DIRECTORATE OF GOVERNMENT EXAMINATION, CHENNAI-6 HIGHER SECONDARY SECOND YEAR PUBLIC EXAMINATION. MAY -2022 KEY ANSWER FOR BIO – ZOOLOGY (NEW SYLLABUS)

NOTE:

TOTAL MARKS: 35

- 1. Answer written only in BLACK or BLUE should be evaluated
- 2. Choose the correct answer and write the option code
- 3. If one of them (option or answer) is wrong, then award zero mark only

PART-II. (BIO – ZOOLOGY) SECTION –1

Note: - Answer all the questions

	Eau	an question carries i mark		0 ^ 1 = 0
Q.			ANSWE	R
No		TYPE - A		TYPE - B
1	d	Transcription	а	Amphibians
2	С	Trichoderma polysporum	b	Extinction
3	а	Devonian	а	Epididymis
4	b	Extinction	d	0
5	а	Amphibians	d	Transcription
6	d	0	С	Trichoderma polysporum
7	b	Denaturation, Annealing, Synthesis	а	Devonian
8	а	Epididymis	b	Denaturation, Annealing, Synthesis

SECTION – 2

Note:- Answer any Four questions

4 X 2 = 8

8 X 1 - 8

Q.no		ANSW	/ERS	MAI	RKS
9	(i)	nogenesis: - Development of an egg into a fertilization E.g Honeybees, Gall fly, A Sporocysts and Redia	nnelid and seaurchin	1 ½ ½	2
10		Surrogacy is a method of	f reproduction or an agreement a pregnancy for another person 's parent after birth.		2
11	Differe	ntiate Template strand and	Coding strand: (Any 2)		
	s.no	Template strand	Coding strand		
	1	Leading strand	Lagging strand	2 x 1	
	2	DNA strand with $3' \rightarrow 5'$ polarity.	DNA strand with $5' \rightarrow 3'$ polarity		2
	3	Replication is continuous	Replication is discontinuous		

12	Disproved Lamarck's theory of Acquired characters:-		
	(a). August Weismann.	1	`
	 (b). (i). August Weismann conducted experiments on mice for twenty generations by cutting their tails and breeding them. All mice born were with tail. 		2
	(or) (ii).The somatoplasm will not be transferred to the next generation.	1	
13	Symptoms of Filariasis: - (Any 2)		
	 (i) Inflammation of the lymph nodes. (ii) The obstruction of lymph vessels (iii) Inflammation in limbs, scrotum and mammary glands. 	2X1	2
14	Gene therapy :-		
	The process involves the transfer of a normal gene into a person's cells that carries one or more mutant alleles. (Or)		2
	Genetic defect could be corrected by a process called gene therapy		
	SECTION – 3	T	
		3 = 9	
15	Differentiate Foeticide and Infanticide	41/	
	(i). Foeticide: - Aborting the female in the mother's womb.(ii). Infanticide: - killing the female child after her birth.	1½ 1½	3
16	Mere Attempt		3
17	Antibiotic Resistance Develop: -	_	
	(i) Misuse of antibiotics	1	3
	(ii) Over use of antibiotics.	1	
18.	(iii) Poor infection prevention control Differentiate Natality from Mortality:	-	
	Mortality : Mortality is the population decline factor (Or)		
		1 ½	
	Number of deaths per unit time Death rate (d) =		
	Average population		3
	Natality: Populations increase because of natality. (Or)		
	Number of birth per unit time	1 1⁄2	
	Birth rate (b) =		
10	Average population		
19	In the XY chromosomal system of sex determination, males have only one X chromosome, whereas females have two: -		
	(Any 2)	2 X	
	1. In mammals the necessary dosage compensation is accomplished		~
	by the inactivation of one of the X chromosome in females	1½	3
	12 So that both maloe and tomaloe have only one functional X		
	2. So that both males and females have only one functional X		
	 So that both males and remales have only one functional x chromosome per cell. Mary Lyon suggested that bar bodies represented an inactive 		

	SECTION – 4 Note :- Answer any three questions 2 x 5	5 =10	
20	Structure of Human ovum:- (Any 3)		
(a)	(1). Explanation:-		
	 Ovum is non-cleidoic, alecithal and microscopic in nature. Cytoplasm called ooplasm It contains a large nucleus called the germinal vesicle. The ovum is surrounded by three coverings namely An inner thin transparent vitelline membrane, Middle thick zona pellucida c.Outer thick coat of follicular cells called corona radiata. Between the vitelline membrane and zona pellucida is a narrow perivitelline space. 	3 X 1	5
	(2). Draw and Label	2	
	Corona radista Zona Petitodia Viteime mitorane Nucleus Copitam	2	
<u>//.</u>)	(Or)	1	
(D)	Salient features of Human Genome Project:- (Any 5 points)		
	 The human genome contains 3 billion nucleotide bases. An average gene consists of 3000 bases Genes are distributed over 24 chromosomes Chromosome 19 has the highest gene density. Chromosome 13 and Y chromosome have lowest gene densities. The chromosomal organization of human genes shows diversity. There may be 35000-40000 genes in the genome and almost 99.9 nucleotide bases are exactly the same in all people. Functions for over 50 percent of the discovered genes are unknown. Less than 2 percent of the genome codes for proteins. Chromosome 1 has 2968 genes whereas chromosome 'Y' has 231 genes. Scientists have identified about 1.4 million locations were single base DNA differences 	5 x 1	5
21	 The human genome contains 3 billion nucleotide bases. An average gene consists of 3000 bases Genes are distributed over 24 chromosomes Chromosome 19 has the highest gene density. Chromosome 13 and Y chromosome have lowest gene densities. The chromosomal organization of human genes shows diversity. There may be 35000-40000 genes in the genome and almost 99.9 nucleotide bases are exactly the same in all people. Functions for over 50 percent of the discovered genes are unknown. Less than 2 percent of the genome codes for proteins. Chromosome 1 has 2968 genes whereas chromosome 'Y' has 231 genes. Scientists have identified about 1.4 million locations were 	5 x 1	5
(b) 21 (a)	 The human genome contains 3 billion nucleotide bases. An average gene consists of 3000 bases Genes are distributed over 24 chromosomes Chromosome 19 has the highest gene density. Chromosome 13 and Y chromosome have lowest gene densities. The chromosomal organization of human genes shows diversity. There may be 35000-40000 genes in the genome and almost 99.9 nucleotide bases are exactly the same in all people. Functions for over 50 percent of the discovered genes are unknown. Less than 2 percent of the genome codes for proteins. Chromosome 1 has 2968 genes whereas chromosome 'Y' has 231 genes. Scientists have identified about 1.4 million locations were single base DNA differences 	5 x 1	5

	 (v) One light chain is attached to each heavy chain and two heavy chains are attached to each other (vi) Each chain (L and H) has two terminals. They are C - terminal (Carboxyl) and amino or N-terminal. (vii) Each chain (L and H) has two regions. They have variable (V) region at one end and a much larger constant (C) region at the other end. 		5
	(2). Draw and Label		
	Antigen binding site Variable region Light chain Disulphide bond Heavy chain Constant region	2	
	(Or)		
(b)	Radioactive Waste Management:-		
		1	
	I. Explanation:-		
	I. Explanation:- Radioactive waste management involves the treatment, storage, and disposal of liquid, airborne, and solid effluents from the nuclear industry.	1	
	Radioactive waste management involves the treatment, storage, and disposal of liquid, airborne, and solid effluents from the nuclear industry.	1	
	Radioactive waste management involves the treatment, storage, and disposal of liquid, airborne, and solid effluents from the nuclear industry. II. Methods of disposal of radioactive wastes: 1. Limit generation:-	1	
	 Radioactive waste management involves the treatment, storage, and disposal of liquid, airborne, and solid effluents from the nuclear industry. II. Methods of disposal of radioactive wastes: Limit generation:- Limiting the generation of waste. Dilute and disperse:- 		
	 Radioactive waste management involves the treatment, storage, and disposal of liquid, airborne, and solid effluents from the nuclear industry. II. Methods of disposal of radioactive wastes: Limit generation:- Limiting the generation of waste. Dilute and disperse:- Low radioactivity - dilution and dispersion are adopted. Delay and decay:- 		
	 Radioactive waste management involves the treatment, storage, and disposal of liquid, airborne, and solid effluents from the nuclear industry. II. Methods of disposal of radioactive wastes: Limit generation:- Limiting the generation of waste. Dilute and disperse:- Low radioactivity - dilution and dispersion are adopted. Delay and decay:- Nuclear reactors and accelerators is very short lived. 		
	 Radioactive waste management involves the treatment, storage, and disposal of liquid, airborne, and solid effluents from the nuclear industry. II. Methods of disposal of radioactive wastes: Limit generation:- Limiting the generation of waste. Dilute and disperse:- Low radioactivity - dilution and dispersion are adopted. Delay and decay:- 		
	 Radioactive waste management involves the treatment, storage, and disposal of liquid, airborne, and solid effluents from the nuclear industry. II. Methods of disposal of radioactive wastes: Limit generation:- Limiting the generation of waste. Dilute and disperse:- Low radioactivity - dilution and dispersion are adopted. Delay and decay:- Nuclear reactors and accelerators is very short lived. Concentrate and confine process:- The objective of treatment activities for longer-lived 		
	 Radioactive waste management involves the treatment, storage, and disposal of liquid, airborne, and solid effluents from the nuclear industry. II. Methods of disposal of radioactive wastes: Limit generation:- Limiting the generation of waste. Dilute and disperse:- Low radioactivity - dilution and dispersion are adopted. Delay and decay:- Nuclear reactors and accelerators is very short lived. Concentrate and confine process:- The objective of treatment activities for longer-lived radioactivity. 		
	 Radioactive waste management involves the treatment, storage, and disposal of liquid, airborne, and solid effluents from the nuclear industry. II. Methods of disposal of radioactive wastes: Limit generation:- Limiting the generation of waste. Dilute and disperse:- Low radioactivity - dilution and dispersion are adopted. Delay and decay:- Nuclear reactors and accelerators is very short lived. Concentrate and confine process:- The objective of treatment activities for longer-lived radioactivity. II. Control and Management :- Spent Fuel Pools:- 		5
	 Radioactive waste management involves the treatment, storage, and disposal of liquid, airborne, and solid effluents from the nuclear industry. II. Methods of disposal of radioactive wastes: Limit generation:- Limiting the generation of waste. Dilute and disperse:- Low radioactivity - dilution and dispersion are adopted. Delay and decay:- Nuclear reactors and accelerators is very short lived. Concentrate and confine process:- The objective of treatment activities for longer-lived radioactivity. II. Control and Management :- Spent Fuel Pools:- The spent fuel discharged from the reactors is temporarily stored in the reactor pool. Vitrification method :- Nuclear waste are encased in dry cement caskets. 		5
	 Radioactive waste management involves the treatment, storage, and disposal of liquid, airborne, and solid effluents from the nuclear industry. II. Methods of disposal of radioactive wastes: Limit generation:- Limiting the generation of waste. Dilute and disperse:- Low radioactivity - dilution and dispersion are adopted. Delay and decay:- Nuclear reactors and accelerators is very short lived. Concentrate and confine process:- The objective of treatment activities for longer-lived radioactivity. II. Control and Management :- Spent Fuel Pools:- The spent fuel discharged from the reactors is temporarily stored in the reactor pool. Vitrification method :- 		5