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PART – I 

A. Answer any five questions from 1 to 9. Each carries 1 score.  (5  1 = 5)  

1. Let R be a relation is the set  of natural numbers given by R = {(a, b) : a = b }.  

 Choose the correct answer :   

 (i) (2, 3)  R  (ii) (3, 2)  R 

 (iii) (2, 2)  R  (iv) (6, 7)  R (1) 

 

2. If x  [–1, 1], then sin–1 x + cos–1 x is _____.      (1) 

 

3. Evaluate the determinant 
10

21
   (1) 

 

4. The slope of the tangent to the curve y = x2 at x = 2 is _____. (1) 

 

5. The area of the region bounded by the curve y = f(x), the x-axis and the lines at x = a 

and x = b is given by _____.   (1) 

 

6. Write the order of the differential equation yꞌꞌꞌ + 2yꞌꞌ + yꞌ = 0  (1) 

 

7. Two non-zero vectors –a and 
–
b are parallel to each other if    

 (i) –a . 
–
b = 0  (ii) –a × 

–
b = 0 

 (iii) –a . 
–
b = 1  (iv) –a × 

–
b = 1 (1) 

 

8. Find the vector equation of a line through the point (5, 2, –4) and which is parallel to 

the vector 3
–
i + 2

–
j – 8

–
k.   (1) 

 

9. If E and F are two dependent events, then which among the following is correct ?   

 (i) P(E  F) ≠ P(E) P(F) (ii) P(E  F) = P(E) P(F) 

 (iii) P(E / F) = P(E), P(F) ≠ 0 (iv) P(F / E) = P(F), P(E) ≠ 0 (1) 
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A. 1  9    5  .             

1  . (5  1 = 5)  

1. R = {(a, b) : a = b }        
 .    :   

 (i) (2, 3)  R  (ii) (3, 2)  R 

 (iii) (2, 2)  R  (iv) (6, 7)  R (1) 

 

2. x  [–1, 1]   sin–1 x + cos–1 x _____ . (1) 

 

3. 
10

21
    .  (1) 

 

4. y = x2    x = 2    _____ .  (1) 

 

5. y = f(x)  ; x-; x = a, x = b    
  _____ .    (1) 

 

6. yꞌꞌꞌ + 2yꞌꞌ + yꞌ = 0     . (1) 

 

7. –a, 
–
b         

 (i) –a . 
–
b = 0  (ii) –a × 

–
b = 0 

 (iii) –a . 
–
b = 1  (iv) –a × 

–
b = 1 (1) 

 

8. (5, 2, – 4)    3
–
i + 2

–
j – 8

–
k   

    .  (1) 

 

9. E, F        
 ?   

 (i) P(E  F) ≠ P(E) P(F) (ii) P(E  F) = P(E) P(F) 

 (iii) P(E / F) = P(E), P(F) ≠ 0 (iv) P(F / E) = P(F), P(E) ≠ 0 (1) 
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B. Answer all questions from 10 to 13. Each carries 1 score.  (4  1 = 4) 

10. The principal value of sin–1 
1
2

 is _____. 

 (i) 

4   (ii) 


3  

 (iii) 

6   (iv) 


2  (1) 

 

11. If A is a square matrix in which two rows are identical, then the value of | A | is _____.   

 (i) 1   (ii) –1   

 (iii) 0   (iv) 2 (1)   

 

12. 
d
dx ex = _______.     

 (i) e–x   (ii) ex   

 (iii) log x   (iv) – log x (1)   

 

13. If l, m and n are the direction cosines of a vector then l2 + m2 + n2 is _______. 

 (i) 1   (ii) 0   

 (iii) 2   (iv) –1 (1)   

 

PART – II 

A. Answer any two questions from 14 to 17. Each carries 2 scores.  (2  2 = 4)  

14. Construct a 2 × 2 matrix A = [aij], whose elements are given by aij = 2i – j. (2) 

 

15. Find the rate of change of the area of a circle with respect to its radius r when r = 3 cm.  (2) 

 

16. Find the slope of the normal to the curve y = 2x2 + 3 sin x at x = 0. (2) 

 

17. Find the general solution of the differential equation 
dy
dx  = 

1 + y2

1 + x2 . (2) 
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      (4  1 = 4) 

10. sin–1 
1
2

    _____ .  

 (i) 

4   (ii) 


3  

 (iii) 

6   (iv) 


2  (1) 

 

11.        A,  | A |   
_____ .  

 (i) 1   (ii) –1   

 (iii) 0   (iv) 2 (1)   

 

12. 
d
dx ex = _______.     

 (i) e–x   (ii) ex   
 (iii) log x   (iv) – log x (1)   

 

13. l, m, n      , l2 + m2 + n2 = 

_______ .  
 (i) 1   (ii) 0   

 (iii) 2   (iv) –1 (1)   

 

PART – II 

A. 14  17    2  .             

2  . (2  2 = 4)  

 

14. A = [aij]  2 × 2  aij = 2i – j  A .  (2) 

 

15. r = 3 cm   r      
  .    (2) 

 

16. y = 2x2 + 3 sin x   x = 0    . (2) 

 

17. 
dy
dx  = 

1 + y2

1 + x2      . (2) 
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B. Answer any two questions from 18 to 20. Each carries 2 scores.  (2  2 = 4) 

18. Find the second order derivative of y = x2 + 3x + 2. (2) 

 

19. Verify that the function y = e–3x is a solution of the differential equation 

 
d2y
dx2 + 

dy
dx – 6y = 0    (2) 

 

20. Find the direction cosines of the line passing through the two points (–2, 4, –5)                      

and (1, 2, 3)    (2) 

 

PART – III 

A. Answer any three questions from 21 to 24. Each carries 3 scores.  (3  3 = 9) 

21. Let f : {2, 3, 4, 5}  {3, 4, 5, 9}  

 and g : {3, 4, 5, 9}  {7, 11, 15} be functions defined as  

 f(2) = 3, f(3) = 4, f(4) = f(5) = 5  

 and g(3) = g(4) = 7 and g(5) = g(9) = 11. Find gof.  (3) 

 

22. Let A = 







23

42
, B = 








 52

31
  

 find : (i) A + B  (ii) AB   (1+2) 

 

23. Find the area of a parallelogram whose adjacent sides are given by the vectors  

 –a = 
–
i – 

–
j + 3

–
k and 

–
b = 2

–
i – 7

–
j + 

–
k   (3) 

 

24. The random variable X has a probability distribution P(X) of the following form, where 

K is a constant  

 P(X) = 















otherwise      0 

2   if3k     

1   if2k     

0   ifk       

x

x

x

 

 (i) Determine the value of k.   (1) 

 (ii) Find P(X < 2)   (2) 
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B. 18  20    2  .             

2  .   (2  2 = 4) 

18. y = x2 + 3x + 2     . (2) 

 

19. y = e–3x   
d2y
dx2 + 

dy
dx – 6y = 0    

    .  (2) 

 

20. (–2, 4, –5), (1, 2, 3)      
 .   (2) 

 

PART – III 

A. 21  24    3  .             

3  .   (3  3 = 9) 

21. f : {2, 3, 4, 5}  {3, 4, 5, 9}  

 g : {3, 4, 5, 9}  {7, 11, 15}  
    
 f(2) = 3, f(3) = 4, f(4) = f(5) = 5  

 g(3) = g(4) = 7, g(5) = g(9) = 11 

   . gof .   (3) 

 

22. A = 







23

42
, B = 








 52

31
  

 (i) A + B  (ii) AB  .    (1+2) 

 

23. –a = 
–
i – 

–
j + 3

–
k, 

–
b = 2

–
i – 7

–
j + 

–
k     

  .  (3) 

 

24. X      P(X)  
 , K  .  

 P(X) = 















otherwise      0 

2   if3k     

1   if2k     

0   ifk       

x

x

x

 

 (i) k   .   (1) 

 (ii) P(X < 2) .   (2) 
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B. Answer any two questions from 25 to 27. Each carries 3 scores.  (3  2 = 6)  

25. Let * be the binary operation on the set  of natural numbers given by a * b = LCM of 

a and b 

 (i) Find 5 * 7 and 20 * 16    (2) 

 (ii) Is *  commutative    (1) 

 

26. By using elementary operations, find the inverse of the matrix 







11

12
 (3) 

 

27. An urn containing 10 black and 5 white balls. Two balls are drawn from the urn one 

after the other without replacement. What is the probability that both drawn balls are 

black ?      (3) 

 

PART – IV 

A. Answer any three questions from 28 to 31. Each carries 4 scores.  (3  4 = 12) 

28. (i) tan–1 x + tan–1 y = _____.    (1) 

 (ii) tan–1 
1
2 + tan–1 

2
11 = tan–1 

3
4     (3) 

 

29. Examine the continuity of the function f defined by  

 f(x) = 2
232

232









xat
xifx

xifx
    (4) 

 

30. Find the intervals in which the function f given by f(x) = x2 – 4x + 6 is  

 (i) increasing 

 (ii) decreasing    (4) 

 

31. Find the shortest distance between the two lines whose vector equations are  

 
–
r = 

–
i + 

–
j + (2

–
i – 

–
j + 

–
k) 

 
–
r = 2

–
i + 

–
j – 

–
k+(3

–
i – 5

–
j + 2

–
k)   (4) 
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B. 25  27    2  .             

3  . (3  2 = 6)  

25.         * ;         

a * b = LCM {a, b}  

 (i) 5 * 7, 20 * 16  .  (2) 

 (ii) *   ?   (1) 

 

26.    







11

12
    

.    (3) 

 

27.   10  5  .    
       .  
    ? (3) 

 

PART – IV 

A. 28  31    3  .             

4  .   (3  4 = 12) 

28. (i) tan–1 x + tan–1 y = _____.    (1) 

 (ii)  tan–1 
1
2 + tan–1 

2
11 = tan–1 

3
4   (3) 

 

29. f   x = 2   .  

 f(x) = 







232

232

xx

xx
    (4) 

 

30. f(x) = x2 – 4x + 6    

 (i)  (increasing) 

 (ii)  (decreasing) 

   .    (4) 

 

31. 
–
r = 

–
i + 

–
j + (2

–
i – 

–
j + 

–
k) 

 
–
r = 2

–
i + 

–
j – 

–
k+(3

–
i – 5

–
j + 2

–
k) 

          
  .    (4) 
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B. Answer any one question from 32 to 33. Each carries 4 scores.  (1  4 = 4) 

32. Show that a)(cc)(bb)(a

cc1

bb1

aa1

2

2

2

   (4) 

 

33. If a fair coin is tossed 10 times, find the probability of exactly six heads.  (4) 

 

PART – V 

 Answer any two questions from 34 to 36. Each carries 6 scores.  (6  2 = 12) 

34. (i) Let A = 




















111

312

111

. Check whether A is a singular matrix. (1) 

 (ii) Find adj A.    (3) 

 (iii) Solve the following system of linear equations using matrix method.  (2) 

  x – y + z = 4 

  2x + y – 3z = 0 

  x + y + z = 2  

35. Evaluate : 

 (i)  xx d msin     (2) 

 (ii)  16

1
2x

dx   (2) 

 (iii)  xex x d    (2) 

 

36. Solve the following LPP graphically : 

 Maximize z = 4x + y  

 Subject to  

 x + y < 5 

 3x + y < 9 

 x > 0, y > 0     (6) 

__________ 
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B. 32  33     .             

4 .    (1  4 = 4) 

32. a)(cc)(bb)(a

cc1

bb1

aa1

2

2

2

   .  (4) 

 
33.   10  ,  6   

 .   (4) 

 
PART – V 

 34  36    2  .             

6  .   (6  2 = 12) 

34. (i) A = 




















111

312

111

 A     .  (1) 

 (ii) adj A .    (3) 

 (iii)        
 .   (2) 

  x – y + z = 4 
  2x + y – 3z = 0 
  x + y + z = 2  
35.   : 

 (i)  xx d msin     (2) 

 (ii)  16

1
2x

dx   (2) 

 (iii)  xex x d    (2) 

 
36.        

. : 
 Maximize z = 4x + y  
 Subject to  
 x + y < 5 
 3x + y < 9 
 x > 0, y > 0     (6) 

__________ 
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