FIRST	TERMINAL EVALUATION 2017	
	<u>CHEMISTRY</u> ANSWER KEY	SCORE
1p ³		1
Avogadro Number		1
c) As fuel in nuclear react	Drs	1
MnO ₂		1
a) d b) [Ar] 3d³ 4s²		<u>1</u> 1
a) 1:3 b) 15		<u>1</u> 1
a) Turns blue , Ammonia (b) NH₄Cl → NH₃ + HCl	NH ₃)	<u>1</u> 1
a) 500 ml NaOH solution b) 500 ml NaOH solution		<u>1</u> 1
$CuCl - Cu^+$ $CuCl_2 - Cu^{2+}$		<u>1</u> 1
	ne closer.Number of molecules per unit volume increases. Hence the rate of the reaction increases	1
a)16 b)16 c)3s ² 3p ⁶		$\begin{array}{c} \frac{1}{1} \\ 1 \end{array}$
a)44 g b) 2 moles		<u>1</u> 2
 a) Test tube(figure) B (Test tube in which powdered marble is used) b) Surface area When solids are made into small pieces or powder, their surface area increases. As a result the number of molecules undergoing effective collisions also increases. Hence the rate of reaction increases. 		1 1+ 1
a) Fe - 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ b) 4 c) Mn (manganese)	$3d^64s^2$ or [Ar] $3d^64s^2$	$\begin{array}{c} \underline{1} \\ \underline{1} \\ 1 \end{array}$
a) 6.022 x 10 ²³ or N _A b) 108 g / 12 g = 9 GAM		<u>1</u> 2
* Number of Moles Number of molecules * Total number of atoms molecules	 Mass given in grams / Gram atomic mass 490g / 98 g = 5 moles Number of moles x Avogadro number 5 x 6.022 x 10²³ Total number of atoms in one molecule x number of 	1 1 +1
* To	tal number of atoms	$= 5 \times 6.022 \times 10^{23}$ tal number of atoms = Total number of atoms in one molecule x number of

17	a) Q b) R c) S d) Q	1+1+1+1	
18	A) At STP 22.4 litres = 1 mole = 6.022×10^{23} molecules 1 litre = $6.022 \times 10^{23}/22.4$ molecules 10 litres= 10 x 6.022 x 10 ²³ /22.4 molecules = x molecules		
	2 litres = x /5 molecules OR 10 litres of the gas at STP contains x number of molecules (Given)		
	Hence 2 litres of the gas contains $= \times /5$ molecules (!)		
	B) 5 x 6.022 x 10 ²³ or 5 x N_A	2	
19	a) i) B ii) A iii) A iv) B b) A=1 B = 2 c) BA ₂	2 1 1	
20	a) Experiment b)As temperature increases the number of molecules with threshold energy increases. As a result, the number of effective collisions increases and thus rate of	2 2	
	reaction also increases Prepared by Unmesh B Govt VHSS Kallara Thiruvananthapuram 9946099800		