VIJAYABHERI

MALAPPURAM DISTRICT PANCHAYATH EDUCATIONAL PROJECT 2021-22

STEP-UP

STATISTICS

(Supporting Material for Higher Secondary/VHSE Classes)

ஞூவுவం

 விmிணి.

เฉพி\|พ๓รั		(ே冋ற)	(ฺฺ).wา.wา	
		வி.ญ()		werŏ

Prepared By:

1. RAJMOHAN. P.T CBHSS VALLIKUNNU
2. U.T. ABOOBACKER

OHSS TIRURANGADI
3. ERAMU K.A.

MSM HSS KALLINGALPARAMBA
4. IRSHAD ODAKKAL SNMHSS PARAPPANANGADI
5. RAFEEQUE. P.M

GOVT. MANAVEDAN HSS NILAMBUR
6. THOYYIB. K.A

MES HSS IRIMBILIYAM
7. KRISHNAKUMAR. V

GBHSS TIRUR
8. ABDUL NASAR. K

GHSS PANDIKKAD
9. NOUSHADALI. M

GHSS PANG
10.DR. MANZOOR K

GVHSS KALPAKANCHERY
11.ABDUL HAMEED. K.T

PTMYHSS CHERUR

CONTENTS

STATISTICS	
Chapter 1	INTRODUCTION TO STATISTICS FOR ECONOMICS
Chapter 2	COLLECTION OF DATA
Chapter 3	ORGANISATION OF DATA
Chapter 4	MRESENTATION OF DATA
Chapter 5	MEASURES OF CENTRAL TENDENCY
Chapter 6	CORRELATION
Chapter 7	INDEX NUMBERS
Chapter 8	USE OF STATISTICAL TOOLS
Chapter 9	

Chapter - 1

Introduction to Statistics for Economics

What is Economics?

"It is the study of man in the ordinary business of life."
Alfred Marshal-
The term ordinary business of life includes, the behavior of seller, consumer, producer, service provider etc..

Why economics?

- Human wants are unlimited
- Resources are scarce
- The resources have alternative uses
- There arise problem of choice

So economics studies how to satisfy the unlimited human wants with limited resources which have alternative uses.

Basic economic activities: They are production, consumption and distribution.

Meaning of Statistics

Statistics can be defined in singular and plural sense

Singular Sense

Statistics deals with the collection, classification, analysis, interpretation and presentation of numerical data.

Plural Sense

Quantitative information or data.

Economic data

Two types;

1) Quantitative data

Classification of data based on the quantities that can be measured. Eg: - Height, Weight, Income, Price, Tax etc.

2) Qualitative data

Classification of data based on qualities or attributes. Eg:- Honesty, Intelligence, Aptitude, beauty etc.

Plus One Statistics

What 'statistics' does?
 (Importance or Uses of statistics in economics)

- It is helpful to present economic facts in a precise and definite form.
- It is helpful in condensing mass data into a single figure
- It is helpful to understand an economic problem.
- It is helpful to find out the causes of economic problems
- It is helpful to formulate suitable economic policies
- It is helpful in finding relationships between different economic factors
- It is helpful to predict future trends and changes in the economy.
- It is helpful to formulate plans and policies.

Limitations of statistics

- Statistics does not study individual facts
- Statistics deals only with quantitative data.
- Statistics does not give 100% accurate result
- Statistics can be misused.

Chapter-2

Collection of data

In the collection of data, the following terms are commonly used.
Investigator: - The person or institution which conducts statistical study
Enumerator: - The person who collects data from the field of study
Respondent: - The person who provides data to the investigator or enumerator.
Universe : Area of collecting data
Population : Totality of the items under study.

Sources of data - Two types

a) Primary Data

Data collected directly by the enumerator are called primary data. It is the first hand information \& Original.

Eg:- Census

Merits :

- It is More reliable
- It is more accurate
- Data can collects directly
- Original data

Demerits :

- Collection more expensive \& time consuming,
- Trained enumerator required for the collection of data
- Personal bias of enumerator affects the data
b) Secondary data

Data collected from published / unpublished sources are known as secondary data.

Eg:- for published source:

Govt. publications, newspaper, magazine, website, reports of various agencies. etc.

Eg: for Unpublished Source:

Unpublished data from private offices. Research institutions etc.

Merits

- Less expensive
- Less time required,
- No enumerators required

Demerits:

- Less accurate data
- Less reliable
- Low clarity

How do we collect Primary data?

Survey is used for collecting primary data.

Survey

Survey is a method of gathering information from individuals. The tool of survey is questionnaire/ interview schedule. Questionnaire is a list of questions and possible answers prepared by investigator for conducting survey.

Characteristics or Qualities of a Good Questionnaire

Questions should be simple and easy to understand.
Questions don't become too long.
Avoid Personal Questions.
Questions should move from general to specific.
Questions should not use double negatives.

Methods of collecting primary data.

1. Personal interview

The investigator conducts face to-face interviews with the respondents is
known as personal interview

Advantages

- High response Rate
- Can use all types of questions
- Best for open-ended questions
- Chance for clarification of questions.

Disadvantages

- It is expensive \& time consuming
- Possibility of influencing respondents
- Unsuitable when the area of study is large.

2. Mailing a questionnaire.

Questionnaire is sent to each individual by or mail with a request to complete and return it by a given date.

Advantages

- Less expensive
- Suitable to remote area
- No influence on respondents
- Best for sensitive questions

Disadvantages

- Cannot be used by illiterates
- Reactions cannot be watched
- Cannot explain ambiguous questions
- Long response time

3. Telephonic interview

The data are collected from the respondents over telephone.

Advantages

- Relatively low cost
- less influence on respondents
- Relatively high response rate

Disadvantages

- Limited use
- Reactions of respondents cannot be watched
- Possibility of influencing respondents.

Pilot Survey

It is a pre-testing of questionnaire with in a small group. It provides a preliminary idea about the actual survey.

Importance of Pilot Survey

- It helps to know the shortcomings of the questions.
- It also helps to assess the suitability of questions \& clarity of instructions,
- It assess the performance of enumerators
- We can measure cost and time involved in the actual survey

Plus One Statistics

CENSUS AND SAMPLE SURVEYS

Census

A survey, which includes every element of the population, is known as Census or the Method of Complete Enumeration

Advantages

- Studies every unit
- Accurate \& reliable result
- Free from sampling errors
- Useful for further studies

Disadvantages

- Time consuming
- Expensive
- More enumerators needed
- Not applicable for infinite population

Sample survey

Sampling is the process of selection of sample from the population. A sample refers to a group or section of the population from which information is to be obtained.

Advantages

- Lower cost
- Reliable \& accurate information
- Less time
- Smaller team of enumerators required

Methods of sampling

Mainly, there are two methods of sampling.

1. Random sampling
2. Non - random sampling

Random sampling

Every individual of the population has been an equal chance of to be selected as the sample. Two methods of random sampling are;
a) Lottery method
b) Random tables number method

Lottery method:- Under this method, all items of the population are numbered on separate paper slips of identical size and shape. Then these paper slips are put in to container and shuffled well. A blind selection of paper slips is made from the container to construct the sample.

Table of random number:- Under this method random numbers are generated by specific mathematical method based on probability.

Non random sampling

Every individual of the population has no equal chance of being selected as the sample. Main forms of non-random sampling are;
a) Convenient sampling
b) Judgment sampling
c) Quota sampling

Sampling error

Sampling error is the difference between an actual value (Census method) and a sample value (Sampling method)

> Sampling error = size of population - size of sample
> Sampling error $=$ Actual value - estimated Value

Sampling error can be minimized by taking large number of samples.

Non Sampling Error

Errors arising at the time of observation, tabulation etc. are called non Sampling errors.
It is more serious than sample error. Some of the non-sampling errors are;

- Error in data acquisition
- Mistakes in copy writings
- Non-Response Errors
- Sampling Bias

National and state level agencies for data collection

- Census of India

\checkmark The census of India provides complete demographic records of population.
\checkmark In India census is carried out every ten years.
\checkmark Census data collected and published by the Registrar General of India.
\checkmark The last Census of India was held in 2011

Plus One Statistics

- National Sample Survey Organization (NSSO)

NSSO was established to conduct Nation-wide survey on different socio economics issues like poverty, unemployment etc...'Sarvekshana' is the quarterly publication of NSSO

- Central Statistics Organization (CSO)
- Registrar General of India (RGI)
- Directorate General of Commercial Intelligence and Statistics (DGCIS)
- Labour Bureau, etc.

Chapter-3

Organisation of data

Raw Data

Data collected in its original form is called raw data.

Classification of Data

The arrangements of data in to groups or classes according to the similarities are called classification of data.

Types of classification

1. Chronological classification (Time Series): -

Classification based on time such as years, moths, weeks etc.
2. Geographical or spatial classification:

Classification based on area or geographical differences
3. Qualitative classification: -

Classification based on quality or attributes such as intelligence, beauty etc.
4. Quantitative classification:-

Classification based on quantities such as height, weight etc.

Variable

Variables are those data, which can be expressed or measured in terms of Quantity. These values are capable of changing from unit to unit.

Eg:- Height, weight, distance etc.

Variables can be classified into two;

1. Discrete variable.

Discrete variable is those which can take only certain values.

$$
\text { Eg: - 1, 2, 3, } 4 \text { etc. }
$$

2. Continuous Variable

A Continuous variable is that which can take any numerical value between two values such as fractional, decimal, certain values.

Eg: - 1, 2, 3, 4.5, 5.2, $\frac{1}{2}, \frac{2}{3}$ etc.

Plus One Statistics

Methods of arranging data

1. Array (Individual Series)
2. Frequency array (Discrete series)
3. Frequency distribution (Continuous series)

Array

The arrangements of data in ascending or descending order of magnitude.
Example: - Raw data: 7,3,5,2,4,1,6 ------> Array: 1,2,3,4,5,6,7.

Frequency array

It is the arrangement of data of a discrete variable. Here, items are arranged with frequencies.

Construct a frequency array for the following data.
Examplle:-
$40,50,30,10,40,30,20,40,10,30,40,50,20,50,40,30,20,40,20,30,50,40,40,30,20,30,40,30,4$ 0 ,

Marks	Frequencies
10	2
20	5
30	8
40	10
50	4

Frequency Distribution

An orderly arrangement of data according to the magnitude of observations in different classes along with their corresponding frequencies is known as frequency distribution.

Example: - Construct a frequency Distribution table for following data.
$49,2,55,20,45,39,53,10,60,43,31,59,29,47,35,54,6,49,36,51,25,32,13,40,30,26,39,44,9,34$,23,31,48,18,38,27,32,0,35,24,15,14,21,12,25,28,11,19,16,69

Class	Tally Mark	Frequency
0-10	////	4
10-20	IMX 1/II	9
20-30	Ixal $1+4$	10
30-40	IXN HXXII	12
40-50	IXN I/I	8
50-60	HN	5
60-70	//	2
	Total	50

We have to know the following things while constructing frequency distribution.
$>$ Selection of class
A class should not be too big or too small. There should not be too much classes or too short. Eg:- 0-10, 10-20, 20-30 etc.

> Class Limits

The class limits are the lowest and the highest values that can be included in the class.

In the class $20-30,20$ is the lower class limit $\mathbf{3 0}$ is upper class limit.

> Class interval or Class width

It is the difference between the upper and lower class limits.

Class interval $=$ upper limit - lower limit

The class interval of the class $50-100$ is 50 i.e. $(100-50=50)$
> Class mid-point or Class mark

Class Midpoint $=\frac{\text { Upper Limit }+ \text { Lower Limit }}{2}$

> Class frequency (f)

The number of values corresponding to a particular class is known as the class frequency.

Example:-

Class	Frequency (\mathbf{f})	Lower class limit	Upper class limit	Class interval	Class midpoint
$\mathbf{0 - 1 0}$	5	0	10	10	5
$\mathbf{1 0 - 2 0}$	20	10	20	10	15
$20-30$	10	20	30	10	25
$30-40$	25	30	40	10	35
$40-50$	15	40	50	10	45

How to prepare frequency distribution.
The following points should be kept in mind while preparing a frequency distribution

1. Decide the number of classes.
2. Size of each class
3. Determination of class limits
4. Availability of class frequencies
5. Putting tally mark (/) for each frequency

Question: - Prepare a frequency distribution for the following data.

28	36	15	8	46	39	18	24	34	9
15	19	26	34	42	29	43	27	10	55
13	52	35	41	26	36	20	39	58	6
66	18	25	43	32	21	40	33	50	7
53	35	41	68	22	39	42	10	36	11

Answer:-

Class	Tally Mark	Frequency
0-10	////	4
10-20	IAX /III	9
20-30	HXI HAX	10
30-40	NX HAXII	12
40-50	INN /II	8
50-60	HN	5
60-70	//	2
Total		50

Different methods of constructing frequency distribution

There are two methods;
a) Exclusive method

Under this method, upper limit of one class will be lower limit of next class.

Plus One Statistics

Plus One Statistics

Univariate \& Bivariate distribution

a) Univariate Frequency Distribution

The frequency distribution of a single variable is called a univariate distribution
b) Bivariate Frequency Distribution:

A bivariate distribution is the frequency distribution of two variables.

Chapter-4

Presentation of data

There are three forms of presentation of data:

1. Textual Presentation
2. Tabular Presentation
3. Diagrammatic Presentation

Textual Presentation of Data

In textual presentation, data are presented in the form of text.
Eg:- During the second wave of covid 19, a lock down declared in Malappuram town, 82 shops were closed while 7 medical stores were found opened.

Tabular Presentation of data

It is the systematic organization of data in rows and columns
Types of classification in tabulation of data.

1. Chronological classification
2. Geographical or spatial classification
3. Qualitative classification
4. Quantitative classification.

Parts of a table

a) Table number
b) Title :- It gives a brief description of contents
c) Unit of measurement
d) Stubs:- Row headings
e) Captions:- Column headings
f) Body of the table:- Numerical information
g) Sources note: - It is given just below the table. It represents the data sources
h) Foot note:- It gives further explanations to the items given in the table.

Diagrammatic Presentation of data.

It is more effective method of presenting data than tables. It provides quickest understanding of the situation.

Types of Diagrams

1) Geometric diagrams
2) Frequency diagrams
3) Arithmetic line graph

A) Geometric Diagram

1. Bar diagram

a) Simple bar diagram
b) Multiple bar diagram
c) Component bar diagram

2. Pie diagram

Simple bar diagram

It comprises a group of equispaced and equiwidth rectangular bars for each class or category of data. Example given below;

Country wise population

Country	Population
INDIA	138
USA	35
PAKISTAN	25

Multiple bar diagram

It is used for comparing two or more sets of data.

Example:-

Component Bar Diagram

It is also known as sub divided bar diagram. It is very useful in comparing the size of different parts of each bar. In this diagram the total and sub divisions of total are to be presented.

Example:-

	Admission			
Year	huma nities	Comm erce	Scie nce	Tota I
2016	60	65	40	165
2017	40	50	60	150
2018	50	60	40	150

Pie diagram

It is a component diagram in which a circle is divided into different parts according to the magnitude of data.

Steps

- Convert the values in to percentage. I.e.,

$$
\frac{\text { Value of the component }}{\text { Total value }} \times 100
$$

- Convert the percentage into angles (Percentage value X 3.6)
- Draw circle and divide into parts according to magnitudes.

Example:-

Qn. Draw pie diagram for the following data

Monthly Expenditure (in Rs)			
Items	Expenditure	Percentage	Angles
Food	2500	36.23	130.43
Clothing	1500	21.74	78.26
Education	1700	24.64	88.70
others	1200	17.39	62.61
Toal	6900	100.00	360.00

Solution:-

Plus One Statistics

B) Frequency diagrams.

Diagrams which represent grouped frequency distribution are called frequency diagrams.
Important frequency diagrams are:

- Histogram
- Frequency polygon
- Frequency Curve
- Ogive

Histogram

It is a set of rectangles on which class interval plotted on X axis and frequency on Y axis. It is a two dimensional diagram.

Steps to draw

* Plot class interval on X axis and frequency on Y axis.
* Draw rectangles based on class intervals as width and frequencies as heights.

Example:-

Draw a histogram for the following data.

Wages in Rs.	No. of workers.
$0-10$	5
$10-20$	8
$20-30$	10
$30-40$	14
$40-50$	11
$50-60$	6
$60-70$	3

Frequency polygon

By joining the mid points of the top side of the rectangles of the histogram, we get frequency polygon. It can be drawn with or without histogram.

Plus One Statistics

Example:-

Frequency polygon with Histogram

Marks	No. of students
$0-20$	6
$20-40$	4
$40-60$	10
$60-100$	16
$100-120$	14
Total	50

Frequency Curve

Frequency curve is obtained by joining the points of frequency polygon by freehand smooth curve.

Example:

Age (Years)	No. of Residents
$0-10$	150
$10-20$	300
$20-30$	500
$30-40$	800
$40-50$	1000
$50-60$	900
$60-70$	400
$70-80$	100

Frequency curve

Ogives /Cumulative frequency curves

Ogives are two types

1. Less than ogive

It is the graph of less than cumulative frequencies. Less than cumulative frequencies are obtained by adding the frequency of a class to its succeeding frequencies.

Plus One Statistics

2. More than ogive

It is the graph of more than cumulative frequencies. More than cumulative frequencies are obtained by adding the frequency of a class to it's preceding frequencies.

Steps to draw less than ogive

- Take cumulative frequencies (CF) along Y axis and the upper class limit on X axis
- Plot the cumulative frequencies against the upper class limit
- Connect the points with curve.

Steps to draw More than ogive

- Take cumulative frequencies (CF) along Y axis and the Lower class limit on X axis
- Plot the cumulative frequencies against the Lower class limit
- Connect the points with curve.

Example:

Marks	No. of students	CF (Less than)	CF (More than)
$50-60$	4	4	36
$60-70$	8	12	32
$70-80$	12	24	24
$80-90$	6	30	12
$90-100$	6	36	6

Marks

Plus One Statistics

Arithmetic line graph

It is also known as Time series graph. The graph represents different values of variables in different time periods.

Day	Mon	Tues	Wed	Thurs	Fri
Earnings	300	450	200	400	650

CHAPTER-5

MEASURES OF CENTRAL TENDENCY

Points to Remember :-

A central tendency is a single figure that represents the whole mass of data. Arithmetic mean or mean is the number which is obtained by adding the values of all the items of a series and dividingthe total by the number of items.

When all items of a series are given equal importance than it is called simple arithmetical mean and when different items of a series are given different weights according with their relative importance is known weighted arithmeticmean.

Median is the middle value of the series when arranged in ascending order.
When a series is divided into more than two parts, the dividing values are called partition values.

If a statistical series is divided into four equal parts, the end value of each part is called a quartile and denoted by ' Q '. The first quartile or lower quartile (Q1) is that value which divides the first half of an orderly arranged series into twoequal parts.
Third quartile or upper quartile (Q3) is that value which divides the latter half of an ascending orderly arranged series into two equal parts.

Mode is the value which occurs most frequently in the series, that is modal value has the highest frequency in theseries.

Main purposes and functions of averages.

1)To represent a brief picture of data. 2)Comparison 3)Formulation of policies.
4)Basis of statistical analysis. 5) One value for all the group or series.

Essentials of a good average.

1) Easy to understand. 2) Easy to compute 3) Rigidly defined.
2) Based on all the items of series. 5) Capable of algebraic treatment.

Merits of Arithmetic mean

1) Simplicity 2) Certainty 3)Based on all values. 4) Algebraic treatment possible.
2) Basis of comparison. 6) Accuracy test possible.

Demerits of Arithmetic mean.

1) Effect of extreme values. 2) Mean value may not figure in the series 3)Misleading conclusions. 4) not be used in case of qualitative phenomenon.

Merits of Median

1) Simple measure of central tendency. 2) It is not affected by extreme observations. 3)Possible even when data is incomplete.4) Median can be determined by graphic presentation of data. 5) It has a definite value.

Demerits of median.

1) Not based on all the items in the series. 2) Not suitable for algebraic treatment.
3)Arranging the data in ascending order takes much time. 4)Affected by fluctuations of items.

Merits of mode

1) Simple and popular measure of central tendency.
2) It can be located graphically with the help of histogram.
3) Less effect of marginal values.
4) No need of knowing all the items of series.
5) It is the most representative value in the given series.

Demerits of mode

It is an uncertain 3) It is not capable of algebraic treatment. Procedure of grouping is complex. 4) It is not based on all observations.

Location of median by graph -

By 'Less than' or 'More than' ogives method a frequency distribution series is first converted into a less than or more than cumulative series as in the case of ogives, data are presented graphically to make a 'less than' or 'more than' ogive $\mathrm{N} / 2$ item of the series is determined and from this print (on the y-axis of the graph) a perpendicular is drawn to the right to cut the cumulative frequency curve. The median value is the one where cummulative frequency curve cuts corresponding to x -axis.Less than and more than ogive curve method present the data graphically in the form of 'less than' and 'more than' ogives simultaneously. The two ogives are superimposed upon each other to determine the median value. Mark the point where the ogive curve cut each other, draw a perpendicular from that point on xaxis, the corresponding value on the x -axis would be the median value.

Plus One Statistics

Plus One Statistics

Class

f1 $=$ Frequency of the modal class.
$\mathrm{f} 2=$ Frequency of the group succeeding the modalclass
$\mathrm{C}=\quad$ Class interval of moda ${ }^{3} 1$ class

Plus One Statistics

Chapter 6

MEASURES OF DISPERSION

Dispersion is the extent to which values in a distribution differ from average of the distribution. The important measures of dispersion are:

1. Range
2. Quartile deviation
3. Mean deviation
4. Standard deviation
5. Lorenz Curve

Range (\mathbf{R})

Range is the difference between the Largest and Smallest value in a distribution

$$
\begin{aligned}
& \mathbf{R}=\mathbf{L}-\mathbf{S} \\
& \mathrm{R}=\text { Range; } \mathrm{L}=\text { Largest Value } \\
& \mathrm{S}=\text { Smallest Value }
\end{aligned}
$$

$$
\text { Coefficient of Range }=\frac{L-S}{L+S}
$$

Example 1

Calculate Range and its co-efficient from the following data.

$$
\begin{aligned}
& 20,25,29,30,35,39,41,48,51,60,70 \\
& \mathrm{R}=\mathrm{L}-\mathrm{S} ; \quad \mathrm{L}=70 ; \quad \mathrm{S}=20 \\
& \mathrm{R}=70-20=50 \\
& \text { Co-efficient of range }=\frac{L-S}{L+S}=\frac{70-20}{70+20}=\frac{50}{90}=56
\end{aligned}
$$

Quartile Deviation (OD)

Half of inter-quartile range is called Quartile deviation. It is calculated by using upper and lower quartiles: Q_{3} and Q_{1}

$$
\begin{aligned}
& \text { Inter-quartile range }=\mathrm{Q}_{3}-\mathrm{Q}_{1} \\
& \text { Quartile Deviation }=\frac{Q 3-Q 1}{2}
\end{aligned}
$$

Plus One Statistics

Calculation of QD in an Ungrouped Data

Steps

1. Arrange the data in ascending order.
2. Find Q1,

$$
\mathrm{Q}_{1}=\left(\frac{N+1}{4}\right)^{\mathrm{th}} \text { Item }
$$

3. Find Q3 $\mathrm{Q}_{3}=3\left(\frac{N+1}{4}\right)^{\mathrm{th}}$ Item
4. Calculate QD $\mathrm{QD}=\frac{Q 3-Q 1}{2}$

Example 2

Calculate quartile deviation and co-efficient of quartile deviation from the following data. $40,56,80,24,60,30,100$

Solution

Arrange the data in ascending order.
$24,30,40,56,60,80,100$
$\mathrm{Q}_{1}=\left(\frac{N+1}{4}\right)^{\text {th }}$ Item $=\left(\frac{7+1}{4}\right)^{\text {th }}$ Item $=\frac{8}{4}=2^{\text {nd }}$ Item $=30$
$\mathrm{Q}_{3}=3\left(\frac{N+1}{4}\right)^{\text {th }}$ Item $=3\left(\frac{7+1}{4}\right)^{\text {th }}$ Item $=\frac{24}{4}=6^{\text {th }}$ Item $=80$
$\mathrm{Q}_{3}=80$
$\mathrm{QD}=\frac{Q 3-Q 1}{2}=\frac{80-30}{2}=\frac{50}{2}=25$
Co-efficient of Quartile deviation $=\frac{Q 3-Q 1}{Q 3+Q 1}$

$$
=\frac{80-30}{80+30}=\frac{50}{110}=0.455
$$

Grouped data;

Continuous Series

Steps to find QD in continuous series.

1. Find Cumulative Frequency
2. Find Q_{1}
$\mathrm{Q}_{1}=\frac{N}{4}{ }^{\text {th }}$ Item;
$\mathrm{Q}_{1}=\mathrm{L}+\left(\frac{\frac{n}{-}-c f}{f}\right) x \mathrm{i}$
3. Find Q_{3}

$$
\mathrm{Q}_{3}=\frac{3 N}{4}^{\text {th }} \text { Item; } \quad \mathrm{Q}_{3}=3+\left(\frac{\frac{n}{4}-c f}{f}\right) x \mathrm{i}
$$

4. Calculate $\mathrm{QD} ; \quad \mathrm{QD}=\frac{Q 3-Q 1}{2}$

Plus One Statistics

Example 3

Calculate QD from the following table

Mark	$20-25$	$25-30$	$30-35$	$35-40$	$40-45$
No. of students	4	20	50	32	14

Solution

Mark	No. of Students (f)	Cumulative Frequency (CF)
$20-25$	4	4
$25-30$	20	24
$30-35$	50	74
$35-40$	32	106
$40-45$	14	120

$\mathrm{Q}_{1}=\frac{N}{4}$ th Item $\frac{120}{4}=30^{\text {th }}$ Item
Q_{1} lies in the class $30-35$
$\mathrm{Q}_{1}=\mathrm{L}+\left(\frac{\frac{n}{4}-c f}{f}\right) x \mathrm{I}=$
$\mathrm{L}=30 ; \quad \frac{N}{4}=30 ; \quad \mathrm{cf}=24 ; \mathrm{f}=50 ; \mathrm{i}=5$
$\mathrm{Q}_{1}=30+\frac{30-24}{50} \times 5=30+0.6=30.6$
$\mathrm{Q}_{3}=\frac{3 N}{4}$ th Item $\frac{3 \times 120}{4}=\frac{360}{4}=90^{\text {th }}$ Item
Q_{3} lies in the class $35-40$
$\mathrm{Q}_{3}=35+\frac{90-74}{32} \times 5=35+2.5=37.5$
$\mathrm{QD}=\frac{Q 3-Q 1}{2}=\frac{37.5-30.6}{2}=3.45$
Coefficient of $\mathrm{QD}=\frac{Q 3-Q 1}{Q 3+Q 1}=\frac{37.5-30.6}{37.5+30.6}=\frac{6.9}{68.1}=0.101$

Standard Deviation

Standard Deviation is the square root of the mean of squared deviations from mean.

Plus One Statistics

Standard deviation in an ungrouped data.

$$
\sigma=\sqrt{\frac{\sum f d^{2}}{n}}
$$

$\sigma=$ Standard Deviation
$d=X-\bar{X}$
$\mathrm{n}=$ No. of items in the distribution
Coefficient of $\mathrm{SD}=\frac{\sigma}{\overline{\mathrm{X}}} \times 100$

Example 4

Calculate standard deviation and its co-efficient from the following data

X	d $X-24$	$\mathrm{~d}^{2}$
5	-19	361
10	-14	196
25	1	1
30	6	36
50	26	676

$$
\begin{aligned}
& \sum \mathrm{X}=120 \mathrm{X}=\frac{\sum x}{N}=\frac{120}{5}=24 \\
& \sigma=\sqrt{\frac{\sum f d^{2}}{n}} \\
& =\sqrt{\frac{1270}{5}} ; \quad \sqrt{254}=15.937 \\
& \text { Co-efficient of } \mathrm{QD}==\frac{\sigma}{\overline{\mathrm{X}}} \times 100 \\
& \sigma=15.937 ; \quad \quad \overline{\mathrm{X}}=24 \\
& =\frac{15.937}{24} \times 100 \\
& =66.4
\end{aligned}
$$

Grouped data

Continuous series

Plus One Statistics

Steps to calculate SD

1. Calculate Arithmetic mean $=\overline{\mathrm{X}}=\frac{\sum f m}{\Sigma f}$
2. Find $d, d=m-\bar{X}$
3. Find d^{2}
4. Find fd^{2}; multiply f with d^{2} column
5. Sum up the value of fd^{2} column to get $\sum \mathrm{fd}^{2}$
6. Sum up the values of frequency column to get $\sum \mathrm{f}$
7. Apply the following equation to calculate SD

$$
\mathrm{SD}=\frac{\sum f d^{2}}{\Sigma f}
$$

Example 5

Calculate SD and its co-efficient from the following table

Mark	F	M	$\begin{gathered} \mathrm{d} \\ \mathrm{~m}-35 \end{gathered}$	d^{2}	fd^{2}
10-20	1	15	-20	400	400
20-30	2	25	-10	100	200
30-40	3	35	0	0	0
40-50	2	45	10	100	200
50-60	1	55	20	400	400
$\sum \mathrm{f}=9 \quad \sum \mathrm{fm}=\mathbf{3 1 5} \quad \sum \mathrm{fd}^{2}=1200$		$\sum \mathrm{fm}=315 \quad \sum \mathrm{fd}^{2}=1200$			
$\overline{\mathrm{X}}=\frac{\Sigma f m}{\Sigma f}=\frac{315}{9}=35$					
$\sigma=\sqrt{\frac{\sum f d^{2}}{\Sigma f}}=\sqrt{\frac{1200}{9}}=\sqrt{133.34}=11.6$					

Coefficient of $\mathrm{SD}=\frac{\sigma}{\overline{\mathrm{X}}} \times 100=\frac{11.6}{35} \times 100$

$$
=33.2
$$

Plus One Statistics

CHAPTER－ 7

CORRELATION

Correlation is defined as a statistical tool used to establish the relationship between two or more variables．

Types of Correlation

When two variables move together in the same direction，correlation is positive．
Example：When income falls，consumption also falls．
When income rises，consumption also rises．
 வั สেறயி円ிカカృం．

When the two variables move in opposite direction，correlation is negative．
Example：－When price rises，demand falls．
When price falls，demand rises．

Positive Correlation 	Negative Correlation
Income and Demand Hardwork and success 	Price and Demand sale of ice cream and temperature விలఱ్మం سาథుగ్గ్రెం ๑ஊ）

Plus One Statistics

Techniques for measuring Correlation

1. Scatter Diagram

2. Karl Pearson's Co-efficient of Correlation

3. Spearman's Rank Correlation

Scatter Diagram

Plus One Statistics

Karl Person's Coefficient of correlation

$$
\mathrm{r}=\frac{\sum x y}{\sqrt{\sum x^{2}} \mathrm{x} \sqrt{\sum y^{2}}}
$$

$$
\begin{array}{ll}
x=\mathrm{X}-\overline{\mathrm{X}} & \overline{\mathrm{X}}=\frac{\sum \mathrm{X}}{N} \\
y=\mathrm{Y}-\overline{\mathrm{Y}} & \overline{\mathrm{Y}}=\frac{\sum \mathrm{Y}}{N}
\end{array}
$$

Example :
Calculate Karl Pearson's Co-efficient of Correlation

$\mathrm{X}:$	25	22	28	30	20	38	24	23	18	12
$\mathrm{Y}:$	20	25	22	28	19	31	27	24	30	24

Solution

X	x $(\mathrm{X}-\overline{\mathrm{X}})$	x^{2}	Y	y $(\mathrm{Y}-\overline{\mathrm{Y}})$	y^{2}	xy
25	$25-24=1$	1	20	$20-25=-5$	25	-5
22	$22-24=-2$	4	25	$25-25=0$	0	0
28	4	16	22	-3	9	-12
30	6	36	28	3	9	18
20	-4	16	19	-6	36	24
38	14	196	31	6	36	84
24	0	0	27	24	4	0
23	-1	1	-1	1	1	
18	-6	36	30	5	25	-30
12	-12	144	24	-1	1	12
$\sum \mathrm{x}=240$		$\sum \mathrm{x}^{2}=450$	$\sum \mathrm{Y}=250$		$\sum y^{2}=146$	$\sum \mathrm{xy}=92$

Plus One Statistics

Firstly we have to find out $\overline{\mathrm{X}}$

Then the value of $x(\operatorname{small} x)$ has to be found

$$
x=\mathrm{X}-\overline{\mathrm{X}}
$$

Then value of $\overline{\mathrm{Y}}$ has to be found

$$
\overline{\mathrm{X}}=\frac{\sum \mathrm{X}}{N}=\frac{240}{10}=24
$$

$$
\overline{\mathrm{Y}}=\frac{\sum \mathrm{Y}}{N}=\frac{250}{10}=25
$$

$$
\begin{aligned}
& \mathrm{r}=\frac{\sum x y}{\sqrt{\sum x^{2}} \mathrm{x} \sqrt{\sum y^{2}}} \\
& =\frac{92}{\sqrt{450} x \sqrt{146}} \\
& =\frac{92}{256.32} \quad=\quad 0.358
\end{aligned}
$$

Value of Correlation (r) 	Nature of Correlation
+1	Perfect Positive Correlation
-1	Perfect Negative Correlation
0	No Correlation
Greater than ' 0 ' but less than 1 ఉி๐ルే கృృกญృం	Positive Correlation
Less than '0' but greater than -1 	Negative Correlation

Spearman's Rank Correlation

$$
\mathrm{r}=1-\frac{\sum X^{2}}{N\left(N^{2}-1\right)}
$$

Plus One Statistics

$\mathrm{D}=$ Difference of the two rank（R1－R2）

$\mathrm{N}=$ Number of observation

Following are the ranks given by two judges to 10 participants．Calculate Rank Correlation

Judge I： $\begin{array}{lllllllllll}2 & 1 & 3 & 8 & 4 & 10 & 5 & 7 & 6 & 9\end{array}$
$\begin{array}{lllllllllll}\text { Judge II ：} & 3 & 2 & 4 & 6 & 1 & 8 & 7 & 9 & 5 & 10\end{array}$

Rank I R $\mathbf{1}$	Rank II R $\mathbf{2}_{\mathbf{2}}$	$\mathbf{D}=\mathbf{R}_{\mathbf{1}}-\mathbf{R}_{\mathbf{2}}$	$\mathbf{D}^{\mathbf{2}}$
2	3	-1	1
1	2	-1	1
3	4	-1	1
8	6	2	4
4	1	3	9
10	8	2	4
5	7	-2	4
7	9	-2	4
6	5	1	1
9	10	-1	1
			$\sum \mathrm{D}^{2}=30$

$$
\begin{aligned}
& \mathrm{r}=1-\frac{6 \sum D^{2}}{N\left(N^{2}-1\right)} \\
& =1-\frac{6 \times 30}{10\left(10^{2}-1\right)} \\
& =1-\frac{180}{10 \times(100-1)} \\
& =1-\frac{180}{10 \times 99} \\
& =1-\frac{180}{990} \\
& =0.818
\end{aligned}
$$

二二二二二

Plus One Statistics

If ranks are not given

Example: The following are the marks obtained by 5 students in Economics and History. Find the rank correlation.

Economics :	60	58	70	75	65
History :	72	65	55	70	66

Economics	$\mathbf{R}_{\mathbf{1}}$	History	$\mathbf{R}_{\mathbf{2}}$	$\mathbf{D}=\mathbf{R}_{\mathbf{1}}-\mathbf{R}_{\mathbf{2}}$	$\mathbf{D}^{\mathbf{2}}$
60	4	72	1	3	9
58	5	65	4	1	1
70	2	55	5	-3	9
75	1	70	2	-1	1
65	3	66	3	3	0

$$
\begin{aligned}
& \mathrm{r}=1-\frac{6 \sum D^{2}}{N\left(N^{2}-1\right)} \\
& =1-\frac{6 \times 20}{5\left(5^{2}-1\right)} \\
& =1-\frac{120}{5 \times 24} \\
& =1-\frac{120}{120} \\
& =1-1 \\
& =0 \\
& ==
\end{aligned}
$$

The value of correlation lies in between +1 and -1

Chapter 8

INDEX NUMBERS

Index Number:-It is a statistical device used to measure the relative change in the magnitude of a group of related variables in different situations.

CHARACTERISTICS OF INDEX NUMBER

- Index Number is specialised averages.
- It involves the computation of average value of a phenomenon.
- It measures the net change in a group of related variables.
- It measures the effect of change over a period of time.

Simple Average Price Index

$P 01=\frac{\Sigma \mathrm{P} 1}{\sum \mathrm{P} 0} \mathrm{x} 100$
P01=Price Index, P1 = Price of commodity in the current year, P0 = Price of commodity in the base year.

Weighted aggregative Price Index

The index number computed after assigning due to different items under study is called Weighted Index Number. They are two types,

1. LASPEYRES METHOD

$$
P 01=\frac{\Sigma \mathrm{P} 1 \mathrm{q} 0}{\Sigma \mathrm{P} 0 \mathrm{q} 0} \mathrm{x} 100
$$

2. PAASCHE'S METHOD

$$
P 01=\frac{\Sigma \mathrm{P} 1 \mathrm{q} 1}{\Sigma \mathrm{P} 0 \mathrm{q} 1} \times 100
$$

Simple Average Price Relative Method.

$P 01=\Sigma \frac{\mathrm{P} 1}{\mathrm{P} 0} \mathrm{x} 100 / \mathrm{N}$ Here $\mathrm{N}=$ Number of commodities

CONSUMER PRICE INDEX (CPI)

The consumer price index measures the average change in retail price. It intends to represent the average change in the prices paid by the ultimate consumer for a specified quantity of goods and services over a period of time. The consumer Price Index Numbers or Price of Living Index Numbers. The following formula is used for calculating CPI.

Plus One Statistics
$\boldsymbol{C P I}=\frac{\Sigma \mathrm{WR}}{\Sigma \mathrm{W}} \quad \boldsymbol{R}=\frac{\mathrm{P} 1}{\mathrm{P} 0} \mathrm{x} 100$

Uses of CPI in Economics

- To determine the purchasing power of money.
- To determine real wages.
- To deflate income and value series in National Accounts.
- To negotiate wage and wage contracts.
- To adjust wage or components of wage like DA.
- To help the Government in formulation of wages policy, price policy, taxation etc...

WHOLESALE PRICE INDEX (WPI)

The wholesale price index number indicates the changes in the general price level. It shows price changes for all commodities sold without any reference to consumer category. In India 2011-12 is taken as the base year for construction of WPI.

INDUSRIAL PRODUCTION INDEX (IPI)

It measures changes in the level of industrial production comprising many industries. It includes the production of the public and private sector. In India 2004-05 is taken as the base year for the construction of IPI.
Agricultural Production Index (API):- This index is the weighted Average of quantity relatives

Human Development Index (HDI)

HDI is a composite of three variables namely Life expectancy, Educational attainment and Standard of Living.
SENSEX:- It is the short form of Bombay Stock Exchange Sensitive Index.1978-79 is taken as the base year. It is the bench mark of index for the India stock market. It consists of 30 stocks represented by 13 sectors of the economy. A rise in Sensex indicates that the market is doing well. It is oldest index in the country.
NIFTY:- It is the Index number of National Stock Exchange. It comprises of 50 companies from 24 different sectors.

Issues In The Construction of An Index Number:- The major problems associated with the construction of index numbers are ;

1. Purpose of index numbers.
2) Choice of commodities and number of items.

Plus One Statistics

3) Selection of base year and current year.
4) Collection of data relating to price and quantities.
5) Choice of price.
6) Selection of an average.
7) Interpretation of the index.

Importance Of Index Numbers In Economics

1. For policy making.
2. Wage negotiation.
3. Formulation of income policy.
4. To measure the rate of inflation.
5. To know the change in industrial production.

Chapter -9

Use of Statistical Tools

What is a project?

Project means any plan or programme that includes the study of a particular problem, its analysis and solution.

Steps towards making a project

1. Identifying a problem or an area of study

The first step to prepare a project is identifying a problem for study. The purpose of the study should be clearly stated. Problems like poverty, availability of drinking water problems, unemployment etc. may be considered for a project.

2. Choice of target group

The second step is to identify and choose the group from which data are to be collected. If the project is related to drinking water, urban and rural population forms a target group.

3. Collection of data

Data can be collected by using different methods like personal interview, mailing questionnaire, telephone interview etc. Primary and secondary sources are available for this purpose. The objective of survey determines which sources to be selected for the collection of data.

4. Organisation and Presentation of data

The next step is to organize and present data in a systematic manner. The collected data can be presented in the form of tables, graphs, diagrams etc.

5. Analysis and interpretation

Averages, measures of dispersion, correlation etc.. are the important statistical tools for analysis and interpretation.

6. Conclusion

It is the last step. Based on the result, we can predict the future and give suggestions for policy making

7. Bibliography

Bibliography represents the secondary sources of data used in the study.

Structure of a Project Report

Plus One Statistics

A standard project report should have certain essential elements. Such as;

1. Introduction
2. Statement of the problem
3. Objectives
4. Methodology
5. Analysis
6. Limitations
7. Conclusion

Chapter 1

Introduction to Statistics for Economics

 Alfred Marshal

๙ையாைைைா

 விவ®ிண๐う๐.

 هிమృమ.

هตรృவிய๐

 (
 மூmb.

Chapter 2

Bாை டேவவளை

 வறமிக Bカைைைல்றஸ．

2）கிறาఱ கণைைைைலீ

3）เேிตிய கカைைால்

 ஊm゙ నంఱ్మm．

のృ円ைாலర

கேОМษสலర

2. พロயை கூకృం

 ఱleㅇㅇ.

Qualities of a good questionnaire

3. $\boldsymbol{\text { . }}$

 ஊm゙ నంఱ্子m．

બృஸ๘ァఁర

2．พロ®リンßァ

கேロМษสルス

2．யOßృயிக พ๐வృOロาตา

Chapter 3

3．கைロலிก๐ดிவั

வலிロ0ளைலேகை

 ஆm゙ வのఱృmை

ธেカளி

 றைைாา๑ிே๐๐๐.

พుハைைை !ルைஸி

Age : 18, 17, 16, 19, 20, 24, 22, 29, 15

$\begin{array}{llllll}\text { Age } & 18 & 17 & 16 & 19 & 20\end{array}$
$\begin{array}{llllll}\text { No. of student } & 2 & 5 & 7 & 3 & 1\end{array}$

$\begin{array}{lllll}\text { Age } & 0-10 & 10-20 & 20-30 & 30-40\end{array}$
$\begin{array}{lllll}\text { No. of student } & 2 & 5 & 7\end{array}$

$\begin{array}{lllll}\text { Age } & 0-10 & 10-20 & 20-30 & 30-40\end{array}$
$\begin{array}{lllll}\text { No. of student } & 2 & 5 & 7 & 8\end{array}$

ஜఱூృృพาญ้

$\begin{array}{llll}\text { Age } & 6-10 & 11-15 & 16-20\end{array}$
No. of students 5

Age $\quad 5.5-10.5 \quad 10.5-15.5 \quad 15.5-20.5$
No. of students 5

5
10

1. In a city 45 families were surveyed for the number of Cell phones they used.

Prepare a frequency array based on their replies as recorded below.

$$
\begin{array}{lllllllllllllllllllllllll}
1 & 3 & 2 & 2 & 2 & 2 & 1 & 2 & 1 & 2 & 2 & 3 & 3 & 3 & 3 & 3 & 3 & 2 & 3 & 2 & 2 & 6 & 1 & 6 \\
2 & 1 & 5 & 1 & 5 & 3 & 2 & 4 & 2 & 7 & 4 & 2 & 4 & 3 & 4 & 2 & 0 & 3 & 1 & 4 & 3 & & &
\end{array}
$$

2. Prepare a frequency distribution by inclusive method taking class interval of 7 from the following data.

17	15	22	29	21	23	27	18	12	7	2	9	4	1	8	3	10	5	20	16	12
8	4	33	27	21	15	3	36	27	18	9	2	4	6	32	31	29	18	14	13	15
11	9	7	1	5	37	32	28	26	24	20	19	25	19	20	6	9	28			

Chapter 4

 கெOSுめிு

1．ஈナன் ๔োறேேவ

உவ விகஜிா ๔ேேவேவை

வృగை ๔েロロロロ

 கலளளை๐．

ఆூローைセேவ๐

Political parties	A	B	C	D	E
Seats won	75	55	37	29	10

2. The following data shows the weekly income of families. Draw a simple bar diagram

Family	A	B	C	D	E	F	G	H	I	J
weekly income	800	700	100	750	500	80	420	250	400	360

3. The following tables shows monthly expenditure of two families. Present the data by means of a component bar diagram (tIms¼WWâv _mÀ Ub\{Kw hcipl)

Item	Family A	Family B
Food	150	350
Clothing	38	120
Rent	56	130
Medical	24	68
Others	70	95

5. Income and expenditure of ten families are given below. draw a multiple bar diagram

Income $\quad 500 \quad 6500 \quad 10000 \quad 1500 \quad 4000 \quad 2500 \quad 3700 \quad 7500800010000$
$\begin{array}{llllllllllllllllll}\text { Expenditure } & 4100 & 5000 & 9600 & 1800 & 4200 & 2500 & 3000 & 7000 & 6000 & 8000\end{array}$
4.Draw a pie-diagram for the following data pertaining to the sale of product in a market per day

Produtcts	Weight
Vegetables	500
Meats	200
Eggs	100
Total	800

5. In a cashew factory out of the 300 women workers 155 engaged in shelling 50 in peeling 25 in grading and 70 in packing jobs. can you represent it on a pie chart (80\%

6. The following are themarks obtained by 30 students in a class. Draw a histogram

Marks $\quad 10-20 \quad 20-30 \quad 30-40 \quad 40-50$
$\begin{array}{lllll}\text { No. of Students } & 5 & 8 & 10 & 7\end{array}$
7. In a city the weekly observation made in a study on the cost of living index are given

Cost of living index No. of weeks
140-150 5

150-160 10
160-170 20
170-180 9
180-190 6
190-200 2
8. The marks secured by 60 students in an examination are given below

Marks $\quad 0-20 \quad 20-40 \quad 40-60 \quad 60-80 \quad 80-100$
$\begin{array}{llllll}\text { No.of students } & 5 & 7 & 30 & 12 & 6\end{array}$
a) Construct the schedule more than and less than Ogives (๑emu゙monช ฉஜใவృం,

b) Draw the diagram
c) Locate the median graphically
13. The following table shows that scores obtained by 50 students in the model examination

Score $\quad 0-10 \quad 10-20 \quad 20-30 \quad 30-40 \quad 40-50$
$\begin{array}{llllll}\text { No. Of students } & 6 & 10 & 14 & 8 & 12\end{array}$
Answer the followings questions.
*. Draw less than and more than ogive.
*. Show the intersection point and interpret the corresponding score
14. A data on the annual profit of a firm is given below, Draw the Time series graph

Year 200220032004200520062007
$\begin{array}{lllllll}\text { Profit } & 60 & 72 & 75 & 65 & 80 & 95\end{array}$

Chapter 5

MEASURES OF CENTRAL TENDENCY

coosool - Average

4. พமிிகை உளையி円ிகளைை

Mean $=\frac{\Sigma x}{N}$
 N

Eg: Mark of 11 Students : $22 \quad 4 \quad \begin{array}{lllllllll} & 6 & 8 & 10 & 12 & 14 & 16 & 18\end{array}$
$\sum \mathrm{x}=132, \mathrm{~N}=11 \quad \frac{\sum x}{N}=\frac{\mathbf{1 3 2}}{\mathbf{1 1}}=\mathbf{1 2}$

Mark X	$\begin{gathered} \text { Frequency } \\ \qquad F \end{gathered}$	FX	$\sum \mathrm{fx}=570, \mathrm{~N}=19$	$\text { Mean }=\frac{\Sigma f x}{N}$
10	1	10		
20	6	120		
30	6	180		
40 50	4	160 100		$\frac{\Sigma f x}{N}=\frac{570}{19}=30$
50	$\mathrm{N}=19$			

Mark

Mark X	Frequency \mathbf{F}	Midpoint \mathbf{M}	FM
$\mathbf{1 0 - 2 0}$	$\mathbf{1}$	$\mathbf{1 5}$	$\mathbf{1 5}$
$\mathbf{2 0 - 3 0}$	$\mathbf{4}$	$\mathbf{2 5}$	$\mathbf{1 0 0}$
$\mathbf{3 0 - 4 0}$	$\mathbf{4}$	$\mathbf{3 5}$	$\mathbf{1 4 0}$
$40-50$	$\mathbf{1}$	$\mathbf{4 5}$	$\mathbf{4 5}$
	$\mathbf{1 0}$		$\mathbf{3 0 0}$

$\sum \mathrm{fm}=300, \mathrm{~N}=10 \quad \frac{\sum \mathrm{fm}}{\mathrm{N}}=\frac{\mathbf{3 0 0}}{\mathbf{1 0}}=\mathbf{3 0}$

Mean $=\frac{N+1}{2}$ th item

Eg: Marks of 11 Students : $2 \begin{array}{llllllllll}18 & 4 & 6 & 8 & 10 & 12 & 14 & 16 & 18\end{array}$
$20 \quad 22$
$\frac{N+1}{2}$ th item N $=11 \frac{11+1}{2}$ th item $=6^{\text {th }}$ Item $=12$

Mean $=\frac{N+1}{2}$ th item

Mark X	Frequency \mathbf{F}	CX
10	1	1
20	6	7
30	6	13
40	4	17
50	2	19
	N=19	

$$
\begin{aligned}
& \mathrm{j} \frac{N+1}{2} \text { th item } \mathrm{N}=19 \frac{19+1}{2} \text { th item }=10^{\text {th }} \text { Item } \\
& =\text { it include in CF } 13 \text {, so Median is } 30
\end{aligned}
$$

Continuous Series

พัดกกอัพั

- ாளிபைவைாை (Cumulative Frequency) கலறுக

Mean $=\frac{N+1}{2}$ th item

Mark X	Frequency F	CF	$\begin{aligned} & ; \frac{N}{2}=10 / 2=5 \text { Median Class 20-30 } 1=20, \mathrm{cf}=1, \mathrm{f}=4 \\ & \mathrm{i}=10 \end{aligned}$
10-20	,	1	
20-30	4	5	
30-40	4	9	
40-50	1	10	
	10		$20+\frac{5-1}{4} \times 10=20+10=30$

 மைக๐. றவ 3 毋றைவூளక̆.

Q1 $=\frac{N+1}{4}$ th item
Eg: Marks of 11 Students : $2 \begin{array}{llllllllll}18\end{array}$
$20 \quad 22$
$\frac{N+1}{4}$ th item $\mathrm{N}=11 \frac{11+1}{2}$ th item $=3^{\text {rd }}$ Item $\mathrm{Q} 1=6$

Mark X	Frequency \mathbf{F}	CF
10	1	1
20	6	7
30	6	13
40	4	17
50	2	19
	$\mathbf{N}=19$	

$\mathrm{Q} 1=\frac{N+1}{2}$ th item $\mathrm{N}=19 \frac{19+1}{4}$ th item $=5^{\text {th }}$ Item $=$ it include in CF7, so Q1 is 20

Continuous Series

๑๓กอัตั

- ஸயிலைவைாி (Cumulative Frequency) கலறூக
- N/4 ஃை றை

$\mathrm{Q} 1=1+\frac{\frac{N}{4}-c f}{f} x \mathrm{i}$

Mark X	Frequency \mathbf{F}	CF
$\mathbf{1 0 - 2 0}$	1	$\mathbf{1}$
$\mathbf{2 0 - 3 0}$	4	$\mathbf{5}$
$\mathbf{3 0 - 4 0}$	4	10
$40-50$	1	
	$\mathbf{1 0}$	

$\frac{N}{4}=10 / 4=2.5$ Q1 Class 20-30, $\mathrm{cf}=1, \mathrm{f}=4, \mathrm{i}=10$
$20+\frac{2.5-1}{4} \times 10=20+3.75=23.75$

 றைனిமைக๐

Eg: Marks of 11 Students : $22 \quad 4 \quad \begin{array}{lllllllll} & 6 & 8 & 10 & 12 & 14 & 16 & 18\end{array}$

$$
20
$$

22
$\frac{3 N+1}{4}$ th item $\mathrm{N}=11 \frac{3 \times 11+1}{2}$ th item $=9^{\text {th }}$ Item $\mathrm{Q} 3=18$

2. พறிறைவృணி க๐ஸுக,

Mark X	Frequency \mathbf{F}	CF
10	1	1
20	6	7
30	6	13
40	4	17
50	2	19
	$\mathbf{N}=19$	

$\frac{3 N+1}{4}$ th item $\mathrm{N}=19 \frac{3 \times 19+1}{4}$ th item $=15^{\text {th }}$ Item $=$ it include in CF17, so Q3 is 40

ontinuous Series

๓กันัตั

Mark X	Frequency F	CF	$\frac{3 N}{4}=30 / 4=7.5$ Q3 Class 30-40,
10-20	1	1	$\begin{aligned} & 1=30 \quad \text { cf }=5, \mathrm{f}=4, \mathrm{i}=10 \\ & 30+\frac{7.5-5}{4} \times 10=30+6.25=36.25 \end{aligned}$
20-30	4	5	
30-40	4	9	
40-50	1	10	
	10		

 พிด๐กைோறั゙

 พంவృఱงஸั ேே๐พૅ.

3 Median-2 Mean
Eg: Marks of 11 Students : $22 \quad 4 \quad 6$

$$
20 \quad 22
$$

Mean $=\frac{\sum x}{N} \quad \mathrm{x}=132, \mathrm{~N}=11 \quad \frac{\mathbf{1 3 2}}{\mathbf{1 1}}=\mathbf{1 2}$
Median $=\frac{N+1}{2}$ th item N $=11 \frac{11+}{2}$ th item $=6^{\text {th }}$ Item $=12$
Mode $=3$ Median -2 Mean $=3 \times 12-2 \times 12=12$

Mark X	Frequency \mathbf{F}	FX
10	1	10
20	6	120
30	6	180
40	4	160
50	2	100
	$\mathbf{N}=19$	$\sum \mathrm{fx}=\mathbf{5 7 0}$

[^0]
Continuous Series

$l+\frac{D 1}{D 1+D 2} x i$
 $D 1+D 2$

Class	Frequency
$0-10$	4
$10-20$	6
$20-30$	8
$40-40$	10
$40-50$	6
$50-60$	4

$$
\begin{aligned}
& \quad l+\frac{D 1}{D 1+D 2} \times i \\
& \text { Mode Class }=30-40 \text { (highest frequency) } \\
& \mathrm{L}=30, \mathrm{D} 1=2, \mathrm{D} 2=4, \mathrm{l}=10 \\
& 30+\frac{2}{2+4} \times 10=33.3
\end{aligned}
$$

TEST YOUR KNOWLEDGE

1. The monthly infome (in Rs) of six families is given. 6 कృకృ

1600	1500	1400	1525	1625	1630

2. The data showing marks of students in a class in an economic test: 毋ிமிஸேை®ிகัறั̆

40,	50,	55,	78,	58.

850,	700,	100,	750,	5000,	80,	420,	2500,	400,	360

22	26	14	30	18	11	35	41	12	32.

5. The frequency distribution of the number of persons and their respective incomes (in Rs)

Income	10	20	30	40
No. of persons	2	4	10	4

Wages	50	100	150	200	250	300
No. of workers	2	5	9	14	8	2

7. The following table shows the daily wages of workers in a factory

Wages	50	100	150	200	250	300	350	400	450	500
No. of workers	2	8	10	15	12	10	18	16	6	3

8. Income obtained by 20 workers in a company

Income	100	200	300	400
No. of workers	2	4	10	4

9. Marks obtained by 30 students

Marks	10	12	19	20	28	35	36	39
No. of students	3	8	2	10	2	2	2	1

10. In a city weekly observation made in a study on the cost of living index are given

Cost	140	150	160	170	180	190
No. of weeks	5	10	20	9	6	2

 $\omega_{0} \mathrm{~m}_{3}$.

Marks	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$	$60-70$
No. of students	5	12	15	25	8	3	2

12. Following data relates to daily wages of persons working in a factory

Wages	$55-60$	$50-55$	$45-50$	$40-45$	$35-40$	$30-35$	$25-30$	$20-25$
No. of workers	7	13	15	20	30	33	28	14

13. The following series relates to the daily income of workers employed in a firm.

Income	$10-14$	$15-19$	$20-24$	$25-29$	$30-34$	$35-39$
No. of workers	5	10	15	20	10	5

14. The following table given production yield in kg. per hectare of wheat of 150 farms in a village. Calculate the mean, median and mode values.

Production	$50-53$	$53-56$	$56-59$	$59-62$	$62-65$	$65-68$	$68-71$	$71-74$	$74-77$
No. of farms	3	8	14	30	36	28	16	10	5

Chapter 6

1．กळூゅ（Range）

3．هOWノ விدemm（Mean Deviation）
4．வナாக விவோ๐（Standard Deviation）
1．๑กळัฒั（Range）

$$
\text { ๑๐ळัดடั }(\mathrm{R})=\mathrm{L}-\mathrm{S}
$$

$$
\begin{aligned}
& \mathrm{L}=\text { உ®రిm سంவை }
\end{aligned}
$$

 கவுం カலஸுృக．
$20,25,29,30,35,39,41,48,51,60,70$
๑๐ஜั毋 $(\mathrm{R})=\mathrm{L}-\mathrm{S} ; \quad \mathrm{L}=70 ; \quad \mathrm{S}=20$
$\mathrm{R}=70-20=50$

 க வி」emm（QD）

4． QD カ๐றுృை $\mathrm{QD}=\frac{Q 3-Q 1}{2}$ றற。

อகコロロカロ 2

$40,56,80,24,60,30,100$

อாைை

$24,30,40,56,60,80,100$
$\mathrm{Q}_{1}=\left(\frac{N+1}{4}\right)^{\text {th }}$ Øற๐ $=\left(\frac{7+1}{4}\right)^{\text {th }}$ Øற๐
$=\frac{8}{4}=2^{\text {nd }} \cong$ ற $o=30$

$\mathrm{Q}_{1}=30$
$\mathrm{Q}_{3}=3\left(\frac{N+1}{4}\right)^{\text {th }}$ Øற๐ $=3\left(\frac{7+1}{4}\right)^{\text {th }}$ Øற。
$=\frac{24}{4}=6^{\text {th }}$ ツ（๐๐ $=80$
พงกฺฺาคை 6－0ロ๐ณை றா๐ $=80 ; \mathrm{Q}_{3}=80$
$\mathrm{QD}=\frac{Q 3-Q 1}{2}=\frac{80-30}{2}=\frac{50}{2}=25$
$\mathrm{QD}=25$

$$
=\frac{80-}{80+30}=\frac{50}{110}=0.455
$$

ヘlwo；

றறక̧ঞை（ช8（Steps）

1．พறிறைவృாை（Cumulative Frequency）கெறுమை
2． $\mathrm{Q}_{1}=\frac{N}{4}^{\text {th }}$ றற。
$\mathrm{Q}_{1}=\mathrm{L}+\left(\frac{\frac{n}{4}-c f}{f}\right) x \mathrm{i}$
3． Q_{3} カ๐๓ృృக $\mathrm{Q}_{3}=\frac{3 N}{4}$ th றற。
$\mathrm{Q}_{3}=3+\left(\frac{\frac{n}{4}-c f}{f}\right) x \mathrm{i}$
4． QD க๐ตృゃ；$\quad \mathrm{QD}=\frac{Q 3-Q 1}{2}$
5.

อ（30』0円mo 3

வ๐రెめด）	20－25	25－30	30－35	$35-40$	40－45
	4	20	50	32	14

உாைைை

๑๐రెめดั	 （f）	ஸறிறைவைாை (CF)
20－25	4	4
25－30	20	24
30－35	50	74
35－40	32	106
40－45	14	120

$\mathrm{Q}_{1}=\frac{N}{4}$ th ๑గิ உற๐ $\frac{120}{4}=30^{\text {th }}$ உற。

$\mathrm{Q}_{1}=\mathrm{L}+\left(\frac{\frac{n}{4}-c f}{f}\right) x \mathrm{I}=$
$\mathrm{L}=30 ; \quad \frac{N}{4}=30 ; \quad \mathrm{cf}=24 ; \mathrm{f}=50 ; \mathrm{i}=5$
$\mathrm{Q}_{1}=30+\frac{30-24}{50} \times 5=30+0.6=30.6$
$\mathrm{Q}_{3}=\frac{3 N}{4}^{\text {th }}$ Øற๐ $\frac{3 \times 120}{4}=\frac{360}{4}=90^{\text {th }}$ றற。

$\mathrm{Q}_{3}=35+\frac{90-74}{32} \times 5=35+2.5=37.5$
$\mathrm{QD}=\frac{Q 3-Q 1}{2}=\frac{37.5-30.6}{2}=3.45$

$$
\sigma=\sqrt{\frac{\sum f d^{2}}{n}}
$$

$\sigma=$ Standard Deviation
$\mathrm{d}=\mathrm{X}-\overline{\mathrm{X}}$

อふ3๑の（0円ma 4

 ஸృக．

$$
5,10,25,30,50
$$

X	$(X-\bar{X}) X-24$	d^{2}
5	-19	361
10	-14	196
25	1	1
30	6	36
50	26	676

$\sum \mathrm{X}=120 \overline{\mathrm{X}}=\frac{\sum x}{N}=\frac{120}{5}=24$

$$
\begin{aligned}
& \sigma=\sqrt{\frac{\sum f d^{2}}{n}} \quad \sum d^{2}=1270 \\
& =\sqrt{\frac{1270}{5}} ; \quad \sqrt{254}=15.937
\end{aligned}
$$

$$
\begin{aligned}
& \sigma=15.937 ; \quad \overline{\mathrm{X}}=24 \\
& =\frac{15.937}{24} \times 100 \\
& =66.4
\end{aligned}
$$

๑ฺรฺ๐ยช

2． d ヵ๐ஸృゃ $\mathrm{d}=\mathrm{m}-\overline{\mathrm{X}}$
3． d^{2} 毋๐றுృக $\mathrm{d}=\mathrm{m}-\overline{\mathrm{X}}$
4． $\mathrm{fd}^{2} \propto \mathrm{O}_{\mathrm{M}}$＠ $\mathrm{d}=\mathrm{m}-\overline{\mathrm{X}}$

อ（30』ロカー 5

Mark	\mathbf{F}	\mathbf{M}	\mathbf{d} $\mathbf{m}-\mathbf{3 5}$	$\mathbf{d}^{\mathbf{2}}$	$\mathbf{f d}^{\mathbf{2}}$
$10-20$	1	15	-20	400	400
$20-30$	2	25	-10	100	200
$30-40$	3	35	0	0	0
$40-50$	2	45	10	100	200
$50-60$	1	55	20	400	400

$$
\begin{aligned}
& \overline{\mathrm{X}}=\frac{\sum f m}{\sum f}=\frac{315}{9}=35 \\
& \sigma=\sqrt{\frac{\sum f d^{2}}{\sum f}}=\sqrt{\frac{1200}{9}}=\sqrt{133.34}=11.6
\end{aligned}
$$

Chapter 7 (See English Version)

Chapter 8

$P 01=\frac{\Sigma \mathrm{P} 1}{\Sigma \mathrm{P} 0} \mathrm{x} 100$

Weighted aggregative Price Index

LASPEYRES $\quad P 01=\frac{\Sigma P 1}{\Sigma P 0 q 0} \times 100$
PAASCHE'S $\quad P 01=\frac{\Sigma \mathrm{P} 1 \mathrm{q}}{\Sigma \mathrm{P} 0} \mathrm{x} 100$

Index number)

Chapter 9

凹ாைைை๐๐

1. ஊேவுவவ (Introduction)

4．வைா จาตา（Methodology）

5．வlণぁோロ（Analysis）

6．வைி円ிறிகை（Limitations）

[^0]: Mode = $\mathbf{3}$ Median - 2 Mean
 $\sum \mathrm{fx}=\mathbf{5 7 0}, \mathrm{N}=19 \quad \frac{\Sigma f x}{N} \quad \frac{570}{19}=\mathbf{3 0}$
 $\frac{N+1}{2}$ th item N $=19 \frac{19+1}{2}$ th item $=10^{\text {th }}$ Item
 $=$ it include in CF13, so Median is 30
 Mode $=3$ Median -2 Mean $=2 \times 30-2 \times 30=30$

