Reg. No. : \qquad

Name : \qquad

SAY / IMPROVEMENT EXAMINATION, JULY - 2022

Part - III
 MATHEMATICS (COMMERCE)

Time : $21 / 2$ Hours
Maximum : 80 Scores
Cool-off time : 15 Minutes

General Instructions to Candidates:

- There is a 'Cool-off time' of 15 minutes in addition to the writing time.
- Use the 'Cool-off time' to get familiar with questions and to plan your answers.
- Read questions carefully before answering.
- Read the instructions carefully.
- Calculations, figures and graphs should be shown in the answer sheet itself.
- Malayalam version of the questions is also provided.
- Give equations wherever necessary.
- Electronic devices except non-programmable calculators are not allowed in the examination hall.

 உஸைமிமிゥமஸை.

PART - I

A. Answer any 4 questions from 1 to 6 . Each carries 1 score. $\quad(4 \times 1=4)$

1. If $\mathrm{A}=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$, then $\mathrm{A}^{\prime}=$ \qquad .
2. If $x \in[-1,1]$, then $\sin ^{-1} x+\cos ^{-1} x=$ \qquad .
(A) 0
(B) $\frac{\pi}{2}$
(C) $\frac{\pi}{4}$
(D) π
3. Given $\mathrm{f}(x)=8 x^{3}$ and $\mathrm{g}(x)=x^{1 / 3}$, then (fog) x is :
(A) $8 x$
(B) $2 x$
(C) $8 x^{3}$
(D) 8
4. The area of the region bounded by the curve $\mathrm{f}(x)=x, \mathrm{X}-$ axis and the line $x=0, x=1$ is :
(A) 1
(B) 0
(C) $\frac{1}{2}$
(D) $\frac{1}{4}$
5. The degree of differential equation $\frac{d^{2} y}{d x^{2}}+y=0$ is \qquad .

PART - I

 1 ఱறை

1. $\mathrm{A}=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$ ®๑ఱว๗ฺ $\mathrm{A}^{\prime}=$ \qquad .
2. $x \in[-1,1]$ ๔ூळงภை $\sin ^{-1} x+\cos ^{-1} x=$ \qquad .
(A) 0
(B) $\frac{\pi}{2}$
(C) $\frac{\pi}{4}$
(D) π

(A) $8 x$
(B) $2 x$
(C) $8 x^{3}$
(D) 8

(A) 1
(B) 0
(C) $\frac{1}{2}$
(D) $\frac{1}{4}$
 \qquad .
3. The vector equation of a plane is $\bar{r} \cdot(\hat{i}+\hat{j}+\hat{k})=5$. Write Cartesian equation.
B. Answer all questions from 7 to 10. Each carries 1 score.
4. Let A be a square matrix of order 3×3, then $|\mathrm{kA}|$ is equal to \qquad .
(A) $\mathrm{k}|\mathrm{A}|$
(B) $\quad \mathrm{k}^{2}|\mathrm{~A}|$
(C) $\mathrm{k}^{3}|\mathrm{~A}|$
(D) $3 \mathrm{k}|\mathrm{A}|$
5. If $y=\log x$, then $\frac{d y}{d x}=$ \qquad .
(A) e^{x}
(B) $\frac{(\log x)^{2}}{2}$
(C) $\frac{1}{x^{2}}$
(D) $\frac{1}{x}$
6. The direction cosines of Y-axis is \qquad .
(A) $1,0,0$
(B) $0,1,0$
(C) $0,0,1$
(D) $1,1,1$
7. Let E and F be two events associated with sample space S , then $\mathrm{p}(\mathrm{E} \cap \mathrm{F})=$ \qquad . $\mathrm{p}(\mathrm{E} / \mathrm{F})$
(A) $p(E)$
(B) $\mathrm{p}(\mathrm{F})$
(C) $\mathrm{p}(\mathrm{E} \cup \mathrm{F})$
(D) None

 \qquad .
(A) $\mathrm{k}|\mathrm{A}|$
(B) $\mathrm{k}^{2}|\mathrm{~A}|$
(C) $\mathrm{k}^{3}|\mathrm{~A}|$
(D) $3 \mathrm{k}|\mathrm{A}|$
8. $\mathrm{y}=\log x$, अூळைఙை $\frac{\mathrm{dy}}{\mathrm{d} x}=$ \qquad .
(A) e^{x}
(B) $\frac{(\log x)^{2}}{2}$
(C) $\frac{1}{x^{2}}$
(D) $\frac{1}{x}$
 \qquad .
(A) $1,0,0$
(B) $0,1,0$
(C) 0, 0, 1
(D) $1,1,1$
 $p(E \cap F)=$ \qquad . $\mathrm{p}(\mathrm{E} / \mathrm{F})$
(A) $\mathrm{p}(\mathrm{E})$
(B) $\mathrm{p}(\mathrm{F})$
(C) $\mathrm{p}(\mathrm{E} \cup \mathrm{F})$
(D) None

PART - II

A. Answer any 3 questions from 11 to 15. Each carries 2 scores.

11. Show that the relation R in the set $\{1,2,3\}$ given by $R=\{(1,2),(2,1)\}$ is symmetric, but neither reflexive nor transitive.
12. $A=\left[\begin{array}{ll}1 & 2 \\ 2 & x\end{array}\right]$ is a singular matrix, then find the value of x.
13. The total revenue in rupees received from the sale of x units of a product given by $\mathrm{R}(x)=13 x^{2}+26 x+15$. Find the marginal revenue when $x=5$.
14. Evaluate $\int \frac{2 x \mathrm{~d} x}{1+x^{2}}$
15. Find the vector equation of the line that passes through the origin and $(5,-2,3)$.
B. Answer any 2 questions from 16 to 18. Each carries 2 scores.
16. Find the value of $\cos ^{-1}\left(\frac{1}{2}\right)+2 \sin ^{-1}\left(\frac{1}{2}\right)$.
17. Using elementary transformation, find the inverse of $\mathrm{A}=\left[\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right]$.

PART - II

 2 ๕றை

$$
(3 \times 2=6)
$$

14. $\quad \int \frac{2 x \mathrm{~d} x}{1+x^{2}}$ விఅळ๐ஸுகை.

 2 ๔ฺைைరి กilm.
$(2 \times 2=4)$

18. Evaluate : $\int_{0}^{1} x^{2} \mathrm{~d} x$

PART - III

A. Answer any 3 questions from 19 to 23. Each carries 4 scores.

19. Consider $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ given by $\mathrm{f}(x)=4 x+3$. Show that f is invertible.
20. (a) If $x y<1$, then $\tan ^{-1} x+\tan ^{-1} y=$ \qquad .
(b) Prove that:

$$
\begin{equation*}
\tan ^{-1} \frac{1}{2}+\tan ^{-1} \frac{2}{11}=\tan ^{-1} \frac{3}{4} \tag{3}
\end{equation*}
$$

21. If $\mathrm{f}(x)=2 x^{2}-3 x$, then
(a) Find $\mathrm{f}^{\prime}(x)$
(b) Find the intervals in which the function $\mathrm{f}(x)$ is strictly increasing and decreasing.
22. Evaluate :
(a) $\int \frac{\mathrm{d} x}{x+\mathrm{a}}$
(b) $\int \frac{\mathrm{d} x}{(x+1)(x+2)}$
23. (a) Sketch the curve $y^{2}=x$ and the lines $x=1, x=4$.
(b) Find the area of the region bounded by the curve and the X - axis.

PART - III

 4 ⿷匚ைை
 ๑லைியிகலுக.
20. (a) $x y<1$ ๔ூळைக8 $\tan ^{-1} x+\tan ^{-1} y=$ \qquad .
(b) ๑ஜைிழிமாுகை :

$$
\begin{equation*}
\tan ^{-1} \frac{1}{2}+\tan ^{-1} \frac{2}{11}=\tan ^{-1} \frac{3}{4} \tag{3}
\end{equation*}
$$

21. $\mathrm{f}(x)=2 x^{2}-3 x$ ๔ூळงภ

(b) $\mathrm{f}(x)$ ก) m ค

22. விச களுூூிிிமாృக :
(a) $\int \frac{\mathrm{d} x}{x+\mathrm{a}}$
(b) $\int \frac{\mathrm{d} x}{(x+1)(x+2)}$
(3)

B. Answer any 1 question from 24 and 25. Carries 4 scores.
23. Find the equation of the plane through the intersection of the planes $3 x-y+2 z-4=0$ and $x+y+z-2=0$ and the point $(2,2,1)$.
24. Using properties of determinants, prove that $\left|\begin{array}{ccc}1 & 1 & 1 \\ a & b & c \\ a^{2} & b^{2} & c^{2}\end{array}\right|=(a-b)(b-c)(c-a)$.

PART - IV

A. Answer any 3 questions from 26 to 29. Each carries 6 scores.
26. (a) Construct a 2×2 matrix $A=\left[a_{i j}\right]$, whose elements are given by $\mathrm{a}_{\mathrm{ij}}=\mathrm{i} / \mathrm{j}$.
(b) Solve the following system of equation using matrix method:

$$
\begin{equation*}
2 x+5 y=1,3 x+2 y=7 \tag{4}
\end{equation*}
$$

27. (a) If $\mathrm{f}(x)=\left\{\begin{array}{ccc}\mathrm{k} x^{2} & \text { if } & x \leq 2 \\ 3 & \text { if } & x>2\end{array}\right.$ is continuous at $x=2$, find the value of k .
(b) If $x=\mathrm{a} \cos \theta$ and $\mathrm{y}=\mathrm{b} \sin \theta$, find $\frac{\mathrm{dy}}{\mathrm{d} x}$ at $\theta=\frac{\pi}{4}$.
28. (a) Form the differential equation representing the family of curves $\mathrm{y}=\mathrm{a} \sin (x+\mathrm{b})$, where a and b are arbitrary constants.
(b) Find the general solutions of the differential equation $\frac{d y}{d x}=\frac{1+y^{2}}{1+x^{2}}$.

$(1 \times 4=4)$

 களை்றைைூ.

$\left|\begin{array}{ccc}1 & 1 & 1 \\ a & b & c \\ a^{2} & b^{2} & c^{2}\end{array}\right|=(a-b)(b-c)(c-a)$.
(4)

PART - IV

 கつறுகை :

$$
\begin{equation*}
2 x+5 y=1,3 x+2 y=7 \tag{4}
\end{equation*}
$$

(3)

29. If $\overline{\mathrm{a}}=\hat{\mathrm{i}}+3 \hat{\mathrm{j}}+7 \hat{\mathrm{k}}$ and $\overline{\mathrm{b}}=7 \hat{\mathrm{i}}-\hat{\mathrm{j}}+8 \hat{\mathrm{k}}$, then
(a) Find $\overline{\mathrm{a}} \cdot \overline{\mathrm{b}}$
(b) Find the projection $\overline{\mathrm{a}}$ on $\overline{\mathrm{b}}$
(c) Find $\overline{\mathrm{a}} \times \overline{\mathrm{b}}$
B. Answer any 2 question from 30 to 32. Each carries 6 scores.
30. (a) If $\mathrm{y}=x^{\sin x}$, find $\frac{\mathrm{dy}}{\mathrm{d} x}$.
(b) If $y=5 \cos x-3 \sin x$, prove that $\frac{\mathrm{d}^{2} y}{d x^{2}}+y=0$.
31. Find two numbers whose sum is 24 and whose product is as large as possible.
(6)
32. Consider the equation of lines
$\bar{r}=\hat{i}+\hat{j}+\lambda(2 \hat{i}-\hat{j}+\hat{k})$
$\bar{r}=2 \hat{i}+\hat{j}-\hat{k}+\mu(3 \hat{i}-5 \hat{j}+2 \hat{k})$
(a) Find the angle between above lines.
(b) Also find the shortest distance between two lines.

PART - V

Answer any 2 questions from 33 to 35. Each carries 8 scores.
33. (a) Express the matrix $A=\left[\begin{array}{cc}3 & 5 \\ 1 & -1\end{array}\right]$ as the sum of a symmetric and a skew symmetric matrix.
(b) If $\mathrm{A}=\left[\begin{array}{c}-2 \\ 4 \\ 5\end{array}\right], \mathrm{B}=\left[\begin{array}{lll}1 & 3 & -6\end{array}\right]$, verify that $(\mathrm{AB})^{\prime}=\mathrm{B}^{\prime} \cdot \mathrm{A}^{\prime}$.

（a）$\overline{\mathrm{a}} \cdot \overline{\mathrm{b}}$ ヵ๐ஸுळ

（c）$\overline{\mathrm{a}} \times \overline{\mathrm{b}}$ ヵ๐ఘృ山．

30．（a） $\mathrm{y}=x^{\sin x}$ ๔ூळวळ $\frac{\mathrm{dy}}{\mathrm{d} x}$ ळ๐ஸுக．

32． $\bar{r}=\hat{i}+\hat{j}+\lambda(2 \hat{i}-\hat{j}+\hat{k})$
$\bar{r}=2 \hat{i}+\hat{j}-\hat{k}+\mu(3 \hat{i}-5 \hat{j}+2 \hat{k})$

（2）

PART－V

$$
(2 \times 8=16)
$$

34. Solve the following linear programming problem graphically :

Maximise $Z=3 x+2 y$ subject to

$$
\begin{aligned}
& x+2 y \leq 10 \\
& 3 x+y \leq 15 \\
& x \geq 0, y \geq 0
\end{aligned}
$$

35. (a) Let A and B be independent events with $\mathrm{P}(\mathrm{A})=0.3$ and $\mathrm{P}(\mathrm{B})=0.4$.

Find $P(A \cup B)$ and $P(A / B)$.
(b) A bag contains 4 red and 4 black balls. Another bag contains 2 red and 6 black balls. One of the two bag is selected at random and a ball is drawn from the bag; which is found to be red. Find the probability that the ball is drawn from the first bag.
 கூ円ூృ :

$$
\begin{aligned}
& x+2 y \leq 10 \\
& 3 x+y \leq 15 \\
& x \geq 0, y \geq 0
\end{aligned}
$$

