

MATHEMATICS TEACHERS ASSOCIATION MALAPPURAM (MAM)

MATHEMATICS TEST SERIES – I MAY 2022

CLASS : XI Max. score : 60

Time : 2 Hrs Cool off time : 15 min

(Sets, Relations and functions, Trigonometric functions, Principle of Mathematical Induction)

General Instructions to Candidates :

- There is a 'cool-off time' of 15 minutes in addition to the writing time.
- Use the 'cool-off time' to get familiar with questions and to plan your answers.
- Read questions carefully before answering.
- Read the instructions carefully.
- Calculations, figures and graphs should be shown in the answer sheet itself.
- Give equations wherever necessary.
- Electronic devices except non-programmable calculators are not allowed in the Examination.

വിദ്യാർത്ഥികൾക്കുള്ള പൊതു നിർദേശങ്ങൾ :

- നിർദിഷ്ട സമയത്തിനു പുറമെ 15 മിനുറ്റ് "കൂൾ ഓഫ് ടൈം " ഉണ്ടായിരിക്കും
- ഉത്തരങ്ങൾ എഴുതുന്നതിനു മുൻപ് ചോദ്യങ്ങൾ ശ്രദ്ധാപൂർവം വായിക്കണം
- എല്ലാ ചോദ്യങ്ങൾക്കും ഉത്തരം എഴുതണം.
- കണക്കു കൂട്ടലുകൾ , ചിത്രങ്ങൾ , ഗ്രാഫുകൾ എന്നിവ ഉത്തരപ്പേപ്പറിൽ തന്നെ ഉണ്ടായിരിക്കണം.
- ആവശ്യമുള്ള സ്ഥലത്തു സമവാക്യങ്ങൾ കൊടുക്കണം.
- പ്രോഗ്രാമുകൾ ചെയ്യാനാകാത്ത കാല്ലുലേറ്ററുകൾ ഒഴികെയുള്ള ഒരു ഇലക്ട്രോണിക് ഉപകരണവും ഉപയോഗിക്കാൻ പാടില്ല.

_____ UNIT I _____

(Answer ANY SIX, each question carries 3 marks)

1.	If $A = \{x : x \text{ is a letter in the word "MATHEMATICS"}\}, B = \{y : y \text{ is a letter in the word "STATISTICS"}\}, then write(a) A and B in roster form(b) A - B(c) A \cap B$	(1) (1) (1)
2.	If A = {1,2,3} (a) Write the number of subsets of A (b) Write P(A), where P(A) is the power set of A	(1) (2)
3.	Find the domain of $f(x) = \frac{x^2+3x+5}{x^2-5x+4}$	(3)
4.	If $f(x) = x^3 + 5x$, $g(x) = 2x + 1$. Then find $f + g$, fg and f/g	(3)
5.	(a) $sin(-x) = \dots$ (i) $sin x$ (ii) $-sin x$ (iii) $cos x$ (iv) $-cos x$	(1)
	(b) Prove that $\frac{\tan(\frac{\pi}{4}+x)}{\tan(\frac{\pi}{4}-x)} = \left(\frac{1+\tan x}{1-\tan x}\right)^2$	(2)
6.	(a) Find the degree measure corresponding to $\frac{2\pi}{3}$ radian	(1)
	(b) $sinx = \frac{3}{5}$, x lies in the second quadrant.	
	Find the values of <i>cosx</i> and <i>tan x</i>	(2)
7.	(a) Find the principal solutions of the equation $\sin x = \frac{1}{2}$	(2)
	(b) Hence write the general solution of the above equation $\sin x =$	
8.	Consider the statement " $7^n - 3^n$ is divisible by 4" (a) Verify the result for $n = 1$ (b) Prove the statement using mathematical induction.	(1) (2)

(Answer ANY SIX, each question carries 4 marks)

9.	If $A \subset B$ (a) $A \cup B = \dots$	(1)
	(b) $A \cap B = \dots$ (c) Draw the Venn diagram of $B - A$	(1) (2)
10.	In a school, there are 20 teachers who teach Mathematics or Physic Of these 12 teach Mathematics and 12 teach Physics.	:S.
	(a) How many teach both the subjects.(b) How many teach physics only.	(2) (2)
11.	If $A = \{x : x \in R, x^2 - 5x + 6 = 0\}, B = \{x : x \in R, x^2 = 9\}$ (a) Write A and B in roster form	(2)
	(b) Verify that $(A - B) \cup (B - A) = (A \cup B) - (A \cap B)$	(2)
12.	(a) $A = \{2,3\}, B = \{1,3,5\}$, then the number of relations from A to B is	
	(i) 2 (ii) 64 (iii) 32 (iv) 62 (b) R is a relation defined on the set $A = \{1, 2, 3,, 14\}$ by	(1)
	$R = \{(x, y): 3x - y = 0, x, y \in A\}.$ (i) Write R in roster form	(1)
	(ii) Write the domain and range of R	(2)
13.	Consider the modulus function $f(x) = x $. (a) Draw the graph of the function $f(x) = x $.	(2)
	(b) Find the domain and range of the function $f(x) = x $.	(2) (2)
	(a) Find the value of <i>cos</i> 15°	(2)
	(b) Prove that $\cos\left(\frac{\pi}{4} + x\right) + \cos\left(\frac{\pi}{4} - x\right) = \sqrt{2}\cos x$	(2)
15.	(a) Find the value of $\sin\left(\frac{31\pi}{3}\right)$	(1)
	(b) Show that $(\cos x + \cos y)^2 + (\sin x + \sin y)^2 = 4\cos^2\left(\frac{x-y}{2}\right)$	(3)
16.	Consider the statement $P(n): 1 + 3 + 3^2 + 3^3 + \dots + 3^{n-1} = \frac{3^{n-1}}{2}$	
	(a) Show that P(1) is true(b) Prove by principle of mathematical induction, that P(n) is true	(1)
	for all $n \in N$	(3)

(Answer ANY THREE, each question carries 6 marks)

17. If $U = \{1,2,3,4,5,6,7,8,9\}, A = \{2,4,6,8\}, B = \{2,3,5,7\}.$ (a) Verify that $(A \cap B)' = A' \cup B'$ (b) Verify that $(A \cup B)' = A' \cap B'$	(3) (3)
 18. Let A = {1,2,3,4,5,6}. Define a relation R on A by R = {(x, y): y = x + 1} (a) Depict the relation using an arrow diagram (b) Write down the domain, codomain and range of R. (c) Is R a function? Why ? 	(2) (3) (1)
19. (a) Prove that $\tan 3x \cdot \tan 2x \cdot \tan x = \tan 3x - \tan 2x - \tan x$ (b) Find $\sin 765^{\circ}$ (c) Prove that: $\frac{\cos 7x + \cos 5x}{\sin 7x - \sin 5x} = \cot x$	(2) (1) (3)
20. (a) Solve $\sin 2x + \cos x = 0$ (b) Prove that $\frac{\cos 4x + \cos 3x + \cos 2x}{\sin 4x + \sin 3x + \sin 2x} = \cot 3x$	(3) (3)
21. (a) Find x and y if $(x + 1, y - 2) = (3,1)$ (b) If $A = \{-1,1\}$, find $A \times A$ (c) The figure shows a relation between the sets P and Q. P P P P P P P P P P P P P	(1) (1)
	(1)

(i) Write the relation in set builder form (1)

(1)

(2)

- (ii) Write the relation in roster form
- (iii) Write its domain and range.

