FIRST YEAR HIGHER SECONDARY PRE MODEL EXAMINATION Part – III BIOLOGY PART –A BOTANY

FYCB'	TA22/6 KEY Ma	<u>aximum s</u> c	ore: 30
Q.No.	PART-I	Split score	Total score
1	(b) S phase	1	1
2	Equational division	1	1
3	Kinetochore	1	1
4	Pairing of homologous chromosomes	1	1
5	(b) Metaphase	1	1
6	Recombinase	1	1
7	Cytokinesis		
8	Anaphase	1	1
9	The stage between the two meiotic divisions is called interkinesis and is generally short lived.	1	
10	24 hour Teachers	1	1
	PART II		
11		1/	
11	(A) G_2 phase (4) Protein synthesis (2) G_2 is a label of the synthesis	1/2 1/2	2
	(B) S phase (3) Centriole duplicates	⁷ /2 1/2	2
	(D) Go phase (1) L	72 1/2	
	(D) 60 phase (1) Inactive stage	12	
12	A- Metaphase	1	
	B- Anaphase	1	2
13	Leptotene, Zygotene, Diplotene, Diakinesis	¹ / ₂ x 4	2
14.	Prophase, Metaphase, Anaphase, Telophase	¹ / ₂ x 4	2
15.	 Mitosis results in the production of diploid daughter cells with identical genetic complement. The growth of multicellular organisms is due to mitosis. To restore the nucleo-cytoplasmic ratio. Cell repair [Any 2] 	1 x 2	2
16.	(a) A- G_1 , B-S, C- G_2 (b) G_0 stage	¹ / ₂ x 4	2
17.	In some organisms karyokinesis is not followed by cytokinesis as a result of which multinucleate condition arises leading to the formation of syncytium	2	2
18.	 (a) The complex formed by a pair of synapsed homologous chromosomes is called a bivalent. (b) Sites of crossovers or X-shaped structures are called chiasmata. 	1 1	
19.	(a) 16 (b) 2C increases to 4C / DNA doubles [Any 1]	1 1	2
20	 -Chromosomal material condenses to form compact mitotic chromosomes. -Centrosomes begin to move towards opposite poles of the cell. -Each centrosome radiates out microtubules called asters. -The two asters together with spindle fibres form mitotic apparatus. -Golgi complexes, endoplasmic reticulum, nucleolus and the nuclear envelop etc disappear [Any 2] 	1 1	2

	PART III		
21	-Meiosis is the mechanism by which conservation of specific chromosome	1	
	number of each species is achieved across generations in sexually reproducing		
	organisms.	1	3
	-It results in reduction of chromosome number by half.		
	-It also increases the genetic variability in the population of organisms from one	1	
	generation to the next.		
	-Variations are very important for the process of evolution. [Any 3]		
22	(a) Telophase	1	
	(b) -Chromosomes cluster at opposite spindle poles and their identity is lost		
	as discrete elements.	1	3
	-Nuclear envelope develops around the chromosome clusters at each pole		
	forming two daughter nuclei.	1	
	-Nucleolus, golgi complex and ER reform. [Any 2]	11/	
23	-In an animal cell, cytokinesis is achieved by the appearance of a furrow in the	11/2	
	plasma membrane The furrow gradually deepens and ultimately joins in the		
	centre dividing the cell cytoplasm into two.		2
	-in plant cells, wall formation starts in the centre of the cell and grows outward to	11/	3
	The formation of the new cell well begins with the formation of a simple	172	
	- The formation of the new cell wan begins with the formation of a simple		
	walls of two adjacent cells		
24	During anaphase of mitosis centromeres split and chromatide separate and move	11/2	
24	to opposite poles	1/2	3
	During anaphase I of meiosis the homologous chromosomes separate, while sister	11/2	č
	chromatids remain associated at their centromeres.	-/-	
25	Stages		
	(a) Zygotene	1/2	
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1/2	
	(c) Pachytene	1/2	
	(d) Diplotono	1/2	3
	(a) Dipiotene	1/2	
	(e) Diakinesis	1/2	
	(f) Metaphase		
1		1	