DIRECTORATE OF GOVERNMENT EXAMINATIONS. CHENNAI -6
 HIGHER SECONDRAY FIRST YEAR EXAMINATION - MAY 2022
 PHYSICS KEY ANSWER

NOTE:

1. Answers wr tten with Blue or Black ink only to be evaluated.
2. Choose the most suitable answer in Part A from the given alternatives and write the option code and their corresponding answer.
3. For answers in Part - II, Part - III, Part - IV like reasoning, explanation, narration, description and listing of points, students may write in their own words but without changing the concepts and without skipping any point.
4. In numerical problems if formula is not written, marks should be given for the remaining correct steps.
5. In graphical representation physical variables for X -axis and Y -axis should be marked.

TOTAL MARKS: 70
PART - I Answer all the questions. $15 \times 1=15$

$\begin{aligned} & \text { Q. } \\ & \text { NO } \end{aligned}$	OPTION	TYPE-A	$\begin{aligned} & \text { Q. } \\ & \text { NO } \end{aligned}$	OPTION	TYPE - B
1	a	-z direction	1	c	100 Hz and 6 m
2	a	27/17	2	b	inertia of direction
3	b	inertia of direction	3	a	$-9 \mathrm{~ms}^{-1}$ and $5 \mathrm{~ms}^{-1}$
4	a	9.86	4	b	$\mathrm{R}_{30}{ }^{\circ}=\mathrm{R}_{60}{ }^{\circ}$
5	C	stress	5	b	$\mathrm{M}^{\circ} \mathrm{L}^{\circ} \mathrm{T}^{0}$
6	b	pure rotation	6	a	26.8 \%
7	b	$\mathrm{R}_{30}{ }^{\circ}=\mathrm{R}_{60}{ }^{\circ}$	7	c	stress
8	d	2 times of original value	8	a	-z direction
9		Mere attempt	9	a	27/17
10	d	$\mathrm{g} / 2$	10		Mere attempt
11	b	$\mathrm{M}^{\circ} \mathrm{L}^{0} \mathrm{~T}^{0}$	11	d	$T \propto \frac{1}{\sqrt{g^{2}+a^{2}}}$
12	a	26.8 \%	12	b	pure rotation
13	a	$-9 \mathrm{~ms}^{-1}$ and $5 \mathrm{~ms}^{-1}$	13	d	$\mathrm{g} / 2$
14	C	100 Hz and 6m	14	a	9.86
15	d	$T \propto \frac{1}{\sqrt{g^{2}+a^{2}}}$	15	d	2 times of original value

PART - II Answer any Six questions: Q.No $\mathbf{2 4}$ is Compulsory.

16	Reynold's number is a dimensionsless number, which is used to find out the nature of the flow of the liquid. (or) It is the number which is used to find out the nature of the flow of fluid whether it is streamlined or turbulent. $R_{c}=\frac{\rho V D}{\eta} \text { (equation only) }$	1	2
17	Degrees of freedom The minimum number of independent coordinates needed to specify the position and configuration of a thermo dynamical system in space is called the degree of freedom of the system.		2
18	$\begin{aligned} & d=\frac{v t}{2} \text { or (equivalent formula) } \\ & \frac{1460 \times 80}{2} \\ & d=58400 \mathrm{~m} \text { (or) } 58.4 \mathrm{~km} \end{aligned}$	$\begin{array}{\|c\|} \hline 1 / 2 \\ 1 / 2 \\ 1 / 2+1 / 2 \end{array}$	2
19	Wien's displacement Law Wien's Law states that the wavelength of maximum intensity of emission of a black body radiation is inversely proportional to the absolute temperature of the black body. (or) $\lambda_{\mathrm{m}} \propto \frac{1}{\mathrm{~T}} \text { (or) } \lambda_{\mathrm{m}}=\frac{\mathrm{b}}{\mathrm{~T}}$ (equation only)	1	2
20	Gravita ional potential The gravitational potential at a distance r due to a mass is defined as the amount of work required to bring unit mass from infinity to the distance r. (or) any other equivalent definition $V=\frac{-G m}{r} \quad$ (equation only)	1	2
21	Simple harmonic motion 1. The acceleration or force on the particle is directly proportional to ts displacement from a fixed point and is always directed towards that fixed point. (or) 2 The simple Harmonic motion can also be defined as the motion of the projection of a particle on any diameter of a circle of reference $a \propto \mathrm{y} \text { (or) } \mathrm{a}=-\mathrm{ky}$ (or) $\mathrm{F}=-\mathrm{kr}$	1	2
22	Newtons's Second law: The force acting on an object is equal to the rate of change of its momentum. (or) $\vec{F}=\frac{\overrightarrow{\mathrm{d}}}{\mathrm{dt}}_{\text {Equation only }}$	1	2

23	State conservation of angular momentum: When no external torque acts on the body, the net angular momentum of a rotating rigid body remains constant. (or)		2
	$\tau=\frac{d L}{d t}$ (or) L=Constant	1	
24	$V=\frac{d x}{d t}$	$1 / 2$	2
	$V=\frac{d}{d t}\left(2-5 t+6 t^{2}\right)$	$1 / 2$	2
	\therefore Initial Velocity $=-5 \mathrm{~m} / \mathrm{s}$	$1 / 2+1 / 2$	

PART - III
Answer any Six questions :Q.No 33 is Compulsory. \quad 6×3=18

| 27 | | 1 |
| :--- | :--- | :--- | :--- | :--- |

\begin{tabular}{|c|c|c|c|}
\hline 31 \& \begin{tabular}{l}
Torque is defined as the moment of the external applied force about a point or axis of rotation. \\
(or)
\[
\overrightarrow{\boldsymbol{\tau}=\mathrm{r} \times \vec{F} \quad---1}
\] \\
Examples: \\
The opening and closing of a door. \\
The hinges and turning of a nut using a wrench.
\end{tabular} \& 2

1 \& 3

\hline 32 \& | Periodic motion |
| :--- |
| Any motion which repeats itself in a fixed time interval is known as periodic motion. |
| Examples: (Any two examples) |
| Hands in pendulum clock |
| swing of a cradle |
| the revolution of the Earth around the Sun, |
| waxing and waning of Moon, etc. |
| Non-Pe iodic motion |
| Any motion which does not repeat itself after a regular interval of time is known as non-periodic motion. |
| Example: (Any two examples) |
| Occurance of Earth quake, |
| eruption of volcano, etc | \& | $1 / 2$ $1 / 2+1 / 2$ |
| :--- |
| $1 / 2$ $1 / 2+1 / 2$ | \& 3

\hline 33 \& | Work done on the system $\mathrm{W}=-30 \mathrm{~kJ}=-30,000 \mathrm{~J}$ |
| :--- |
| Heat flowing out of the system $\begin{aligned} Q & =5 \mathrm{Kcal} \\ & =-5 \times 4184 \\ & =-20920 \mathrm{~J} \end{aligned}$ |
| (1⁄2 Mark) |
| (1 Mark) $=-20920-(-30,000)$ $=9080 \mathrm{~J}$ |
| ($1 / 2+1 / 2$ Mark) |
| (Another Method) | \& | $1 / 2$ |
| :--- |
| $1 / 2$ |
| 1 |
| 1 | \& 3

\hline \& \[
$$
\begin{array}{|lrl}
\hline 1 \mathrm{Kcal}=4186 \\
\mathrm{~W} & =-30 \mathrm{KJ}=-30,000 \mathrm{~J} & \\
\mathrm{Q} & =-5 \mathrm{Kca} & (1 / 2 \text { Mark }) \\
& =5 \times 4186 & \\
& =-20930 \mathrm{~J} & \\
\Delta \mathrm{U} & =\mathrm{Q}-\mathrm{W} & \\
& =-20930-(-30,000) & \\
& =9070 \mathrm{~J} & \\
& & (11 / 2+1 / 2 \text { Mark }) \\
\end{array}
$$

\] \& | $1 / 2$ |
| :--- |
| $1 / 2$ |
| 1 |
| 1 | \& 3

\hline
\end{tabular}

PART - IV
Answer all the questions.
$5 \times 5=25$
Q.No

Applications of Dimensional Analysis.
a)i) 1. Convert a physical quan ity from one system of units to another
2. Check the dimensional correctness of a given physical equation
3. Establish relations among various physical quantities.
ii) $\quad[\mathrm{M}]\left[\mathrm{LT}^{-1}\right]^{2}=[\mathrm{M}]\left[\mathrm{LT}^{-2}\right][\mathrm{L}]$
$\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]=\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]$
(or)
The given equation is dimensionally correct
34 The surface tension of a liquid by capillary rise method.
b) Theory explanation

Diagram

$V=\pi r^{2} h+\left(\pi r^{2} \times r-\frac{2}{3} \pi r^{3}\right) \Rightarrow V=\pi r^{2} h+\frac{1}{3} \pi r^{3}$
$2 \pi \mathrm{r} T \cos \theta=\pi \mathrm{r}^{2}\left(h+\frac{1}{3} r\right) \rho g \Rightarrow T=\frac{r\left(h+\frac{1}{3} r\right) \rho g}{2 \cos \theta}$
$T=\frac{r \rho g h}{2 \cos \theta}$

\begin{tabular}{|c|c|c|c|}
\hline 35 \& \begin{tabular}{l}
Definition of equipartition of energy \\
Definition : According to kinetic theory, the average kinetic energy of system of molecules in thermal equ librium at temperature \(T\) is uniformly distributed to all degrees of freedom (x or y or z), so that each degree of freedom will get \(1 / 2 \boldsymbol{k} \boldsymbol{T}\) of energy. This is called equipartition of energy. \\
Average Kinetic energy of mono, di and tri atomic molecules: \\
1) For mono atomic molecule, \(\boldsymbol{f}=3\). So the average kinetic energy is,
\[
[K E] \quad=3 X \frac{1}{2} k T=\frac{3}{2} k T
\] \\
2) For di atomic molecule, at low temperature, \(\boldsymbol{f}=\mathbf{5}\). So the average kinetic energy
\[
\left[K E_{\text {low }}\right]=5 X \frac{1}{2} k T=\frac{5}{2} k T
\] \\
For di atomic molecule, at high temperature, \(\boldsymbol{f}=\mathbf{7}\). So the average kinetic energy
\[
\left[K E_{\text {high }}\right]=7 X \frac{1}{2} k T=\frac{7}{2} k T
\] \\
3) For Linear tri atomic molecule, \(f=7\). So the average kinetic energy is
\[
\left[K E_{\text {linear }}\right]=7 X \frac{1}{2} k T=\frac{7}{2} k T
\] \\
For Non - Linear tri atomic molecule, \(\boldsymbol{f}=\mathbf{6}\). So the average kinetic energy is
\[
\left[K E_{\text {non-linear }}\right]=6 X \frac{1}{2} k T=3 k T
\]
\end{tabular} \& 2

1
1
$1 / 2$
$1 / 2$
$1 / 2$
$1 / 2$ \& 5

\hline \[
$$
\begin{aligned}
& 35 \\
& \text { b) }
\end{aligned}
$$

\] \& | Kinematic equations of motion for constant acceleration. |
| :--- |
| i) Velocity - time relation $\begin{aligned} & a=\frac{d v}{d t} \text { or } \mathrm{dv}=\mathrm{a} \mathrm{dt} \\ & \int_{\mathrm{u}}^{\mathrm{v}} \mathrm{dv}=\int_{0}^{\mathrm{t}} \mathrm{a} d \mathrm{~d}=\mathrm{a} \int_{0}^{\mathrm{t}} \mathrm{dt} \Rightarrow[v]_{u}^{v}=a[t]_{0}^{\mathrm{t}} \\ & v-u=a t \quad(o r) \quad v=u+a t \end{aligned}$ $\begin{aligned} & \text { ii) Displacement - time relation } \\ & \qquad v=\frac{d s}{d t} \text { or } d s=v d t \end{aligned}$ $\text { and since } v=u+a t$ |
| We get $d s=(u+a t) d t$ $\int_{0}^{s} d s=\int_{0}^{t} u d t+\int_{0}^{t} a t d t(o r) s=u t+\frac{1}{2} a t^{2}$ | \& $11 / 2$

1112 \& 5

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
iii) Velocity - displacement relation
\[
a=\frac{d v}{d t}=\frac{d v}{d s} \frac{d s}{d t}=\frac{d v}{d s} v
\] \\
[since \(d s / d t=v\)] where \(s\) is displacement traversed. \\
This is rewritten as \(a=\frac{1}{2} \frac{d}{d s}\left(v^{2}\right)\)
\[
\text { or } d s=\frac{1}{2 a} d\left(v^{2}\right)
\]
\[
\begin{aligned}
\& \int_{0}^{s} d s=\int_{u}^{v} \frac{1}{2 a} d\left(v^{2}\right) \\
\& \therefore s=\frac{1}{2 a}\left(v^{2}-u^{2}\right) \\
\& \therefore v^{2}=u^{2}+2 a s
\end{aligned}
\]
\[
s=\frac{(u+v)}{2} t
\] \\
(or) \\
(write only 4 Equations of motion) --- ------------------- 2 Marks
\end{tabular} \& \(11 / 2\)

$1 / 2$ \&

\hline \[
$$
\begin{aligned}
& \hline 36 \\
& \text { a) }
\end{aligned}
$$

\] \& | The motion of blocks connected by a string in vertical motion. Explanation $T \hat{j}-m_{2} g \hat{j}=m_{2} a \hat{j}$ $T \hat{j}-m_{1} \hat{g j}=-m_{1} a \hat{j}$ |
| :--- |
| Free body diagram |
| (or) $\begin{aligned} & a=\left\lceil\frac{m_{1}-m_{2}}{m_{1}+m_{2}}\right] g \\ & T=m_{2} g+m_{2}\left(\frac{m_{1}-m_{2}}{m_{1}+m_{2}}\right) g \quad T=\left(\frac{2 m_{1} m_{2}}{m_{1}+m_{2}}\right) g \end{aligned}$ | \& 1

$1 / 2+1 / 2$
1
1

1
1
1 \& 5

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline b) 36 \& \begin{tabular}{l}
Acceleration due to gravity Consider an object of mass \(m\) at a height \(h\) from the surface of the Earth. \\
Diagram
\[
g^{\prime}=\frac{G M}{\left(R_{e}+h\right)^{2}}
\]
\[
g^{\prime}=\frac{G M}{R_{e}{ }^{2}}\left(1+\frac{h}{R_{e}}\right)^{-2}
\]
\[
g^{\prime}=\frac{G M}{R_{e}^{2}}\left(1-2 \frac{h}{R_{e}}\right)
\] \\
(or)
\[
g^{\prime}=g\left(1-2 \frac{h}{R_{e}}\right)
\] \\
(Any one equation) \\
g ' g . This means that as altitude h increases the acceleration due to gravity g decreases.
\end{tabular} \& 1
\(1 / 2\)
1
1
1
1
1
1
1
\(1 / 2\)
1 \& 5 \\
\hline \[
\begin{aligned}
\& 37 \\
\& \text { a) }
\end{aligned}
\] \& \begin{tabular}{l}
Horizontal oscillations of a spring \\
Short Explanation and Diagram (Any one Diagram)
\[
\mathrm{F} \propto x_{(\mathrm{or})} \mathrm{F}=-k x
\]
\[
m \frac{d^{2} x}{d t^{2}}=-k x \quad \frac{d^{2} x}{d t^{2}}=-\frac{k}{m} x
\]
\end{tabular} \& 1

1 \& 5

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
\(\omega^{2}=\frac{k}{m}\) (or) \(\omega=\sqrt{\frac{k}{m}} \operatorname{rad} s^{-1}\) \\
\(f=\frac{\omega}{2 \pi}=\frac{1}{2 \pi} \sqrt{\frac{k}{m}}\) Hertz \(\quad T=\frac{1}{f}=2 \pi \sqrt{\frac{m}{k}}\) seconds
\end{tabular} \& 1
\(11 / 2+1 / 2\) \& \\
\hline b) \& \begin{tabular}{l}
Work-kinetic energy theorem \\
Definition \\
Work and energy are equivalents. This is true in the case of kinetic energy also. To prove this, let us consider a body of mass \(m\) at rest on a frictionless horizontal surface.
\[
\begin{aligned}
\mathrm{W} \& =\mathrm{Fs} \quad \mathrm{~F}=\mathrm{ma} \\
\mathrm{v}^{2} \& =\mathrm{u}^{2}+2 \mathrm{as} \\
\mathrm{a} \& =\frac{\mathrm{v}^{2}-\mathrm{u}^{2}}{2 \mathrm{~s}}
\end{aligned}
\]
\[
\mathrm{F}=\mathrm{m}\left(\frac{\mathrm{v}^{2}-\mathrm{u}^{2}}{2 s}\right)
\] \\
upto this equation
\[
\begin{aligned}
\& \mathrm{W}=\mathrm{m}\left(\frac{\mathrm{v}^{2}}{2 s} \mathrm{~s}\right)-\mathrm{m}\left(\frac{\mathrm{u}^{2}}{2 \mathrm{~s}} \mathrm{~s}\right) \\
\& \mathrm{W}=\frac{1}{2} \mathrm{mv}^{2}-\frac{1}{2} \mathrm{mu}^{2}
\end{aligned}
\]
\[
\Delta \mathrm{KE}=\frac{1}{2} \mathrm{mv}^{2}-\frac{1}{2} \mathrm{mu}^{2}
\] \\
Thus, \(\mathrm{W}=\Delta \mathrm{KE}\) \\
The work-kinetic energy theorem inferences: (Any 2 Points) \\
1. If the work done by the force on the body is positive then its kinetic energy increases. \\
2. If the work done by the force on the body is negative then its kinetic energy decreases \\
3. If there is no work done by the force on the body then there is no change inits kinetic energy, which means that the body has moved at constant speed provided its mass remains constant.
\end{tabular} \& 1
\(11 / 2+1 / 2\)

1
1
$1 / 2$
$1 / 2$
1 \& 5

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{array}{|l}
\hline 38 \\
\text { a) }
\end{array}
\] \& \begin{tabular}{l}
Rolling on inclined plane and arrive at the expression for the acceleration. \\
Explanation \\
\(\mathrm{mg} \sin \theta-\mathrm{f}=\mathrm{ma}\)
\[
\begin{gathered}
m g \sin \theta-m a\left(\frac{\mathrm{~K}^{2}}{\mathrm{R}^{2}}\right)=m a \\
m g \sin \theta=m a+m a\left(\frac{\mathrm{~K}^{2}}{\mathrm{R}^{2}}\right) \\
\mathrm{a}\left(1+\frac{\mathrm{K}^{2}}{\mathrm{R}^{2}}\right)=\mathrm{g} \sin \theta
\end{gathered}
\] \\
upto this equation
\[
\mathrm{a}=\frac{\mathrm{g} \sin \theta}{\left(1+\frac{\mathrm{K}^{2}}{\mathrm{R}^{2}}\right)}
\]
\end{tabular} \& 1
1
1
1
1
1 \& 5 \\
\hline \[
\begin{array}{|l}
\hline 38 \\
\text { b) }
\end{array}
\] \& \begin{tabular}{l}
Closed organ pipe \\
It is a pipe with one end closed and the other end open.
\[
\left.\begin{array}{ll}
\left.L=\frac{\lambda_{1}}{4} \quad \text { (or }\right) \quad \lambda_{1}=4 L \\
\therefore \quad f_{1}=\frac{v}{\lambda_{1}}=\frac{v}{4 L} \\
\& L=\frac{\lambda_{1}}{4}
\end{array}\right\}
\]
\end{tabular} \& \(1 / 2\)

$11 / 2$ \& 5

\hline
\end{tabular}

