FIRST YEAR HIGHER SECONDARY EXAMINATION JUNE 2022

CHEMISTRY - ANSWER KEY (Unofficial)

Question Code: FY 25

Qn. No.	Sub Qns.		Answer Key/Value	Points		Score	Total	
	Answer any 8 questions from 1 to 11. Each carry 2 scores							
1.	(i)	(i) (A) n = 1, l = 0, m = 0, s = + ½			1			
	(ii)	Z 25 C	y Node X			1	2	
2.		$\lambda = \underline{h}$ mv Here m = 9.1 So, $\lambda = \underline{6.6}$	Broglie's equation, L x 10 ⁻³¹ kg and v = 10 m/s $\frac{26 \times 10^{-34}}{(10^{-31} \times 10)} = \frac{7.281 \times 10^{-5} \text{ m}}{10^{-5} \text{ m}}$			1	2	
3.		According to Fajans rule, the smaller the size of the cation and the larger the size of the anion, the greater the covalent character of an ionic bond. So LiCl shows covalent character. OR, In LiCl, the size of the cation, Li ⁺ ion is small and that of the anion, Cl ⁻ is large. So it shows covalent character.			2	2		
4.		Molecule	Hybridisation of central atom	Shape of molecule				
		CH4	sp ³	Tetrahedral		1/ 4	2	
		BF ₃	sp ²	Trigonal planar or, Planar triangular		½ x 4	2	
		SF ₆	sp ³ d ²	Octahedral				
5.		Oxidising ager	nt: HCl	1		1	2	
		Reducing ager	nt: Zn			1		

+1 CHEMISTRY ANSWER KEY - PREPARED BY ANIL KUMAR K L, APHSS ADICHANALLOOR, KOLLAM

6.		Heavy water is Deuterium Oxide (D	20).	1	
		It is used as moderator in Nuclear reactors. It is also used for the study of reaction			2
		mechanism. [Any one use is require	ed]	1	
7.		Column A	Column B		
		(a) Na ₂ CO ₃ .10H ₂ O	(iii) Forms soda ash on heating	4 x ½	2
		(b) NaHCO₃	(iv) Used in fire extinguishers	4 X /2	Z
		(c) Ca(OH) ₂	(ii) Preparation of bleaching powder		
		(d) CaSO ₄ . ½ H ₂ O	(i) Forms plastic mass when water is added.		
8.		-	sp ³ hybridisation and hence it has a three		
			it is hard. Due to the absence of free electrons, it	1	
		is a non- conductor.			2
		But in graphite, each carbon atom is in sp ² hybridisation. Hence it has a layered			2
		structure, in which there is only a weak van der Waal's force of attraction between		1	
		different layers. So it is soft. Due to the presence of free electrons, it is a conductor			
	(1)	of electricity.			
9.	(i)	2,5,6-Trimethyloctane		1	2
10	(ii)	5-Oxohexanoic acid		1	
10.		-	ron pair is called an electrophile. Or, electrophiles	1	
		are electron deficient species attack at electron rich centre.			
		E.g. carbocations (R ⁺), -CHO, >CO etc.[Any one example is required] A reagent that brings an electron pair is called a nucleophile. Or, nucleophiles are			2
		electron rich species attack at electron deficient centre. E.g. OH [–] , CN [–] , NO ₂ [–] , Cl [–] , Br [–] , I [–] , H ₂ O [Any <i>one</i> example is required]			
11.		When the p ^H of the rain water is be	low 5.6, it is called acid rain.		
		The harmful effects of acid rain are:			
		Acid rain is harmful for agricult	ture, trees and plants.		
		 It causes respiratory ailments and skin cancer in human beings and animals. 			-
		 It affects plants and animal life in aquatic ecosystem. 		2	2
		 It corrodes water pipes resulting in the dissolution of heavy metals into the 			
		drinking water.			
		• Acid rain damages buildings ar	nd other structures made of stone or metal. [Any 1		
		required]			
		Answer any 8 questi	ons from 12 to 23. Each carry 3 scores		
12.	(i)	2		1	
	(ii)		that if two elements combine to form more than	L T	
		•	es of one of the elements that combine with a	1	
		fixed mass of the other element, ar		-	
			th oxygen to form two compounds – water and		3
		hydrogen peroxide.			-
		$H_2 + \frac{1}{2}O_2 \rightarrow H_2O$			
		2g 16g 18g		1	
		$H_2 + O_2 \rightarrow H_2O_2$			
		2g 32g 34g Here, the masses of oxygen (i.e. 16 g and 32 g) which combine with a fixed mass of			
		nere, the masses of oxygen (i.e. 16	g and 52 g) which combine with a fixed mass of		

+1 CHEMISTRY ANSWER KEY - PREPARED BY ANIL KUMAR K L, APHSS ADICHANALLOOR, KOLLAM

		hydrogen (2g) bear a simple ratio, i.e. 16:32 or 1: 2.		
13.	(i)	Number of moles of H_2 = Given mass in gram = 3 = 1.5 mol		
	(1)	Molar mass 2		
		Number of moles of O_2 = Given mass in gram = 30 = 0.9375 mol	1	
		Molar mass 32	1	
	(ii)	$H_2(g) + \frac{1}{2}O_2(g) \longrightarrow H_2O(g)$		
		2g 16g 18g		3
		According to the equation, $2g H_2 \equiv 16g O_2$		5
		So, $3g H_2 \equiv \underline{16 \times 3} = 24 g O_2$		
		$\frac{1}{2} \frac{1}{2} \frac{1}$		
		$\frac{1}{3}$ g H ₂ reacts with 24g O ₂ . So H ₂ is completely used up and hence it is the limiting		
		reagent.	1	
		Amount of water produced = $3 + 24 = 27 \text{ g}$	1	
14.	(i)	(B) $ns^2 np^3$		
±- 7 .	(i) (ii)	Atomic radius increases from top to bottom in a group.	1	3
	('')	This is due to increase in the no. of shells and screening effect from top to bottom in	1	S
		a group.	1	
15.	(i)	Electronegativity of an atom in a compound is the ability of the atom to attract	1	
19.	(1)	shared pair of electrons.		3
	(ii)	Pauling scale, Mulliken-Jaffe scale, Allred-Rochow scale [Any 1 required]	1	5
	(iii)	Fluorine (F)	1	
16.	(111)	According to Boyle's law: V α 1/P (At constant T and n)	-	
10.		According to Charles' Law: $V \propto T$ (At constant p and n)		
		According to Avogadro Law: $V \propto n$ (At constant p and T)		
		On combining these three laws we get: $V \propto n \times T \times 1/P$	3	3
		Or, V = R x n x T x 1/P (where R is a constant called universal gas constant)		
		Or, PV = nRT		
		This equation is known as ideal gas equation.		
17.	(i)	Critical temperature of a gas is highest temperature at which liquifaction of the gas		
1/.	(1)	first occurs.	1	
		OR,		
		It is the temperature below which a gas can be liquified by the application of		
		pressure.		3
	(ii)	B can be easily liquified.	1	
	(")	This is because B has the highest critical temperature. The higher the critical		
		temperature, higher is the intermolecular force of attraction and easier is the	1	
		liquefaction of the gas.		
18.	(i)	(D) $\Delta U \neq 0$	1	
-0.	(ii)	Work done (w) = $-p.\Delta V$	-	
	()	$= -p(V_2 - V_1)$	1	3
		= -1(10 - 2) = -8 litre-atm		
		i.e. 8 litre-atm work is done by the system.	1	
19.	(i)	Back-ward direction OR, from right to left.	1	
	(ii)	N ₂ (g) + 3H ₂ (g) → 2NH ₃ (g); Δ H = -92.38 kJ/mol		3
		Here, the forward reaction is no. of moles decreasing reaction. So high pressure	1	
	l			

+1 CHEMISTRY ANSWER KEY - PREPARED BY ANIL KUMAR K L, APHSS ADICHANALLOOR, KOLLAM

	favours the forward reaction. (High pressure favours the formation of NH ₃). Here the forward reaction is exothermic. So low temperature favours the forward reaction (formation of ammonia).	1	
20.	Since the method is not specified, we can use either oxidation number method or half reaction method. Oxidation number method: Step 1: The skeletal equation is: $Fe^{2*} + Cr_2O_7^{2-} \rightarrow Fe^{3*} + Cr^{3*}$ Step 2: Assign oxidation number each element and identify the elements undergoing change in oxidation number. $+2 + 6 - 2 + 3 + 3$ $Fe^{2*} + Cr_2O_7^{2-} \rightarrow Fe^{3*} + Cr^{2*}$ Step 3: Calculate the change in oxidation number and make them equal by multiplying with suitable number. Here the oxidation number of C is decreased by 3 and that of Fe is increased by 1. In order to equate them multiply Fe^{3*} by 6. $6 Fe^{2*} + Cr_2O_7^{2-} \rightarrow Fe^{3*} + Cr^{3*}$ Step 4: Now balance all the atoms except Oxygen and Hydrogen $6 Fe^{2*} + Cr_2O_7^{2-} \rightarrow 6 Fe^{3*} + 2 Cr^{3*}$ Step 5: Now balance the ionic charaes on both sides. Here the net ionic charge on LHS is $+10$ and on RHS is +24. To equate them add. $14 H^{+}$ on LHS, since the reaction takes place in acidic medium. $6 Fe^{2*} + Cr_2O_7^{2-} + 14 H^{+} \rightarrow 6 Fe^{3*} + 2 Cr^{3*}$ Step 6: Now balance hydrogen atoms by adding sufficient number of H ₂ O molecules. Here add 7 H ₂ O molecules on RHS. $6 Fe^{2*} + Cr_2O_7^{2-} + 14 H^{+} \rightarrow 6 Fe^{3*} + 2 Cr^{3*} + 7 H_2O$ OR, Half Reaction Method: Ans: Step-1: Assign the oxidation number of each element and find out the substance oxidised and reduced. $t^{2-t6} = t^{2-t} Fe^{3+t} + Cr_2O_7^{2-} + Fe^{3+t} = Reduction half: Cr_2O_7^{2-} + 2 Cr^{3+} + 7 H_2O$ OR, Half Reaction Method: Ans: Step-2: Separate the equation into 2 half reactions -oxidation half reaction and reduction half reaction. Oxidation half: $Fe^{2+t} \rightarrow Fe^{3+t} = Reduction half: Cr_2O_7^{2-} + 2 Cr^{3+} + 7 H_2O$ Step-3: Balance the atoms other than O and H in each half reaction individually. Oxidation half: $Fe^{2+t} \rightarrow Fe^{3+t} = Reduction half: Cr_2O_7^{2-} + 14H^{+} \rightarrow 2 Cr^{3+} + 7 H_2O$ Step-5: Now balance 0 and H atoms. Add H_2O to balance O atoms atom H^{+} to balance H atoms since the reaction cours in acidic medium. Oxidatio	3	3
21.	 Hydrides are classified into three: i) <i>Ionic or saline or salt-like hydrides:</i> These are formed by s-block elements. They are crystalline, non-volatile solids and conduct electricity in the molten state or in aqueous solution state. E.g. NaH, KH, CaH₂, BaH₂ etc. 	1	3
	 ii) Covalent or Molecular Hydrides: These are the hydrides of p-block elements. They are volatile compounds and non-conductors of electricity. E.g.CH₄, NH₃, 	1	

					1
		 H₂O and HF. iii) <i>Metallic or interstitial Hydrides:</i> These are formed by d-block and f-block elements. They are almost nonstoichiometric, conduct heat and electricity. E.g. LaH_{2.87}, YbH_{2.55}, TiH_{1.5-1.8}, ZrH_{1.3-1.75}, VH_{0.56}, NiH_{0.6-0.7}, PdH_{0.6-0.8} etc. [Any <i>one</i> example is required from each category] 			
22.	(i)	(D) $CH_3)_2C = CHC_2H_5$		1	
	(ii)	HH H H H H H $HH H H$ $H H$ H H H H H H H H H		2	3
23.	(i)	(C) Nitrate		1	
	(ii)	Classical Smog	Photochemical Smog		
		It occurs in cool and humid climate. The main components are smoke, fog and sulphur dioxide. It is a reducing smog.	It occurs in warm, dry and sunny climate The main components are oxides of nitrogen, unburnt hydrocarbons, formaldehyde etc. It is an oxidizing smog [<i>Any 2</i> differences required]	2	3
		Answer any 5 questions from	m 24 to 31. Each carry 4 scores		
24.		The important postulates of Bohr model of	-		
24.		(i) The electron in the hydrogen atom c paths of fixed radius and energy. The states or allowed energy states. (ii) The energy of an electron in an orbit when an electron absorbs energy, it (iii) The radius of orbits can be given by t (iv) The energy of electron in an orbit is a where n = 1,2,3 and R _H is a consta 2.18x10 ⁻¹⁸ J. (v) The frequency of radiation absorbed between two stationary states that c $v = \Delta E = E_2 - E_1$ h	an move around the nucleus in circular ese paths are called orbits or stationary does not change with time. However, will move away from the nucleus. the equation $r_n = a_0 n^2$ where $a_0 = 52.9$ pm. given by the expression: $E_n = -R_H (1/n^2)$, ant called Rydberg constant. Its value is or emitted when transition occurs differ in energy by ΔE , is given by:	3	
	 (vi) The angular momentum of an electron is an integral multiple of h/2π. i.e. m_evr = nh/2π Demerits: It could not explain the fine spectrum of hydrogen atom. It could not explain the spectrum of atoms other than hydrogen. It was unable to explain the splitting of spectral lines in the presence of electric field (Stark effect) and in magnetic field (Zeeman effect). 				4

 M.O configuration of N₂ is: σ1s² σ*1s² σ2s² σ*2s² π2px² π2py² σ2pz². Bond order (B.O) = ½ [Nb - Na] = ½ [10 - 4] = ½ x 6 = 3 N₂ is diamagnetic, due to the absence of unpaired electron. Entropy is the degree of disorderness or randomness of a system. (a) Entropy decreases. This is because in solids, the particles have well-ordered arrangement/due to the closely packed arrangement of particles in solids. (b) Entropy increases. This is because when temperature increases, disorderness increases and hence the entropy increases. Relationship between Entropy and Gibb's energy is: G = H - TS (D) BCl₃ Solutions which resist the change in p^H on dilution or with the addition of small amount of acid or alkali are called Buffer solutions. 	1 2 1 1 1 1 1 1 1	4
 (a) Entropy decreases. This is because in solids, the particles have well-ordered arrangement/due to the closely packed arrangement of particles in solids. (b) Entropy increases. This is because when temperature increases, disorderness increases and hence the entropy increases. Relationship between Entropy and Gibb's energy is: G = H – TS (D) BCl₃ Solutions which resist the change in p^H on dilution or with the addition of small 	1 1 1	4
 (D) BCl₃ Solutions which resist the change in p^H on dilution or with the addition of small 	1	
E.g. An equimolar mixture of acetic acid and sodium acetate Or, an equimolar mixture of NH4OH and NH4Cl.	1 1 1	4
 Similarities between Li and Mg are: Both Li and Mg are harder but lighter than other elements of the respective group. They do not form superoxides. Their carbonates decompose easily on heating to form oxides and CO₂. 	2	
 Biological importance of Sodium: Na⁺ ions participate in the transmission of nerve signals, in regulating the flow of water across the cell membranes and in the transport of sugars and aminoacids. [Any one required] Biological importance of Calcium: Ca is present in bones and teeth in the form of calcium phosphate. It also plays important roles in neuromuscular function, interneuronal transmission, cell membrane integrity and blood coagulation. [Any 	1	4
 On heating, borax first loses water molecules and swells up. On further heating it turns into a transparent liquid, which solidifies into glass like material known as borax bead. OR, Na₂B₄O₇.10H₂O —Δ→ Na₂B₄O₇ —Δ→ 2NaBO₂ + B₂O₃ (Sodium (Boric anhydride) 	2	
 When boric acid is added to water, it behaves as a Lewis acid and accepts one pair of electrons from a hydroxyl ion. OR, B(OH)₃ + 2H₂O → [B(OH)₄]⁻ + H₃O⁺ Diborane react with ammonia to form B₂H₆.2NH₃ which on further heating gives 	1	4
)	E.g. An equimolar mixture of acetic acid and sodium acetate Or, an equimolar mixture of NH ₄ OH and NH ₄ Cl. (A) CH ₃ -COONa Similarities between Li and Mg are: • Both Li and Mg are harder but lighter than other elements of the respective group. • They do not form superoxides. • Their carbonates decompose easily on heating to form oxides and CO ₂ . • Their bicarbonates are stable only in solution. [<i>Any</i> 2 required] <i>Biological importance of Sodium</i> : Na ⁺ ions participate in the transmission of nerve signals, in regulating the flow of water across the cell membranes and in the transport of sugars and aminoacids. [<i>Any one</i> required] <i>Biological importance of Calcium</i> : Ca is present in bones and teeth in the form of calcium phosphate. It also plays important roles in neuromuscular function, interneuronal transmission, cell membrane integrity and blood coagulation. [<i>Any</i> <i>one</i> required] On heating, borax first loses water molecules and swells up. On further heating it turns into a transparent liquid, which solidifies into glass like material known as borax bead. OR, Na ₂ B ₄ O ₇ .10H ₂ O — Δ → Na ₂ B ₄ O ₇ — Δ → 2NaBO ₂ + B ₂ O ₃ (Sodium (Boric anhydride) metaborate) When boric acid is added to water, it behaves as a Lewis acid and accepts one pair of electrons from a hydroxyl ion. OR, B(OH) ₃ + 2H ₂ O → [B(OH) ₄] ⁻ + H ₃ O ⁺	E.g. An equimolar mixture of acetic acid and sodium acetate1Or, an equimolar mixture of NH4OH and NH4CI. (A) CH3-COONa1Similarities between Li and Mg are:1• Both Li and Mg are harder but lighter than other elements of the respective group.1• They do not form superoxides.2• Their carbonates decompose easily on heating to form oxides and CO2.1• Their bicarbonates are stable only in solution.[Any 2 required]Biological importance of Sodium: Na* ions participate in the transmission of nerve signals, in regulating the flow of water across the cell membranes and in the transport of sugars and aminoacids. [Any one required]1Biological importance of Calcium: Ca is present in bones and teeth in the form of calcium phosphate. It also plays important roles in neuromuscular function, interneuronal transmission, cell membrane integrity and blood coagulation. [Any one required]1On heating, borax first loses water molecules and swells up. On further heating it turns into a transparent liquid, which solidifies into glass like material known as borax bead.2OR, Na2B407.10H2O — $\Delta \rightarrow Na2B407 - \Delta \rightarrow 2NaBO2 + B2O3$ (Sodium (Boric anhydride) metaborate)2When boric acid is added to water, it behaves as a Lewis acid and accepts one pair of electrons from a hydroxyl ion.1OR, B(OH]3 + 2H2O \rightarrow [B(OH)4] ⁻ + H3O ⁺ Diborane react with ammonia to form B2H6.2NH3 which on further heating gives Borazine (B3N3H6), commonly known as inorganic benzene.1

30.	(i)	(C) Carius method		
50.	(ii)	(a) Sublimation: It is the process of conversion of a solid substance directly to	1	
	()			
		vapour by heating. It is used to separate sublimable compounds from non-	1	
		sublimable impurities.		
		(b) Crystallisation: It is based on the difference in the solubilities of the compound	1	4
		and the impurities in a suitable solvent.	1	
		(c) Simple distillation: The principle of this method is that liquids having different		
		boiling points vaporise at different temperatures. The vapours are cooled and	1	
		the liquids so formed are collected separately.	-	
24	(:)		2	
31.	(i)	The major product is 2-bromopropane $[CH_3-CHBr-CH_3]$ and the minor product is 1-	2	
		bromopropane [CH ₃ -CH ₂ -CH ₂ Br]. OR,		
		CH_3 - $CH=CH_2$ + HBr \longrightarrow CH_3 - $CHBr-CH_3$ + CH_3 - CH_2 - CH_2 - Br		
		(major) (minor)		
	(ii)	(a) Toluene (C ₆ H ₅ -CH ₃)		
		OR,		
		CH_3		
		(1) + CH ₃ Cl $\xrightarrow{\text{Anhyd. AlCl}_3}$ + HCl		4
		Toluene	1	
		(b) Cyclohexane (C ₆ H ₁₂)		
		OR,		
		$+ 3H_2 \xrightarrow{N1} \bigcirc$		
		Cyclohexane	1	
		l		