FY 24

FIRST YEAR HIGHER SECONDARY EXAMINATION, JUNE 2022

Part III

PHYSICS Maximum: 60 Score

Maximum: 60 Score Date: 29.06.2022
ANSWER KEY (unofficial) HSPTA KANNUR

Qn Sub No. Scoring Indicators	Split score	Total
-------------------------------	-------------	-------

Answer any 5 questions from 1 to 7. Each carries 1 score	$[5 \times 1 = 5]$
· ·	• •

1	Optics	1	1
2	MT ⁻²	1	1
3	90°	1	1
4	2.38 km/s	1	1
5	decreases	1	1
6	Light body	1	1
7	Zero	1	1

Answer any 5 questions from 8 to 14. Each carries 2 score [5x 2 = 10]

8		(+%) 4 3 2 1 0 1 2 3 4 5 6 t(s)	1	2
		Total Displacement = Area under the graph = (2 x 3)+(-3 x 2) = Zero	1	
9		Velocity $u_x = u\cos\Theta$ $u_x = 5\cos 30$ $u_x = 2.5\sqrt{3}$ m/s Acceleration $a = -g$	1	2
10	a) b)	Law of conservation of linear momentum $V = -[m/M] u$ $V = -[15X10^{-3}/2] X 100$ $V = 0.75 m/s$	1	2

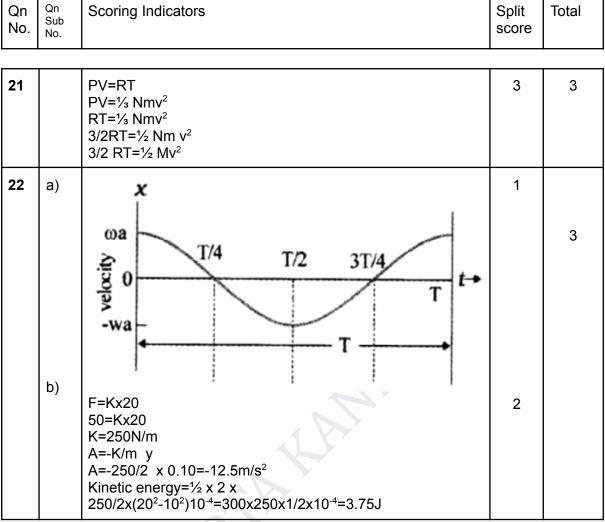
		ANSWER KEY (unofficial)	HSPTA I	KANNUR	
Qn No.	Qn Sub	Scoring Indicators	Split score	Total	

Qn No.	Qn Sub No.	Scoring Indicators	Split score	Total
11		Energy mgH	2	2
12	a) b) c) d)	A - Proportional Limit B - Elastic Limit Or Yield point E - Fracture Point 00 - Permanent Set	1/2 1/2 1/2 1/2 1/2	2
13		Hot Reservoir T_1 $\alpha = \frac{Q_2}{W}$ $\alpha = \frac{Q_2}{Q_1 - Q_2}$ Q_2 Q_2 Reservoir T_2	1	2
14		$ \frac{T_1}{T_2} = \frac{\omega_2}{\omega_1} $ $ \frac{WK_1^2}{WK_2^2} = \frac{\omega_2}{\omega_1} $ $ \frac{K_1}{K_2} = \sqrt{\frac{\omega_2}{\omega_1}} $	2	2

ANSWER KEY (unofficial)

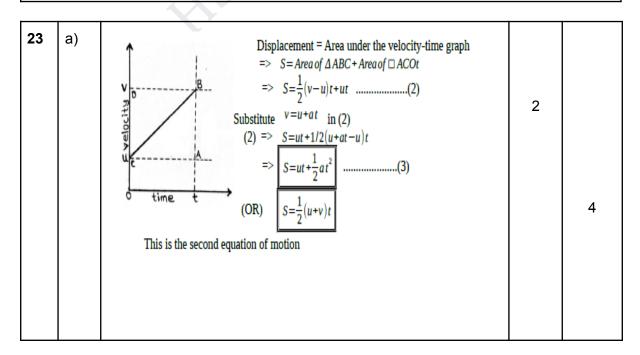
HSPTA KANN	NUR
-------------------	------------

Qn No.


15	$[v]=L^{1}T^{-1}=LHS \qquad \qquad G=M^{-1}L^{3}T^{-2}$ $RHS=(M^{-1}L^{3}T^{-2}\ M^{1}\ L^{-1})^{\frac{1}{2}}=L^{1}T^{-1}=LHS$ Dimensionally correct.	3	3
16	The magnitudes of the displacement $\Delta \mathbf{r}$ and of $\Delta \mathbf{v}$ satisfy the following relation. $\left \frac{\Delta r}{r}\right = \left \frac{\Delta v}{v}\right = \theta$ $\Rightarrow \qquad \Delta v = v \frac{\Delta r}{r}$ $a = \frac{\Delta v}{\Delta t} = \frac{v}{r} \frac{\Delta r}{\Delta t} = \frac{v^2}{r}$ ie, $a = \frac{v^2}{r}$ Also $v = r\omega$ Therefore, $a = \frac{\omega^2 r^2}{r} = \omega^2 r$	3	3
17	At A PE = mgh, KE = 0, TE = mgh At B PE = mg(h-x), KE = mgx, TE = mgh At C PE= 0, KE = ½ mv2 = mgh	3	3

ANSWER KEY	

HSPTA KANNUR


Qn No.	Qn Sub No.	Scoring Indicators	Split score	Total
		TE at A = TE at B = TE at C Total mechanical energy is conserved.		
18	a)	R d R-d	2	
		g=GM/R ²		3
		$P=M/(4/3 π R^3)$ $M=P 4/3 π R^3$		-
		g=G ρ 4/3 π R ³ =G ρ 4/3 R ———(1)		
		R ²		
		g' =G ρ 4/3 (R-d) ———(2)		
		(2)/(1)		
		g'=g (R-d)/R = g(1-d/R)		
	b)	Zero	1	
19	a)	The pressure applied to an enclosed fluid will be transmitted without a change in magnitude to every point of the fluid and the walls of the container.	1	3
	b)	$F_1/A_1 = F_2/A_2$ $F_2 = F_1 A_2/A_1$	2	
20	a)	Radiation	1	
	b)	t ₁ =1/k ln(94-20) =2(1)		
		(86-20) t ₂ =1/k ln(71-20)(2)		
		(69-20) (2)/(1)		3
		t ₂ =2 ln(51/49) =0.699 minutes	2	
		In(74/66)		

ANSWER KEY (unofficial) Qn Scoring Indicators ANSWER KEY (unofficial) HSPTA KANNUR Split Total

Answer any 3 questions from 23to 27. Each carries 4 scores

 $[3 \times 4 = 12]$

ANSWER KEY (unofficial)

HSPTA KANNUF

Qn No.	Qn Sub No.	Scoring Indicators	Split score	Total
		(b) Total time = time fro upward motion + time for downward motion For upward motion , $v=0$ $u=20$ m/s $a=-10m/s^2$ $v=u+at$ $0=20+-10t$ 10 $t=20$ $t=20/10=2$ s For downward motion, $u=0$ $s=-45m$ $a=-10m/s^2$ $s=ut+\frac{1}{2}$ at $s=-10$	2	
24	a) b) c)	Apparent weight increases W= m(g+a) W = m(g-a) = 30(9.8-5) = 144 N	1 1 2	4
25	a)	We know $\mathbf{L} = \mathbf{r} \times \mathbf{p}$ differentiate with respect to time $ \frac{d\vec{L}}{dt} = \frac{d}{dt}(\vec{r} \times \vec{P}) $ $ = \frac{d\vec{r}}{dt} \times \vec{P} + \vec{r} \times \frac{d\vec{P}}{dt} $ $ = \vec{v} \times m\vec{v} + \vec{r} \times \vec{F} $ $ = 0 + \tau $ ie, $ \frac{d\vec{L}}{dt} = \vec{\tau} $	2	4
	b)	Thus the time rate of change of angular momentum of a particle is equal to the torque acting on it. $V_2 = \frac{1}{8}V_1$ $\frac{4}{3} \pi R_2^3 = \frac{1}{8} \times \frac{4}{3} \pi R_1^3$ $R_2 = \frac{R_1}{2} - \dots (1)$	2	4

		ANSWER KEY (unofficial)	HSPTA P	CANNUR	_
1	Qn	Scoring Indicators	Split	Total	

Qn No.	Qn Sub No.	Scoring Indicators	Split score	Total
		$I_{2} = \frac{I_{1}}{4} \qquad(2) \text{ (since I} = \frac{2}{5} MR^{2})$ $I_{1} \omega_{1} = I_{1} \omega_{1}$ $I_{1} \frac{2\pi}{T_{1}} = I_{2} \frac{2\pi}{T_{2}}$ $T_{2} = \frac{T_{1}}{4} = \frac{24}{4} = 6 \text{ hours}$	2	
26	(a)	Viscous force, Upthrust and Weight	$1\frac{1}{2}$	
	(b)	When the sphere attains the terminal velocity, the viscous force balances the weight of the body. $U+f=mg\\f=mg-U\\6\pi\eta rv=\rho V\ g-\sigma\ Vg\\6\pi\eta rv=Vg\ (\rho-\sigma)$ $6\pi\eta rv=\frac{4}{3}\pi r^3\ g\ (\rho-\sigma)$ $6\eta v=\frac{4}{3}r^2\ g\ (\rho-\sigma)$ $v=\frac{4}{9\eta}\ a^2g\ (\rho-\sigma)$	2 1 /2	
27	(a)	V Fundamental third harmonic	2	
	(b)	1. First mode of vibration $ \mathbf{L} = \frac{1}{4} R \lambda_1 = 4L $ $ = \frac{\vartheta}{\lambda_1} {}^{3}OR v_1 = \frac{\vartheta}{\Psi L} $ 2. Second mode of vibration $ \mathbf{V} $ $ \mathbf{L} = \frac{\lambda_2}{4} R \lambda_2 = \frac{4}{3}L $ $ = \frac{\vartheta}{\lambda_2} OR v_2 = \frac{3\vartheta}{4L} $ $ = 3 v_1 $	2	4

ANSWER KEY (unofficial)

HSPTA KANNUR

Qn Sub No. Scoring Indicators	Split score	Total
-------------------------------	-------------	-------

Answer any 3 questions from 28 to 32. Each carries 5 scores

 $[3 \times 5 = 15]$

28	a)			
		$a=v^2/R + \cdots + mg$ $f \sin \theta$	2	
	b)	Resolving the forces in the above figure we get $\mathbf{f} \cos \theta = \mathbf{N} \sin \theta$ $\mathbf{f} \sin \theta$ $\mathbf{f} \sin \theta$		
		There is no acceleration on the vertical direction So, $\mathbf{N}\cos\theta = m\mathbf{g} + \mathbf{f}\sin\theta$ The centripetal force is provided by the horizontal components $\mathbf{N}\sin\theta + \mathbf{f}\cos\theta = mv^2/R$ To obtain maximum velocity we take $\mathbf{f} = \mu_s N$ Substitute this value in the concerned equations and obtain The maximum safe speed of vehicle at banked road with frictional force. $v_{\max} = \left(Rg\frac{\mu_s + tan\theta}{1 - \mu_s tan\theta}\right)^{\frac{1}{2}}$	3	5
29	a)	Gravitational force must be equal to centripetal force		
		$\frac{GMm}{(R+h)^2} = \frac{mv^2}{R+h}$ On solving for v		

ANSWER KEY (unofficial) HSPTA KANNUR Qn Scoring Indicators Split Total

Qn No.	Qn Sub No.	Scoring Indicators	Split score	Total
		$V = \sqrt{\frac{GM}{R+h}}$	1 1 2	
		Time period of the satellite = perimeter of the orbit/orbital velocity Then $T = \frac{2\Pi(R+h)}{\sqrt{GM/(R+h)}}$	$1\frac{1}{2}$	5
	b)	$=2\Pi\sqrt{\frac{(R+h)3}{GM}}$ Geostationary satellite- Used in telecommunications Polar satellites- Used in Remote sensing	1	
30	a)	For a steady flow of an incompressible non viscous fluid through a pipe; the sum of the pressure, kinetic energy per unit volume and potential energy per unit volume is a constant. Work done on the fluid at the region BC is $W_1 = F_1.S_1$ ie $W_1 = P_1A_1.v_1\Delta t = P_1\Delta v$ Similarly at region DE $W_2 = P_2\Delta v$ Net work done $\Delta W = W_1 - W_2 = (P_1 - P_2)\Delta v$ Work-energy theorem states that a part of this work is used to change the KE and the other half is used to change the PE. ie $\Delta W = \Delta KE + \Delta PE$ ———————————————————————————————————	4	

ANSWER KEY (unofficial) HSPTA KANNUR Qn Qn Split Total Scoring Indicators Sub No. score No. 1. Fluid must be incompressible 1 2 1 2 b) 5 2. The flow must be steady 31 a) PV = Constant b) Let an ideal gas go from a state (P_1, V_1) to a state (P_2, V_2) at constant temperature T. Then for a small change in volume dV, work done, 1 dW = PdVTherefore the total work done, 5 1 c) Efficiency, 1 = 1 - 293/398= 0.2638 = 26.38% 32 a) The radial component of force $F_q \cos \theta$ is cancelled by The tangential component $F_g \sin \theta$ produces restoring torque, τ = - LF_g sin θ 1 For rotational motion, $\tau = I\alpha$ Therefore - $LF_{\alpha}\sin\theta = I\alpha$

		ANSWER KEY (unofficial)	HSPTA I	KANNUR
Qn No.	Qn Sub No.	Scoring Indicators	Split score	Total
				1
		Or - Lmgsin $\theta = I\alpha$ If θ is small $\sin\theta \approx \theta$. Therefore $\alpha = -\frac{mgL}{I}\theta$	1	
		This is the equation for a simple harmonic motion. Therefore the oscillations of a simple pendulum are simple harmonic		5
	b)	$T = 2\pi \sqrt{\frac{L}{g}}$	1	
	c)	Pendulum whose time period is 2s is called as seconds pendulum. $T = 2\pi \sqrt{\frac{L}{g}}$	1	
		Therefore		
		$L = \frac{gT^2}{4\pi^2}$	1	
		$= 9.8 \times 4 / (4 \pi^2) = 1 \text{m}$		

XXXXXXXX

HSPTA KANNUR