FIRST YEAR HIGHER SECONDARY EXAMINATION, JUNE 2022
Part III

PHYSICS
Maximum: 60 Score
ANSWER KEY (unofficial)

FY 24
Date: 29.06.2022 HSPTA KANNUR

Qn No.	Qn Sub No.	Scoring Indicators	Split score	Total

Answer any 5 questions from 1 to 7 . Each carries 1 score
[5 $\times 1=5$]

$\mathbf{1}$	Optics	1	1	
$\mathbf{2}$	MT			
$\mathbf{3}$		90°	1	1
$\mathbf{4}$		$2.38 \mathrm{~km} / \mathrm{s}$	1	1
$\mathbf{5}$	decreases	1	1	
$\mathbf{6}$	Light body	1	1	
$\mathbf{7}$	Zero	1	1	

Answer any 5 questions from 8 to 14 . Each carries 2 score [$5 \mathrm{x} 2=10$]

| 8 | | | 1 | |
| :--- | :--- | :--- | :--- | :--- | :--- |

FIRST YEAR HIGHER SECONDARY MODEL EXAMINATION, JUNE 2022
ANSWER KEY (unofficial)
HSPTA KANNUR

Qn No.	Qn Sub So.	Scoring Indicators	Split score	Total

11			2	2
12	a) b) c) d)	A - Proportional Limit B - Elastic Limit Or Yield point E - Fracture Point OO - Permanent Set	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \end{aligned}$	2
13		$\boldsymbol{\alpha}=\frac{\mathbf{Q}_{2}}{\mathbf{W}} \quad \alpha=\frac{\mathbf{Q}_{2}}{\mathbf{Q}_{1}-\mathbf{Q}_{2}}$	1 1	2
14		$\begin{aligned} & I_{1} \omega l_{1}=I_{2} u l_{2} \\ & \frac{I_{1}}{I_{2}}=\frac{w \theta_{2}}{w \theta_{1}} \\ & \frac{w K_{1}^{2}}{m K_{2}^{2}}=\frac{w l_{2}}{w l_{1}} \\ & \frac{K_{1}}{K_{2}}=\sqrt{\frac{w l_{2}}{w l_{1}}} \end{aligned}$	2	2

FIRST YEAR HIGHER SECONDARY MODEL EXAMINATION, JUNE 2022
ANSWER KEY (unofficial)
HSPTA KANNUR

Qn	Qn No. Sub No.	Scoring Indicators	Split score	Total

Answer any 6 questions from 15 to 22. Each carries 3 scores
[6 x 3=18]

15	$\begin{aligned} & {[v]=L^{1} \mathrm{~T}^{-1}=\mathrm{LHS}} \\ & \mathrm{RHS}=\left(\mathrm{M}^{-1} \mathrm{~L}^{3} \mathrm{~T}^{-2} \mathrm{M}^{1} \mathrm{~L}^{-1}\right)^{1 / 2}=\mathrm{L}^{1} \mathrm{~T}^{-1}=\mathrm{LHS} \\ & \text { Dimensionally correct. } \end{aligned}$	3	3
16	The magnitudes of the displacement $\Delta \mathbf{r}$ and of $\Delta \mathbf{v}$ satisfy the following relation. ie, $\begin{aligned} \left\|\frac{\Delta r}{r}\right\| & =\left\|\frac{\Delta v}{v}\right\|=\theta \\ =>\quad \Delta v & =v \frac{\Delta r}{r} \\ a=\frac{\Delta v}{\Delta t} & =\frac{v}{r} \frac{\Delta r}{\Delta t}=\frac{v^{2}}{r} \\ a & =\frac{v^{2}}{r} \end{aligned}$ Also $\quad v=r \omega$ Therefore, $\quad a=\frac{\omega^{2} r^{2}}{r}=\omega^{2} r$	3	3
17	 At A $\mathrm{PE}=\mathrm{mgh}, \mathrm{KE}=0, \mathrm{TE}=\mathrm{mgh}$ At B $P E=m g(h-x), K E=m g x, T E=m g h$ At C $\mathrm{PE}=0, \mathrm{KE}=1 / 2 \mathrm{mv2}=\mathrm{mgh}$	3	3

FIRST YEAR HIGHER SECONDARY MODEL EXAMINATION, JUNE 2022
ANSWER KEY (unofficial)
HSPTA KANNUR

Qn	Qn No. Sub So.	Scoring Indicators	Split score	Total

\begin{tabular}{|c|c|c|c|c|}
\hline \& \& \(T E\) at \(A=T E\) at \(B=T E\) at \(C\) Total mechanical energy is conserved. \& \& \\
\hline 18 \& a) \& (2)/(1)
\[
g^{\prime}=g(R-d) / R=g(1-d / R)
\] \& 2 \& 3 \\
\hline 19 \& \begin{tabular}{l}
a) \\
b)
\end{tabular} \& The pressure applied to an enclosed fluid will be transmitted without a change in magnitude to every point of the fluid and the walls of the container.
\[
\begin{aligned}
\& \mathrm{F}_{1} / \mathrm{A}_{1}=\mathrm{F}_{2} / \mathrm{A}_{2} \\
\& \mathrm{~F}_{2}=\mathrm{F}_{1} \mathrm{~A}_{2} / \mathrm{A}_{1}
\end{aligned}
\] \& 1
2 \& 3 \\
\hline 20 \& \begin{tabular}{l}
a) \\
b)
\end{tabular} \& Radiation \& 1

2 \& 3 \\
\hline
\end{tabular}

FIRST YEAR HIGHER SECONDARY MODEL EXAMINATION, JUNE 2022
ANSWER KEY (unofficial)
HSPTA KANNUR

Qn No.	Qn Sub So.	Scoring Indicators	Split score	Total

\begin{tabular}{|c|c|c|c|c|}
\hline 21 \& \& $$
\begin{aligned}
& \mathrm{PV}=\mathrm{RT} \\
& \mathrm{PV}=1 / 3 \mathrm{Nmv}^{2} \\
& \mathrm{RT}=1 / 3 \mathrm{Nm} v^{2} \\
& 3 / 2 \mathrm{RT}=1 / 2 \mathrm{Nm}^{2} \mathrm{v}^{2} \\
& 3 / 2 \mathrm{RT}=1 / 2 \mathrm{Mv}^{2}
\end{aligned}
$$ \& 3 \& 3 \\
\hline 22 \& a) \& \& 1

2 \& 3 \\
\hline
\end{tabular}

Answer any 3 questions from 23to 27. Each carries 4 scores

23	a)	 Displacement = Area under the velocity-time graph $\Rightarrow S=$ Area of $\triangle A B C+$ Areaof $\square A C O t$ $\Rightarrow S=\frac{1}{2}(v-u) t+u t$ Substitute $v=u+a t$ in (2) (2) $\Rightarrow S=u t+1 / 2(u+a t-u) t$ $\Rightarrow \quad S=u t+\frac{1}{2} a t^{2}$ This is the second equation of motion	2	4

FIRST YEAR HIGHER SECONDARY MODEL EXAMINATION, JUNE 2022
ANSWER KEY (unofficial)
HSPTA KANNUR

Qn	Qn No. Sub No.	Scoring Indicators	Split score	Total

\begin{tabular}{|c|c|c|c|c|}
\hline \& \& ```
(b) Total time \(=\) time fro upward motion + time for downward motion
For upward motion,
\(\mathrm{v}=0\)
\(\mathrm{u}=20 \mathrm{~m} / \mathrm{s}\)
\(a=-10 \mathrm{~m} / \mathrm{s}^{2}\)
\(\mathrm{v}=\mathrm{u}+\mathrm{at}\)
\(0=20+-10\) t
\(10 \mathrm{t}=20 \quad \mathrm{t}=20 / 10=2 \mathrm{~s}\)
For downward motion,
\(\mathrm{u}=0\)
\(\mathrm{s}=-45 \mathrm{~m}\)
\(\mathrm{a}=-10 \mathrm{~m} / \mathrm{s}^{2}\)
\(\mathrm{s}=\mathrm{ut}+1 / 2 \mathrm{at} \mathrm{t}^{2}\)
\(-45=0-1 / 2 \times 10 \times t^{2}\)
\(-45=-5 t^{2} \quad t^{2}=9, t=3 \mathrm{~s}\) hiss reporter
Total time \(=2+3=5 \mathrm{~s}\)
``` \& 2 \& \\
\hline 24 \& \begin{tabular}{l}
a) \\
b) \\
c)
\end{tabular} \& Apparent weight increases
\[
\begin{aligned}
W \& =m(g+a) \\
W \& =m(g-a) \\
\& =30(9.8-5) \\
\& =144 \mathrm{~N}
\end{aligned}
\] \& 1
1
2 \& 4 \\
\hline 25 \& a) \& \begin{tabular}{l}
We know \(\mathbf{L}=\mathbf{r} \times \mathbf{p}\) differentiate with respect to time
\[
\begin{aligned}
\& \frac{d \vec{L}}{d t}=\frac{d}{d t}(\vec{r} \times \vec{P}) \\
\& =\frac{d \vec{r}}{d t} \times \vec{P}+\vec{r} \times \frac{d \vec{P}}{d t} \\
\& =\vec{v} \times m \vec{v}+\vec{r} \times \vec{F} \\
\& =0+\tau
\end{aligned}
\] \\
ie, \(\quad \frac{d \vec{L}}{d t}=\vec{\tau}\) \\
Thus the time rate of change of angular momentum of a particle is equal to the torque acting on it.
\[
\begin{align*}
\& V_{2}=\frac{1}{8} V_{1} \\
\& \frac{4}{3} \pi R_{2}^{3}=\frac{1}{8} \times \frac{4}{3} \pi R_{1}^{3} \\
\& R_{2}=\frac{R_{1}}{2}------(1) \tag{1}
\end{align*}
\]
\end{tabular} \& 2

2 \& 4

4 \\
\hline
\end{tabular}

FIRST YEAR HIGHER SECONDARY MODEL EXAMINATION, JUNE 2022
ANSWER KEY (unofficial)
HSPTA KANNUR

| Qn | Qn <br> No. <br> Sub <br> So. | Scoring Indicators | Split <br> score | Total |
| :--- | :--- | :--- | :--- | :--- |

\begin{tabular}{|c|c|c|c|c|}
\hline \& \& \[
\begin{aligned}
\& I_{2}=\frac{I_{1}}{4} \quad-\cdots--(2)\left(\text { since } \mathrm{I}=\frac{2}{5} \mathrm{M} R^{2}\right) \\
\& I_{1} \omega_{1}=I_{1} \omega_{1} \\
\& I_{1} \frac{2 \pi}{T_{1}}=I_{2} \frac{2 \pi}{T_{2}} \\
\& T_{2}=\frac{T_{1}}{4}=\frac{24}{4}=6 \text { hours }
\end{aligned}
\] \& 2 \& \\
\hline 26 \& \begin{tabular}{l}
(a) \\
(b)
\end{tabular} \& \begin{tabular}{l}
Viscous force, Upthrust and Weight \\
When the sphere attains the terminal velocity, the viscous force balances the weight of the body.
\[
\begin{gathered}
\mathrm{U}+\mathrm{f}=\mathrm{mg} \\
\mathrm{f}=\mathrm{mg}-\mathrm{U} \\
6 \pi \eta \mathrm{rv}=\rho \mathrm{V} \mathrm{~g}-\sigma \mathrm{Vg} \\
6 \pi \eta \mathrm{rv}=\mathrm{Vg}(\rho-\sigma) \\
6 \pi \eta \mathrm{rv}=\frac{4}{3} \pi r^{3} \mathrm{~g}(\rho-\sigma) \\
6 \eta \mathrm{v}=\frac{4}{3} r^{2} \mathrm{~g}(\rho-\sigma) \\
\mathrm{v}=\frac{{ }^{2}}{9 \eta} a^{2} \mathrm{~g}(\rho-\sigma)
\end{gathered}
\]
\end{tabular} \& \[
1 \frac{1}{2}
\]
\[
2 \frac{1}{2}
\] \& \\
\hline 27 \& \begin{tabular}{l}
(a) \\
(b)
\end{tabular} \& \begin{tabular}{l}
1. First mode of vibration
\[
\begin{array}{lll}
\mathrm{L}=\frac{1}{4} \& \mathrm{R} \& \lambda_{1}=4 L \\
\& =\frac{\vartheta}{\lambda_{1}} \& \\
\text { OR } \& v_{1}=\frac{\vartheta}{4 L}
\end{array}
\] \\
2. Second mode of vibration
\[
\begin{array}{cc}
\mathrm{L}=\frac{\lambda_{2}}{4} \& \mathrm{R} \quad \lambda_{2}=\frac{4}{3} L \\
2=\frac{\vartheta}{\lambda_{2}} \& \text { OR } \quad v_{2}=\frac{3 \vartheta}{4 L} \\
2=3 v_{1}
\end{array}
\]
\end{tabular} \& 2

2 \& 4 \\
\hline
\end{tabular}

FIRST YEAR HIGHER SECONDARY MODEL EXAMINATION, JUNE 2022
ANSWER KEY (unofficial)
HSPTA KANNUR

| Qn | Qn <br> No. <br> Sub <br> No. | Scoring Indicators | Split <br> score | Total |
| :--- | :--- | :--- | :--- | :--- |

Answer any 3 questions from 28 to 32 . Each carries 5 scores

| 28 | a) | Resolving the forces in the above figure we get <br> There is no acceleration on the vertical direction So, $N \cos \theta=m g+f s i n \theta$ <br> The centripetal force is provided by the horizontal components $N \sin \theta+f \cos \theta=m v^{2} / R$ <br> To obtain maximum velocity we take $\mathbf{f}=\mu_{s} \mathrm{~N}$ <br> Substitute this value in the concerned equations and obtain The maximum safe speed of vehicle at banked road with frictional force. $v_{\max }=\left(R g \frac{\mu_{s}+\tan \theta}{1-\mu_{s} \tan \theta}\right)^{\frac{1}{2}}$ | 2 | 5 |
| :---: | :---: | :---: | :---: | :---: |
| 29 | a) | Gravitational force must be equal to centripetal force $\frac{G M m}{(R+h)^{2}}=\frac{m v^{2}}{R+h}$ <br> On solving for v |  |  |

FIRST YEAR HIGHER SECONDARY MODEL EXAMINATION, JUNE 2022
ANSWER KEY (unofficial)
HSPTA KANNUR

| Qn | Qn <br> No. <br> Sub <br> No. | Scoring Indicators | Split <br> score | Total |
| :--- | :--- | :--- | :--- | :--- |

\begin{tabular}{|c|c|c|c|c|}
\hline \& b) \& \begin{tabular}{l}
\[
\mathbf{v}=\sqrt{\frac{G M}{R+h}}
\] \\
Time period of the satellite \(=\) perimeter of the orbit/orbital velocity \\
Then
\[
\begin{aligned}
\mathrm{T} \& =\frac{2 \Pi(R+h)}{\sqrt{G M /(R+h)}} \\
\& =2 \Pi \sqrt{\frac{(R+h) 3}{G M}}
\end{aligned}
\] \\
Geostationary satellite- Used in telecommunications Polar satellites- Used in Remote sensing
\end{tabular} \& \(1 \frac{1}{2}\)
\(1 \frac{1}{2}\)

1
1 \& 5 \\

\hline 30 \& a) \& | For a steady flow of an incompressible non viscous fluid through a pipe;the sum of the pressure, kinetic energy per unit volume and potential energy per unit volume is a constant. |
| :--- |
| Work done on the fluid at the region BC is $W_{1}=F_{1} . S_{1}$ $\text { ie } W_{1}=P_{1} A_{1} \cdot v_{1} \Delta \mathrm{t}=P_{1} \Delta \mathrm{v}$ |
| Similarly at region DE $W_{2}=P_{2} \Delta \mathrm{v}$ |
| Net work done $\quad \Delta \mathrm{W}=W_{1}-W_{2}=\left(P_{1}-P_{2}\right) \Delta \mathrm{v}$ |
| Work-energy theorem states that a part of this work is used to change the KE and the other half is used to change the PE. $\begin{equation*} \text { ie } \Delta W=\Delta K E+\Delta P E \tag{1} \end{equation*}$ $\qquad$ $\begin{aligned} \Delta \mathrm{KE} & =\frac{1}{2} \mathrm{~m} v_{2}^{2}-\frac{1}{2} \mathrm{~m} v_{1}^{2} \\ & =\frac{1}{2} \rho \Delta \mathrm{v}\left(v_{2}^{2}-v_{1}^{2}\right) \end{aligned}$ $\Delta \mathrm{PE}=\mathrm{mg} h_{2}-\mathrm{mg} h_{1}=\rho \Delta \operatorname{vg}\left(h_{2}-h_{1}\right)$ |
| Substituting these values of $\Delta \mathrm{W}, \Delta \mathrm{KE}$ and $\triangle \mathrm{PE}$ in (1) $P_{1}+\frac{1}{2} \rho v_{1}^{2}+\rho \mathrm{g} h_{1}=P_{2}+\frac{1}{2} \rho v_{2}^{2}+\rho g h_{2}$ |
| Or, $\quad P+\frac{1}{2} \rho v^{2}+\rho g h$ is a constant | \& 4 \& \\

\hline
\end{tabular}

FIRST YEAR HIGHER SECONDARY MODEL EXAMINATION, JUNE 2022
ANSWER KEY (unofficial)
HSPTA KANNUR

| Qn <br> No. | Qn <br> Sub <br> So. | Scoring Indicators | Split <br> score | Total |
| :--- | :--- | :--- | :--- | :--- |


|  | b) | 1. Fluid must be incompressible <br> 2. The flow must be steady | $\frac{1}{2}$ $\frac{1}{2}$ | 5 |
| :---: | :---: | :---: | :---: | :---: |
| 31 | a) <br> b) <br> c) | $\mathrm{PV}=$ Constant <br> Let an ideal gas go from a state $\left(\mathrm{P}_{1}, \mathrm{~V}_{1}\right)$ to a state $\left(\mathrm{P}_{2}, \mathrm{~V}_{2}\right)$ at constant temperature T. <br> Then for a small change in volume dV , work done, dW = PdV <br> Therefore the total work done, $\begin{aligned} W & =\int_{V_{i}}^{V_{2}} P \mathrm{~d} V \\ & =\mu R T \int_{V_{1}}^{V_{2}} \frac{\mathrm{~d} V}{V}=\mu R T \quad \ln \frac{V_{2}}{V_{l}} \end{aligned}$ <br> Efficiency, $\begin{aligned} \boldsymbol{T}=1 & -\frac{T_{ \pm}}{T_{1}} \\ & =1-293 / 398 \\ & =0.2638=26.38 \% \end{aligned}$ | 1 1 1 1 1 1 1 | 5 |
| 32 | a) | The radial component of force $F_{g} \cos \theta$ is cancelled by tension <br> The tangential component $\mathrm{F}_{\mathrm{g}} \sin \theta$ produces restoring torque, $\tau=-\mathrm{LF}_{\mathrm{g}} \sin \theta$ <br> For rotational motion , $\tau=1 \alpha$ <br> Therefore $-\mathrm{LF}_{\mathrm{g}} \sin \theta=\mathrm{l} \alpha$ | 1 |  |

FIRST YEAR HIGHER SECONDARY MODEL EXAMINATION, JUNE 2022
ANSWER KEY (unofficial)
HSPTA KANNUR

| Qn <br> No. | Qn <br> Sub <br> No. | Scoring Indicators | Split <br> score | Total |
| :--- | :--- | :--- | :--- | :--- |



XXXXXXXXX
HSPTA KANNUR

