Reg. No. : \qquad
Name :
\qquad

SAY / IMPROVEMENT EXAMINATION, JULY - 2022

Part - III
 MATHEMATICS (COMMERCE)

Time : 2 Hours
Maximum : 60 Scores
Cool-off time : 15 Minutes

General Instructions to Candidates :

- There is a 'Cool-off time' of 15 minutes in addition to the writing time.
- Use the 'Cool-off time' to get familiar with questions and to plan your answers.
- Read questions carefully before answering.
- Read the instructions carefully.
- Calculations, figures and graphs should be shown in the answer sheet itself.
- Malayalam version of the questions is also provided.
- Give equations wherever necessary.
- Electronic devices except non-programmable calculators are not allowed in the Examination Hall.

PART - I

A. Answer any five questions from 1 to 9. Each carries 1 score.

1. Let R be a relation is the set \mathbb{N} of natural numbers given by $R=\{(a, b): a=b\}$.

Choose the correct answer :
(i) $(2,3) \in \mathrm{R}$
(ii) $(3,2) \in \mathrm{R}$
(iii) $(2,2) \in \mathrm{R}$
(iv) $(6,7) \in \mathrm{R}$
2. If $x \in[-1,1]$, then $\sin ^{-1} x+\cos ^{-1} x$ is \qquad .
3. Evaluate the determinant $\left|\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right|$
4. The slope of the tangent to the curve $\mathrm{y}=x^{2}$ at $x=2$ is \qquad .
5. The area of the region bounded by the curve $\mathrm{y}=\mathrm{f}(x)$, the x-axis and the lines at $x=\mathrm{a}$ and $x=\mathrm{b}$ is given by \qquad -
6. Write the order of the differential equation $\mathrm{y} \square \square \square+2 \mathrm{y} \square \square+\mathrm{y} \square=0$
7. Two non-zero vectors $\overline{\mathrm{a}}$ and $\overline{\mathrm{b}}$ are parallel to each other if
(i) $\overline{\mathrm{a}} \cdot \overline{\mathrm{b}}=0$
(ii) $\overline{\mathrm{a}} \times \overline{\mathrm{b}}=0$
(iii) $\overline{\mathrm{a}} \cdot \overline{\mathrm{b}}=1$
(iv) $\overline{\mathrm{a}} \times \overline{\mathrm{b}}=1$
8. Find the vector equation of a line through the point $(5,2,-4)$ and which is parallel to the vector $3 \overline{\mathrm{i}}+2 \overline{\mathrm{j}}-8 \overline{\mathrm{k}}$.
9. If E and F are two dependent events, then which among the following is correct?
(i) $\mathrm{P}(\mathrm{E} \cap \mathrm{F}) \neq \mathrm{P}(\mathrm{E}) \mathrm{P}(\mathrm{F})$
(ii) $\mathrm{P}(\mathrm{E} \cap \mathrm{F})=\mathrm{P}(\mathrm{E}) \mathrm{P}(\mathrm{F})$
(iii) $\mathrm{P}(\mathrm{E} / \mathrm{F})=\mathrm{P}(\mathrm{E}), \mathrm{P}(\mathrm{F}) \neq 0$
(iv) $\mathrm{P}(\mathrm{F} / \mathrm{E})=\mathrm{P}(\mathrm{F}), \mathrm{P}(\mathrm{E}) \neq 0$

PART－I

 1 ๘ฺை

（i）$(2,3) \in R$
（ii）$(3,2) \in \mathrm{R}$
（iii）$(2,2) \in \mathrm{R}$
（iv）$(6,7) \in \mathrm{R}$

2．$x \in[-1,1]$ ®ூめコロ $\sin ^{-1} x+\cos ^{-1} x$ \qquad （8D）

 \qquad

 \qquad （अDద్jM

（i）$\overline{\mathrm{a}} \cdot \overline{\mathrm{b}}=0$
（ii）$\overline{\mathrm{a}} \times \overline{\mathrm{b}}=0$
（iii）$\overline{\mathrm{a}} \cdot \overline{\mathrm{b}}=1$
（iv）$\overline{\mathrm{a}} \times \overline{\mathrm{b}}=1$

（i） $\mathrm{P}(\mathrm{E} \cap \mathrm{F}) \neq \mathrm{P}(\mathrm{E}) \mathrm{P}(\mathrm{F})$
（ii） $\mathrm{P}(\mathrm{E} \cap \mathrm{F})=\mathrm{P}(\mathrm{E}) \mathrm{P}(\mathrm{F})$
（iii） $\mathrm{P}(\mathrm{E} / \mathrm{F})=\mathrm{P}(\mathrm{E}), \mathrm{P}(\mathrm{F}) \neq 0$
（iv） $\mathrm{P}(\mathrm{F} / \mathrm{E})=\mathrm{P}(\mathrm{F}), \mathrm{P}(\mathrm{E}) \neq 0$

B. Answer all questions from 10 to 13. Each carries 1 score.

10. The principal value of $\sin ^{-1} \frac{1}{\sqrt{2}}$ is \qquad .
(i) $\frac{\pi}{4}$
(ii) $\frac{\pi}{3}$
(iii) $\frac{\pi}{6}$
(iv) $\frac{\pi}{2}$
11. If A is a square matrix in which two rows are identical, then the value of $|\mathrm{A}|$ is \qquad .
(i) 1
(ii) -1
(iii) 0
(iv) 2
12. $\frac{\mathrm{d}}{\mathrm{d} x} \mathrm{e}^{x}=$ \qquad .
(i) e^{-x}
(ii) e^{x}
(iii) $\log x$
(iv) $-\log x$
13. If l, m and n are the direction cosines of a vector then $l^{2}+\mathrm{m}^{2}+\mathrm{n}^{2}$ is \qquad .
(i) 1
(ii) 0
(iii) 2
(iv) -1

PART - II

A. Answer any two questions from 14 to 17. Each carries 2 scores.
14. Construct a 2×2 matrix $A=\left[a_{i j}\right]$, whose elements are given by $\mathrm{a}_{\mathrm{ij}}=2 \mathrm{i}-\mathrm{j}$.
15. Find the rate of change of the area of a circle with respect to its radius r when $r=3 \mathrm{~cm}$.
16. Find the slope of the normal to the curve $\mathrm{y}=2 x^{2}+3 \sin x$ at $x=0$.
17. Find the general solution of the differential equation $\frac{d y}{d x}=\frac{1+y^{2}}{1+x^{2}}$.

$$
(4 \times 1=4)
$$

 \qquad

(i) $\frac{\pi}{4}$
(ii) $\frac{\pi}{3}$
(iii) $\frac{\pi}{6}$
(iv) $\frac{\pi}{2}$

\qquad (8冋)
(i) 1
(ii) -1
(iii) 0
(iv) 2
12. $\frac{\mathrm{d}}{\mathrm{d} x} \mathrm{e}^{x}=$ \qquad .
(i) e^{-x}
(ii) e^{x}
(iii) $\log x$
(iv) $-\log x$

\qquad

(i) 1
(ii) 0
(iii) 2
(iv) -1

PART - II

B. Answer any two questions from 18 to 20. Each carries $\mathbf{2}$ scores.

18. Find the second order derivative of $\mathrm{y}=x^{2}+3 x+2$.
19. Verify that the function $\mathrm{y}=\mathrm{e}^{-3 x}$ is a solution of the differential equation $\frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}-6 y=0$
20. Find the direction cosines of the line passing through the two points $(-2,4,-5)$ and (1, 2, 3)

PART - III

A. Answer any three questions from 21 to 24. Each carries $\mathbf{3}$ scores.
21. Let $\mathrm{f}:\{2,3,4,5\} \rightarrow\{3,4,5,9\}$
and $g:\{3,4,5,9\} \rightarrow\{7,11,15\}$ be functions defined as
$\mathrm{f}(2)=3, \mathrm{f}(3)=4, \mathrm{f}(4)=\mathrm{f}(5)=5$
and $g(3)=g(4)=7$ and $g(5)=g(9)=11$. Find gof.
22. Let $\mathrm{A}=\left[\begin{array}{ll}2 & 4 \\ 3 & 2\end{array}\right], \mathrm{B}=\left[\begin{array}{cc}1 & 3 \\ -2 & 5\end{array}\right]$
find: (i) $\mathrm{A}+\mathrm{B}$ (ii) AB
23. Find the area of a parallelogram whose adjacent sides are given by the vectors $\overline{\mathrm{a}}=\overline{\mathrm{i}}-\overline{\mathrm{j}}+3 \overline{\mathrm{k}}$ and $\overline{\mathrm{b}}=2 \overline{\mathrm{i}}-7 \overline{\mathrm{j}}+\overline{\mathrm{k}}$
24. The random variable X has a probability distribution $\mathrm{P}(\mathrm{X})$ of the following form, where K is a constant
$\mathrm{P}(\mathrm{X})= \begin{cases}\mathrm{k} & \text { if } x=0 \\ 2 \mathrm{k} & \text { if } x=1 \\ 3 \mathrm{k} & \text { if } x=2 \\ 0 & \text { otherwise }\end{cases}$
(i) Determine the value of k .
(ii) Find $\mathrm{P}(\mathrm{X}<2)$
 2 セサை

PART－III

 3 ⿷匚ை
$(3 \times 3=9)$
21．f：$\{2,3,4,5\} \rightarrow\{3,4,5,9\}$
$\mathrm{g}:\{3,4,5,9\} \rightarrow\{7,11,15\}$

$\mathrm{f}(2)=3, \mathrm{f}(3)=4, \mathrm{f}(4)=\mathrm{f}(5)=5$
$\mathrm{g}(3)=\mathrm{g}(4)=7, \mathrm{~g}(5)=\mathrm{g}(9)=11$

22． $\mathrm{A}=\left[\begin{array}{ll}2 & 4 \\ 3 & 2\end{array}\right], \mathrm{B}=\left[\begin{array}{cc}1 & 3 \\ -2 & 5\end{array}\right]$ ఆाळวळ

$\mathrm{P}(\mathrm{X})= \begin{cases}\mathrm{k} & \text { if } x=0 \\ 2 \mathrm{k} & \text { if } x=1 \\ 3 \mathrm{k} & \text { if } x=2 \\ 0 & \text { otherwise }\end{cases}$

B. Answer any two questions from $\mathbf{2 5}$ to 27. Each carries $\mathbf{3}$ scores.
25. Let $*$ be the binary operation on the set \mathbb{N} of natural numbers given by a $* \mathrm{~b}=\mathrm{LCM}$ of a and b
(i) Find $5 * 7$ and $20 * 16$
(ii) Is * commutative
26. By using elementary operations, find the inverse of the matrix $\left[\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right]$
27. An urn containing 10 black and 5 white balls. Two balls are drawn from the urn one after the other without replacement. What is the probability that both drawn balls are black ?

PART - IV

A. Answer any three questions from 28 to 31. Each carries 4 scores.
28. (i) $\tan ^{-1} x+\tan ^{-1} y=$ \qquad
(ii) $\tan ^{-1} \frac{1}{2}+\tan ^{-1} \frac{2}{11}=\tan ^{-1} \frac{3}{4}$
29. Examine the continuity of the function f defined by
$\mathrm{f}(x)=\left\{\begin{array}{ll}2 x+3 & \text { if } x \leq 2 \\ 2 x-3 & \text { if } x>2\end{array}\right.$ at $x=2$
30. Find the intervals in which the function f given by $\mathrm{f}(x)=x^{2}-4 x+6$ is
(i) increasing
(ii) decreasing
31. Find the shortest distance between the two lines whose vector equations are
$\overline{\mathrm{r}}=\overline{\mathrm{i}}+\overline{\mathrm{j}}+\lambda(2 \overline{\mathrm{i}}-\overline{\mathrm{j}}+\overline{\mathrm{k}})$
$\overline{\mathrm{r}}=2 \overline{\mathrm{i}}+\overline{\mathrm{j}}-\overline{\mathrm{k}}+\mu(3 \overline{\mathrm{i}}-5 \overline{\mathrm{j}}+2 \overline{\mathrm{k}})$
 3 ⿷ฺை
（ $3 \times 2=6$ ）
 $\mathrm{a} * \mathrm{~b}=\operatorname{LCM}\{\mathrm{a}, \mathrm{b}\}$

PART－IV

 4 セேைoరి வiఁை．
28．（i） $\tan ^{-1} x+\tan ^{-1} y=$ \qquad ．
（ii）๑லைிிிிறூேை $\tan ^{-1} \frac{1}{2}+\tan ^{-1} \frac{2}{11}=\tan ^{-1} \frac{3}{4}$

29． f ก円 m ก
$f(x)=\left\{\begin{array}{cc}2 x+3 & x \leq 2 \\ 2 x-3 & x>2\end{array}\right.$

（ii）యி（હிறிிறைృం（decreasing）

31．$\overline{\mathrm{r}}=\overline{\mathrm{i}}+\overline{\mathrm{j}}+\lambda(2 \overline{\mathrm{i}}-\overline{\mathrm{j}}+\overline{\mathrm{k}})$
$\overline{\mathrm{r}}=2 \overline{\mathrm{i}}+\overline{\mathrm{j}}-\overline{\mathrm{k}}+\mu(3 \overline{\mathrm{i}}-5 \overline{\mathrm{j}}+2 \overline{\mathrm{k}})$

B. Answer any one question from 32 to 33 . Each carries 4 scores.
32. Show that $\left|\begin{array}{lll}1 & a & a^{2} \\ 1 & b & b^{2} \\ 1 & c & c^{2}\end{array}\right|=(a-b)(b-c)(c-a)$
33. If a fair coin is tossed 10 times, find the probability of exactly six heads.

PART - V

Answer any two questions from 34 to 36. Each carries 6 scores.
34. (i) Let $\mathrm{A}=\left[\begin{array}{ccc}1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1\end{array}\right]$. Check whether A is a singular matrix.
(ii) Find adj A.
(iii) Solve the following system of linear equations using matrix method.

$$
\begin{aligned}
& x-y+z=4 \\
& 2 x+y-3 z=0 \\
& x+y+z=2
\end{aligned}
$$

35. Evaluate :
(i) $\int \sin m x d x$
(ii) $\int \frac{1}{x^{2}-16} \mathrm{~d} x$
(iii) $\int x e^{x} \mathrm{~d} x$
36. Solve the following LPP graphically :

Maximize $\mathrm{z}=4 x+\mathrm{y}$
Subject to
$x+y \leq 5$
$3 x+y \leq 9$
$x \geq 0, y \geq 0$

$(1 \times 4=4)$

PART - V

 6 ©ִை

$$
\begin{align*}
& x-y+z=4 \tag{2}\\
& 2 x+y-3 z=0 \\
& x+y+z=2
\end{align*}
$$

(i) $\int \sin m x d x$
(ii) $\int \frac{1}{x^{2}-16} \mathrm{~d} x$
(iii) $\int x e^{x} \mathrm{~d} x$
 ه๐लுమ. :
Maximize $\mathrm{z}=4 x+\mathrm{y}$
Subject to
$x+\mathrm{y} \leq 5$
$3 x+\mathrm{y} \leq 9$
$x \geq 0, \mathrm{y} \geq 0$

