

Reg. No. :

SAY / IMPROVEMENT EXAMINATION, JULY – 2022

Part – III

MATHEMATICS (COMMERCE)

Time : 2 Hours

Maximum : 60 Scores

Cool-off time : 15 Minutes

General Instructions to Candidates :

- There is a 'Cool-off time' of 15 minutes in addition to the writing time.
- Use the 'Cool-off time' to get familiar with questions and to plan your answers.
- Read questions carefully before answering.
- Read the instructions carefully.
- Calculations, figures and graphs should be shown in the answer sheet itself.
- Malayalam version of the questions is also provided.
- Give equations wherever necessary.
- Electronic devices except non-programmable calculators are not allowed in the Examination Hall.

വിദ്യാർത്ഥികൾക്കുള്ള പൊതുനിർദ്ദേശങ്ങൾ :

- നിർദ്ദിഷ്ട സമയത്തിന് പുറമെ 15 മിനിറ്റ് 'കൂൾ ഓഫ് ടൈം' ഉണ്ടായിരിക്കും.
- 'കൂൾ ഓഫ് ടൈം' ചോദ്യങ്ങൾ പരിചയപ്പെടാനും ഉത്തരങ്ങൾ ആസൂത്രണം ചെയ്യാനും ഉപയോഗിക്കുക.
- ഉത്തരങ്ങൾ എഴുതുന്നതിന് മുമ്പ് ചോദ്യങ്ങൾ ശ്രദ്ധാപൂർവ്വം വായിക്കണം.
- നിർദ്ദേശങ്ങൾ മുഴുവനും ശ്രദ്ധാപൂർവ്വം വായിക്കണം.
- കണക്ക് കൂട്ടലുകൾ, ചിത്രങ്ങൾ, ഗ്രാഫുകൾ, എന്നിവ ഉത്തരപേപ്പറിൽ തന്നെ ഉണ്ടായിരിക്കണം.
- ചോദൃങ്ങൾ മലയാളത്തിലും നല്ലിയിട്ടുണ്ട്.
- ആവശ്യമുള്ള സ്ഥലത്ത് സമവാകൃങ്ങൾ കൊടുക്കണം.
- പ്രോഗ്രാമുകൾ ചെയ്യാനാകാത്ത കാൽക്കുലേറ്ററുകൾ ഒഴികെയുള്ള ഒരു ഇലക്ട്രോണിക് ഉപകരണവും പരീക്ഷാഹാളിൽ ഉപയോഗിക്കുവാൻ പാടില്ല.

PART – I

A.	Answer any five questions from 1 to 9.	Each carries 1 score.	$(5 \times 1 = 5)$
1.	Let R be a relation is the set \mathbb{N} of natural	numbers given by $R = \{(a, b) : a = b\}$.	
	Choose the correct answer :		
	(i) $(2, 3) \in \mathbb{R}$	(ii) $(3, 2) \in \mathbb{R}$	
	(iii) $(2, 2) \in \mathbb{R}$	(iv) $(6, 7) \in \mathbb{R}$	(1)
2.	If $x \in [-1, 1]$, then $\sin^{-1} x + \cos^{-1} x$ is	·	(1)
3.	Evaluate the determinant $\begin{vmatrix} 1 & 2 \\ 0 & 1 \end{vmatrix}$		(1)
Л	The slope of the tengent to the survey $x = x$	x^2 at $x = 2$ is	(1)
4.	The slope of the tangent to the curve $y = .$	x^{-} at $x - 2$ is	(1)
5.	The area of the region bounded by the c	urve $y = f(x)$, the x-axis and the lines a	t $x = a$
	and $x = b$ is given by		(1)

- 6. Write the order of the differential equation $y \square \square \square + 2y \square \square + y \square = 0$ (1)
- 7. Two non-zero vectors \overline{a} and \overline{b} are parallel to each other if
 - (i) $\overline{a} \cdot \overline{b} = 0$ (ii) $\overline{a} \times \overline{b} = 0$ (iii) $\overline{a} \cdot \overline{b} = 1$ (iv) $\overline{a} \times \overline{b} = 1$ (1)
- 8. Find the vector equation of a line through the point (5, 2, -4) and which is parallel to the vector $3\overline{i} + 2\overline{j} - 8\overline{k}$. (1)
- 9. If E and F are two dependent events, then which among the following is correct ?
 - (i) $P(E \cap F) \neq P(E) P(F)$ (ii) $P(E \cap F) = P(E) P(F)$ (iii) $P(E / F) = P(E), P(F) \neq 0$ (iv) $P(F / E) = P(F), P(E) \neq 0$ (1)

PART – I

- A. 1 മുതൽ 9 വരെയുള്ള ചോദ്യങ്ങളിൽ ഏതെങ്കിലും 5 എണ്ണത്തിന് ഉത്തരമെഴുതുക. 1 സ്കോർ വീതം. (5 × 1 = 5)
- R = {(a, b) : a = b } എന്നത് എണ്ണൽ സംഖൃകളുടെ ഗണമായ № ൽ നിർവ്വചിച്ചിരിക്കുന്ന ഒരു ബന്ധമാണ്. താഴെകൊടുത്തിരിക്കുന്നവയിൽ ശരിയായിട്ടുള്ളത് ഏത് :
 - (i) $(2, 3) \in \mathbb{R}$ (ii) $(3, 2) \in \mathbb{R}$ (iii) $(2, 2) \in \mathbb{R}$ (iv) $(6, 7) \in \mathbb{R}$ (1)

3.
$$\begin{vmatrix} 1 & 2 \\ 0 & 1 \end{vmatrix}$$
 എന്ന ഡിറ്റർമിനന്റിന്റെ വില കാണുക. (1)

4. $y = x^2$ എന്ന കർവിന്റെ x = 2 ലെ സ്പർശരേഖയുടെ ചരിവ്____ ആകുന്നു. (1)

5. y = f(x) എന്ന കർവും; x-അക്ഷവും; x = a, x = b എന്നീ രേഖകളാലും ചുറ്റപ്പെട്ടിരിക്കുന്ന ഭാഗത്തിന്റെ പരപ്പളവ്____ ആകുന്നു. (1)

- 6. y□□□+2y□□+y□=0 എന്ന ഡിഫറൻഷൃൽ ഇക്വേഷന്റെ ഓർഡർ എഴുതുക. (1)
- 7. $ar{a},\,ar{b}\,$ എന്നീ സീറോ അല്ലാത്ത വെക്ടറുകൾ പരസ്പരം സമാന്തരമാണെങ്കിൽ
 - (i) $\overline{a} \cdot \overline{b} = 0$ (ii) $\overline{a} \times \overline{b} = 0$ (iii) $\overline{a} \times \overline{b} = 1$ (iv) $\overline{a} \times \overline{b} = 1$ (1)
- 8. (5, 2, -4) എന്ന ബിന്ദുവിലൂടെ കടന്നുപോകുന്നതും 3i + 2j 8k എന്ന വെക്ടറിന് സമാന്തരവുമായ രേഖയുടെ വെക്ടർ ഇക്വേഷൻ കണ്ടുപിടിക്കുക. (1)
- E, F എന്നിവ രണ്ട് ഡിപ്പന്റന്റ് ഈവൻസ് ആയാൽ താഴെപ്പറയുന്നവയിൽ ഏതാണ് ശരിയായിട്ടുള്ളത്?
 - (i) $P(E \cap F) \neq P(E) P(F)$ (ii) $P(E \cap F) = P(E) P(F)$ (iii) $P(E \cap F) = P(E) P(F)$ (iv)
 - (iii) $P(E / F) = P(E), P(F) \neq 0$ (iv) $P(F / E) = P(F), P(E) \neq 0$ (1)

3

SAY-751

P.T.O.

B.	Ansv	wer all questions from 10 to 13. Ea	ach ca	arries 1 score.	$(4 \times 1 = 4)$
10.	The	principal value of $\sin^{-1} \frac{1}{\sqrt{2}}$ is			
	(i)	$\frac{\pi}{4}$	(ii)	$\frac{\pi}{3}$	
	(iii)	$\frac{\pi}{6}$	(iv)	$\frac{\pi}{2}$	(1)
11.	If A	is a square matrix in which two row	s are	identical, then the value of A is	
	(i)	1	(ii)	-1	
	(iii)	0	(iv)	2	(1)
12.	$\frac{d}{1}e^{x}$	· =			

(i)
$$e^{-x}$$

(ii) $\log x$
(iii) $\log x$
(iv) $-\log x$
(1)

13.	If <i>l</i> , m and n are the direction cosines of a vector then $l^2 + m^2 + n^2$ is				
	(i)	1	(ii)	0	
	(iii)	2	(iv)	-1	(1)

PART – II

A.	Answer any two questions from 14 to 17. Each carries 2 scores.	$(2 \times 2 = 4)$

14. Construct a 2 × 2 matrix A = $[a_{ij}]$, whose elements are given by $a_{ij} = 2i - j$. (2)

- 15. Find the rate of change of the area of a circle with respect to its radius r when r = 3 cm. (2)
- 16. Find the slope of the normal to the curve $y = 2x^2 + 3 \sin x$ at x = 0. (2)

17. Find the general solution of the differential equation $\frac{dy}{dx} = \frac{1+y^2}{1+x^2}$. (2)

B. 10 മുതൽ 13 വരെയുള്ള എല്ലാ ചോദ്യങ്ങൾക്കും ഉത്തരമെഴുതുക. 1 സ്കോർ വീതം.

$$(4 \times 1 = 4)$$
10. $\sin^{-1} \frac{1}{\sqrt{2}} \operatorname{end} (\operatorname{alldell}_{2}) \otimes \operatorname{allell}_{2} \otimes \operatorname{agd} (\operatorname{alldell}_{2}) \otimes \operatorname{agd} (\operatorname{alldel$

(i)
$$e^{-x}$$
 (ii) e^{x}
(iii) $\log x$ (iv) $-\log x$ (1)

PART – II

A. 14 മുതൽ 17 വരെയുള്ള ചോദ്യങ്ങളിൽ ഏതെങ്കിലും 2 എണ്ണത്തിന് ഉത്തരമെഴുതുക.
 2 സ്കോർ വീതം. (2 × 2 = 4)

14.
$$A = [a_{ij}]$$
 എന്ന 2×2 മെട്രിക്സിൽ $a_{ij} = 2i - j$ ആയാൽ A നിർമ്മിക്കുക. (2)

 15. r = 3 cm ആകുമ്പോൾ ആരം r നെ അടിസ്ഥാനമാക്കി വൃത്തത്തിന്റെ പരപ്പളവിന്റെ റേറ്റ് ഓഫ് ചെയിഞ്ച് കണ്ടുപിടിക്കുക. (2)

16.
$$y = 2x^2 + 3 \sin x$$
 എന്ന കർവിന്റെ $x = 0$ യിലെ ലംബത്തിന്റെ ചരിവ് കണ്ടുപിടിക്കുക. (2)

17.
$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1+y^2}{1+x^2}$$
എന്ന ഡിഫറൻഷ്യൽ സമവാകൃത്തിന്റെ പൊതു പരിഹാരം കണ്ടുപിടിക്കുക. (2)

B. Answer any two questions from 18 to 20. Each carries 2 scores. (2	$\times 2 = 4$	4)
--	----------------	----

18. Find the second order derivative of $y = x^2 + 3x + 2$.

19. Verify that the function $y = e^{-3x}$ is a solution of the differential equation

$$\frac{\mathrm{d}^2 \mathbf{y}}{\mathrm{d}x^2} + \frac{\mathrm{d}\mathbf{y}}{\mathrm{d}x} - 6\mathbf{y} = 0 \tag{2}$$

(2)

(1)

20. Find the direction cosines of the line passing through the two points (-2, 4, -5) and (1, 2, 3)(2)

PART – III

A. Answer any three questions from 21 to 24. Each carries 3 scores. $(3 \times 3 = 9)$

21. Let $f: \{2, 3, 4, 5\} \rightarrow \{3, 4, 5, 9\}$ and $g: \{3, 4, 5, 9\} \rightarrow \{7, 11, 15\}$ be functions defined as f(2) = 3, f(3) = 4, f(4) = f(5) = 5and g(3) = g(4) = 7 and g(5) = g(9) = 11. Find gof. (3)

22. Let
$$A = \begin{bmatrix} 2 & 4 \\ 3 & 2 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 3 \\ -2 & 5 \end{bmatrix}$
find : (i) $A + B$ (ii) AB (1+2)

23. Find the area of a parallelogram whose adjacent sides are given by the vectors

$$\bar{a} = \bar{i} - \bar{j} + 3\bar{k}$$
 and $\bar{b} = 2\bar{i} - 7\bar{j} + \bar{k}$ (3)

24. The random variable X has a probability distribution P(X) of the following form, where K is a constant

$$P(X) = \begin{cases} k & \text{if } x = 0\\ 2k & \text{if } x = 1\\ 3k & \text{if } x = 2\\ 0 & \text{otherwise} \end{cases}$$
(i) Determine the value of k.

(ii) Find
$$P(X < 2)$$
 (2)

B. 18 മുതൽ 20 വരെയുള്ള ചോദ്യങ്ങളിൽ ഏതെങ്കിലും 2 എണ്ണത്തിന് ഉത്തരമെഴുതുക.
 2 സ്കോർ വീതം. (2 × 2 = 4)

$$18. y = x^2 + 3x + 2$$
 ന്റെ സെക്കന്റ് ഓർഡർ ഡെറിവേറ്റീവ് കണ്ടുപിടിക്കുക. (2)

- 19. $y = e^{-3x}$ എന്ന ഏകദം $\frac{d^2y}{dx^2} + \frac{dy}{dx} 6y = 0$ എന്ന ഡിഫറൻഷൃൽ സമവാകൃത്തിന്റെ നിർദ്ധാരണ മൂല്യം ആണോ എന്ന് പരിശോധിക്കുക. (2)
- 20. (-2, 4, -5), (1, 2, 3) എന്നീ ബിന്ദുക്കളിലൂടെ കടന്നുപോകുന്ന രേഖയുടെ ഡയറക്ഷൻ കൊസൈൻസ് കണ്ടുപിടിക്കുക. (2)

PART – III

- A. 21 മുതൽ 24 വരെയുള്ള ചോദ്യങ്ങളിൽ ഏതെങ്കിലും 3 എണ്ണത്തിന് ഉത്തരമെഴുതുക. 3 സ്കോർ വീതം. (3 × 3 = 9)
- 21. $f: \{2, 3, 4, 5\} \rightarrow \{3, 4, 5, 9\}$ $g: \{3, 4, 5, 9\} \rightarrow \{7, 11, 15\}$ എന്നീ ഏകദങ്ങളെ f(2) = 3, f(3) = 4, f(4) = f(5) = 5 g(3) = g(4) = 7, g(5) = g(9) = 11ഈ രീതിയിൽ നിർവ്വചിച്ചിരിക്കുന്നു. gof കണ്ടുപിടിക്കുക. (3)
- 22. $A = \begin{bmatrix} 2 & 4 \\ 3 & 2 \end{bmatrix}, B = \begin{bmatrix} 1 & 3 \\ -2 & 5 \end{bmatrix}$ ആയാൽ (i) A + B (ii) AB ഇവ കണ്ടുപിടിക്കുക. (1+2)
- 23. $\bar{a} = \bar{i} \bar{j} + 3\bar{k}, \ \bar{b} = 2\bar{i} 7\bar{j} + \bar{k}$ എന്നീ വെക്ടറുകൾ സമീപവശങ്ങളായി വരുന്ന സാമാന്തരികത്തിന്റെ പരപ്പളവ് കണ്ടുപിടിക്കുക. (3)
- 24. X എന്ന റാൻഡം വേരിയബിളിന്റെ പ്രോബബിലിറ്റി ഡിസ്ട്രിബ്യൂഷൻ P(X) താഴെ കൊടുത്തിരിക്കുന്ന രൂപത്തിലാണ്, K ഒരു സ്ഥിരസംഖ്യയാണ്.

$$P(X) = \begin{cases} k & \text{if } x = 0\\ 2k & \text{if } x = 1\\ 3k & \text{if } x = 2\\ 0 & \text{otherwise} \end{cases}$$

(i) k യുടെ വില കണ്ടുപിടിക്കുക. (1)

(ii) P(X < 2) കണ്ടുപിടിക്കുക.

P.T.O.

(2)

В.	Ans	wer any two questions from 25 to 27. Each carries 3 scores.	$(3 \times 2 = 6)$
25.	Let	\ast be the binary operation on the set $\mathbb N$ of natural numbers given by a \ast	b = LCM of
	a an	d b	
	(i)	Find 5 * 7 and 20 * 16	(2)
	(ii)	Is * commutative	(1)

- 26. By using elementary operations, find the inverse of the matrix $\begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$ (3)
- 27. An urn containing 10 black and 5 white balls. Two balls are drawn from the urn one after the other without replacement. What is the probability that both drawn balls are black ?(3)

PART – IV

- A. Answer any three questions from 28 to 31. Each carries 4 scores. $(3 \times 4 = 12)$
- 28. (i) $\tan^{-1} x + \tan^{-1} y =$ ____. (1)

(ii)
$$\tan^{-1}\frac{1}{2} + \tan^{-1}\frac{2}{11} = \tan^{-1}\frac{3}{4}$$
 (3)

29. Examine the continuity of the function f defined by

$$f(x) = \begin{cases} 2x+3 & \text{if } x \le 2\\ 2x-3 & \text{if } x > 2 \end{cases} \quad at \ x=2$$
(4)

- 30. Find the intervals in which the function f given by $f(x) = x^2 4x + 6$ is
 - (i) increasing(ii) decreasing(4)
- 31. Find the shortest distance between the two lines whose vector equations are

$$\overline{\mathbf{r}} = \overline{\mathbf{i}} + \overline{\mathbf{j}} + \lambda \left(2\overline{\mathbf{i}} - \overline{\mathbf{j}} + \overline{\mathbf{k}}\right)$$

$$\overline{\mathbf{r}} = 2\overline{\mathbf{i}} + \overline{\mathbf{j}} - \overline{\mathbf{k}} + \mu \left(3\overline{\mathbf{i}} - 5\overline{\mathbf{j}} + 2\overline{\mathbf{k}}\right)$$
(4)

- B. 25 മുതൽ 27 വരെയുള്ള ചോദൃങ്ങളിൽ ഏതെങ്കിലും 2 എണ്ണത്തിന് ഉത്തരമെഴുതുക. 3 സ്കോർ വീതം. (3 × 2 = 6)
 25. എണ്ണൽ സംഖൃകളുടെ ഗണമായ № ൽ നിർവ്വചിച്ചിരിക്കുന്ന ബൈനറി ക്രീയയാണ് * ; a * b = LCM {a, b}
 (i) 5 * 7, 20 * 16 ഇവ കണ്ടുപിടിക്കുക. (2)
 - (ii) * കമ്മ്യൂട്ടേറ്റീവ്ആണാ ? (1)
- 26. എലമെന്ററി ഓപ്പറേഷൻസ് ഉപയോഗിച്ച് $\begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$ എന്ന മെട്രിക്സിന്റെ ഇൻവേഴ്സ് കണ്ടുപിടിക്കുക. (3)
- 27. ഒരു കുടത്തിൽ 10 കറുപ്പും 5 വെള്ളയും പന്തുകളുണ്ട്. കുടത്തിൽ നിന്നും ഒന്നിനുപിറകെ മറ്റൊന്ന് എന്ന ക്രമത്തിൽ തിരിച്ചു വെക്കാതെ രണ്ടു പന്തുകൾ എടുക്കുന്നു. രണ്ടു പന്തുകളും കറുത്തവയാകുന്നതിനുള്ള പ്രോബബിലിറ്റി എത്രയാണ്? (3)

PART - IV

- A. 28 മുതൽ 31 വരെയുള്ള ചോദ്യങ്ങളിൽ ഏതെങ്കിലും 3 എണ്ണത്തിന് ഉത്തരമെഴുതുക. 4 സ്കോർ വീതം. (3 × 4 = 12)
- 28. (i) $\tan^{-1} x + \tan^{-1} y =$ ____. (1)
 - (ii) തെളിയിക്കുക $\tan^{-1}\frac{1}{2} + \tan^{-1}\frac{2}{11} = \tan^{-1}\frac{3}{4}$ (3)
- 29. f എന്ന ഏകദത്തിന്റെ x = 2 ലെ കണ്ടിന്യുവിറ്റി പരിശോധിക്കുക.

$$f(x) = \begin{cases} 2x+3 & x \le 2\\ 2x-3 & x > 2 \end{cases}$$
(4)

- $30. \quad f(x) = x^2 4x + 6$ എന്ന ഏകദം
 - (i) ഇൻക്രീസിങ്ങും (increasing)
 - (ii) ഡിക്രീസിങ്ങും (decreasing)

ആകുന്ന ഇന്റർവൽസ് കണ്ടുപിടിക്കുക.

31. $\overline{\mathbf{r}} = \overline{\mathbf{i}} + \overline{\mathbf{j}} + \lambda (2\overline{\mathbf{i}} - \overline{\mathbf{j}} + \overline{\mathbf{k}})$

 $\overline{\mathbf{r}} = 2\overline{\mathbf{i}} + \overline{\mathbf{j}} - \overline{\mathbf{k}} + \mu (3\overline{\mathbf{i}} - 5\overline{\mathbf{j}} + 2\overline{\mathbf{k}})$

എന്നിവ രണ്ട് രേഖകളുടെ വെക്ടർ സമവാകൃങ്ങൾ ആയാൽ ഇവ തമ്മിലുള്ള ഏറ്റവും കുറഞ്ഞ ദൂരം കണ്ടുപിടിക്കുക. (4)

SAY-751

(4)

P.T.O.

B. Answer any one question from 32 to 33. Each carries 4 scores.
$$(1 \times 4 = 4)$$

32. Show that
$$\begin{vmatrix} 1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2 \end{vmatrix} = (a-b)(b-c)(c-a)$$
 (4)

33. If a fair coin is tossed 10 times, find the probability of exactly six heads. (4)

PART – V

Answer any two questions from 34 to 36. Each carries 6 scores.
$$(6 \times 2 = 12)$$

34. (i) Let
$$A = \begin{bmatrix} 1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1 \end{bmatrix}$$
. Check whether A is a singular matrix. (1)

- (ii) Find adj A. (3)
- (iii) Solve the following system of linear equations using matrix method. (2)

$$x - y + z = 4$$
$$2x + y - 3z = 0$$
$$x + y + z = 2$$

35. Evaluate :

(i)
$$\int \sin mx \, dx$$
 (2)

(ii)
$$\int \frac{1}{x^2 - 16} dx$$
 (2)

(iii)
$$\int x e^x dx$$
 (2)

36. Solve the following LPP graphically :

Maximize z = 4x + ySubject to $x + y \le 5$ $3x + y \le 9$ $x \ge 0, y \ge 0$ (6)

B. 32 മുതൽ 33 വരെയുള്ള ചോദ്യങ്ങളിൽ ഏതെങ്കിലും ഒരാണ്ണത്തിന് ഉത്തരമെഴുതുക.
 4 സ്കോർ. (1 × 4 = 4)

32.
$$\begin{vmatrix} 1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2 \end{vmatrix} = (a-b)(b-c)(c-a)$$
 എന്ന് തെളിയിക്കുക. (4)

 33. ഒരു നാണയം 10 പ്രാവശ്യം എറിയുന്നെങ്കിൽ, കൃത്യമായി 6 ഹെഡ്ഡുകൾ വരുന്നതിനുള്ള സാധൃത കണ്ടുപിടിക്കുക. (4)

$\mathbf{PART}-\mathbf{V}$

34 മുതൽ 36 വരെയുള്ള ചോദ്യങ്ങളിൽ ഏതെങ്കിലും 2 എണ്ണത്തിന് ഉത്തരമെഴുതുക. 6 സ്കോർ വീതം. (6 × 2 = 12)

34. (i)
$$A = \begin{bmatrix} 1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1 \end{bmatrix} A$$
 so who will be an expression of the set o

- (ii) adj A കണ്ടുപിടിക്കുക.
 - (iii) മെട്രിക്സ് രീതി ഉപയോഗിച്ച് താഴെ തന്നിരിക്കുന്ന ലീനിയർ സമവാക്യങ്ങളുടെ പരിഹാരം കാണുക. (2)

(3)

$$x - y + z = 4$$

$$2x + y - 3z = 0$$

$$x + y + z = 2$$

35. വില കണ്ടുപിടിക്കുക :

(i)
$$\int \sin mx \, dx$$
 (2)

(ii)
$$\int \frac{1}{x^2 - 16} dx$$
 (2)

(iii)
$$\int x e^x dx$$
 (2)

 ചുവടെ തന്നിരിക്കുന്ന ലീനിയർ പ്രോഗ്രാമിങ്ങ് പ്രോബ്ലം ഗ്രാഫുപയോഗിച്ച് പരിഹാരം കാണുക. :

Maximize z = 4x + ySubject to $x + y \le 5$ $3x + y \le 9$ $x \ge 0, y \ge 0$ (6)