 10$\}$. Find $A \times B$ and $B \times A$.
16. Let $A=\{1,2,3,4\}$ and $B=N$. Let $f: A \rightarrow B$ be defined by $f(x)=x^{3}$, then
(i). Find the range of f.
(ii). Identify the type of function.
17. If $13824=2^{a} \times 3^{b}$, then find a and b.
18. Find the number of terms in the A.P. $3,6,9,12, \ldots . . ., 111$.
19. Compute x, such that $10^{4} \equiv x(\bmod 19)$.
20. Simplify : $\frac{x^{3}}{x-y}+\frac{y^{3}}{y-x}$
21. Find the zeros of the quadratic expression : $x^{2}+8 x+12$
22. Find the sum and product of the roots of the equation : $8 x^{2}-25=0$
23. If $\triangle A B C \sim \triangle D E F$ such that area of $\triangle A B C$ is $9 \mathrm{~cm}^{2}$ and the area of $\triangle D E F$ is $16 \mathrm{~cm}^{2}$ and $B C=2.1 \mathrm{~cm}$. Find the length of $E F$.
24. In the given figure, $A D$ is the bisector of $\angle A$. If $B D=4 \mathrm{~cm}, D C=3 \mathrm{~cm}$ and $A B=6 \mathrm{~cm}$, find $A C$.

 22 sq.units, find the value of k.
26. Show that the given points are col inear $(-3,-4),(7,2)$ and $(12,5)$.
27. Prove that $\sqrt{\frac{1+\cos \theta}{1-\cos \theta}}=\operatorname{cosec} \theta+\cot \theta$
28. Show that the straight lines $3 x-5 y+7=0$ and $15 x+9 y+4=0$ are perpendicular.

Note : Answer any 10 questions. Question No. 42 is compulsory.
$10 \times 5=50$
29. Let $A=\{x \in W \mid x<2\}, B=\{x \in N \mid 1<x \leq 4\}$ and $C=\{3,5\}$. Verify that $A \times(B \cap C)=(A \times B) \cap(A \times C)$.
30. Let $A=\{1,2,3,4\}$ and $B=\{2,5,8,11,14\}$ be two sets. Let $f: A \rightarrow B$ be a function given by $f(x)=3 x-1$. Represent this function
(i). by arrow diagram
(ii). in a table form
(iii). as a set of ordered pairs
(iv). in a graphical form.
31. In a G.P , $9^{\text {th }}$ term is 32805 and $6^{\text {th }}$ term is 1215 . Find the $12^{\text {th }}$ term.
32. Rekha has 15 square colour papers of sizes $10 \mathrm{~cm}, 11 \mathrm{~cm}, 12 \mathrm{~cm}, \ldots, 24 \mathrm{~cm}$. How much area can be decorated with these colour papers?.
33. Find the HCF of $396,504,636$.
34. Find the GCD of the polynomials $x^{3}+x^{2}-x+2,2 x^{3}-5 x^{2}+5 x-3$
35. Find the square root of $64 x^{4}-16 x^{3}+17 x^{2}-2 x+1$
36. Simplify: $\frac{a^{2}-16}{a^{3}-8} \times \frac{2 a^{2}-3 a-2}{2 a^{2}+9 a+4} \div \frac{3 a^{2}-11 a-4}{a^{2}-2 a+4}$
37. State and prove Angle Bisector Theorem.
38. Two poles of height ' a ' metres and ' b ' metres are ' p ' metres apart. Prove that the height of the point of intersection of the lines joining the top of each pole to the foot of the oposite pole is given by $\frac{a b}{a+b}$ metres.
39. Find the area of the quadrilateral whose vertices are at $(-9,-2),(-8,-4),(2,2)$ and $(1,-3)$.
40. Find the equation of the perpendicular bisector of the line joining the points $A(-4,2)$ and $B(6,-4)$.
41. If $\frac{\cos \alpha}{\cos \beta}=m$ and $\frac{\cos \alpha}{\sin \beta}=n$ then prove that $\left(m^{2}+n^{2}\right) \cos ^{2} \beta=n^{2}$.
42. Show that the given points form a parallelogram $A(-2,0), B(2,4), C(4,1)$ and $D(0,-3)$ form a parallelogram.

Note : Answer the following questions.
43.(a). Construct a triangle similar to a given triangle LMN with its sides equal to $\frac{3}{5}$ of the corresponding sides of the triangle LMN. (Scale factor $\frac{3}{5}<1$).
(OR)
(b). Draw a triangle $A B C$ of base $B C=8 \mathrm{~cm}, \angle A=60^{\circ}$ and the bisector of $\angle A$ meets $B C$ at D such that $B D=6 \mathrm{~cm}$.
44.(a). Varshika drew 6 circles with different sizes. Draw a graph for the relationship between the diameter and Circumference (approximately related) of each circle as shown in the table and use it to find the circumference of a circle when its diameter is 6 cm .

Diameter (x) cm	1	2	3	4	5
Circumference (y) cm	3.1	6.2	9.3	12.4	15.5

(OR)
(b). Draw the graph of $x y=24, x, y>0$. Using the graph find,
(i). y when $x=3$
and
(ii). x when $y=6$

