

				APTERS 4,5,6 & 7)5-2022 @ 7.00pm		
			Ans	werkey		
<mark>Ans</mark>	wer a	iny 3 q	uestions from 1 to 5. Each	<mark>carries 1 score</mark>		
1	zero.				1	
2	90°	1			1	
3	Mon	nent of i	nertia.		1	
4	(d) tł	nree			1	
5	Inert	ia of M	otion		1	
Ansv	ver a	ny 5 q	uestions from 6 to 13. Eac	<mark>h carries 2 score</mark>		
6	$\tan \theta = \frac{4H}{R}$					
		R = 4H			2	
7	giver	n 2usin (us	θ /g= 5 sinθ= 25			
	Now	=	u ² Sin ² θ/ 2g 25 ² /2×10 31.25 m		2	
8	By N	Ther	s second law, $\vec{F} = k \frac{d\vec{P}}{dt}$ But $\vec{P} = m\vec{v}$ efore $\vec{F} = k \frac{d(m\vec{v})}{dt}$ $\vec{F} = k m \frac{d\vec{v}}{dt}$ $\vec{F} = k m \vec{a}$ at k=1 Therefore $\vec{F} = m \vec{a}$		2	
9						
		Sl.No	A Nex step?e Eiget les s	B		
		1 2	Newton's First law Conservation of Linear	Law of inertia Momentum before collision =		
			momentum	Momentum after collision	2	
		3	Newton's third law	Action <-> Reaction		
		4	Impulse	Change in momentum.		
10	(a)	W = (3	$\hat{i}+4\hat{j}-5\hat{k})$ (5 $\hat{i}+4\hat{j}+3\hat{k}$) =	- 15 + 16-15 = 16joule	1	

2. force and displacement are perpendicular to each other sider a spring of spring constant K let the spring be stretched by a force f through a Il distance dx k Done dw = f dx = kxdx work done in increasing the length of the spring by an amount x can be calculated by grating the above equation between the limit X = 0 to x = $\int kx dx$ $k \int x dx = kx^2/2$ $\frac{1}{2} kx^2 - 0$ $\frac{1}{2} kx^2$ Illel axes theorem statement $I' = I_c + MR^2$ ular momentum $\vec{L} = \vec{r} \times \vec{P}$ P=m×v $\frac{d\vec{L}}{dt} = \frac{d}{dt} (\vec{r} \times \vec{P}) = \vec{r} \times \frac{d\vec{P}}{dt} + \frac{d\vec{r}}{dt} \times \vec{P}$ Where $\frac{d\vec{r}}{dt} \times \vec{P} = \vec{v} \times m x \vec{v} = 0$ $\frac{d\vec{L}}{dt} = \vec{r} \times \vec{F} = \tau$ (Torque) my 3 questions from 14 to 17. Each carries 3 score rallelogram law of vector addition. xpression for Maximum height(H):	2 2 1
k Done dw = f dx = kxdx work done in increasing the length of the spring by an amount x can be calculated by grating the above equation between the limit X = 0 to x = $\int kx dx$ s $\int x dx = kx^2/2$ $\frac{1}{\sqrt{2}} kx^2 - 0$ $\frac{1}{\sqrt{2}} kx^2$ Illel axes theorem statement $I' = I_c + MR^2$ ular momentum $\vec{L} = \vec{r} \times \vec{P}$ P=m×v $\frac{d\vec{L}}{dt} = \frac{d}{dt} (\vec{r} \times \vec{P}) = \vec{r} \times \frac{d\vec{P}}{dt} + \frac{d\vec{T}}{dt} \times \vec{P}$ Where $\frac{d\vec{T}}{dt} \times \vec{P} = \vec{v} \times m \times \vec{v} = 0$ $\frac{d\vec{L}}{dt} = \vec{r} \times \vec{F} = \tau$ (Torque) my 3 questions from 14 to 17. Each carries 3 score rallelogram law of vector addition. xpression for Maximum height(H):	2
work done in increasing the length of the spring by an amount x can be calculated by grating the above equation between the limit X = 0 to x $= \int kx dx$ $k \int x dx = kx^2/2$ $\frac{kx^2 - 0}{\frac{1}{2}kx^2}$ Illel axes theorem statement $I' = I_c + MR^2$ ular momentum $\vec{L} = \vec{r} \times \vec{P}$ P=m×v $\frac{d\vec{L}}{dt} = \frac{d}{dt} (\vec{r} \times \vec{P}) = \vec{r} \times \frac{d\vec{P}}{dt} + \frac{d\vec{r}}{dt} \times \vec{P}$ Where $\frac{d\vec{r}}{dt} \times \vec{P} = \vec{v} \times m \times \vec{v} = 0$ $\frac{d\vec{L}}{dt} = \vec{r} \times \vec{F} = \tau \text{ (Torque)}$ my 3 questions from 14 to 17. Each carries 3 score rallelogram law of vector addition. xpression for Maximum height(H):	2
grating the above equation between the limit $X = 0$ to $x = \int kx dx$ $s \int x dx = kx^2/2$ $t'_2 kx^2 - 0$ $t'_2 kx^2$ Ilel axes theorem statement $I' = I_c + MR^2$ ular momentum $\vec{L} = \vec{r} \times \vec{P}$ P=m×v $\frac{d\vec{L}}{dt} = \frac{d}{dt} (\vec{r} \times \vec{P}) = \vec{r} \times \frac{d\vec{P}}{dt} + \frac{d\vec{r}}{dt} \times \vec{P}$ Where $\frac{d\vec{r}}{dt} \times \vec{P} = \vec{v} \times m \times \vec{v} = 0$ $\frac{d\vec{L}}{dt} = \vec{r} \times \vec{F} = \tau$ (Torque) my 3 questions from 14 to 17. Each carries 3 score rallelogram law of vector addition. xpression for Maximum height(H):	2
$= \int kx dx$ $x \int x dx = kx^2/2$ $\frac{1}{2} kx^2 - 0$ $\frac{1}{2} kx^2$ Ilel axes theorem statement $I' = I_c + MR^2$ ular momentum $\vec{L} = \vec{r} \times \vec{P} \qquad P = m \times v$ $\frac{d\vec{L}}{dt} = \frac{d}{dt} (\vec{r} \times \vec{P}) = \vec{r} \times \frac{d\vec{P}}{dt} + \frac{d\vec{r}}{dt} \times \vec{P} \qquad Where \qquad \frac{d\vec{r}}{dt} \times \vec{P} = \vec{v} \times m \times \vec{v} = 0$ $\frac{d\vec{L}}{dt} = \vec{r} \times \vec{F} = \tau \text{ (Torque)}$ The second se	2
$\frac{d\vec{l} \times dx = kx^{2}/2}{dt^{2} kx^{2} - 0}$ $\frac{d\vec{l} \times dx}{dt^{2} kx^{2}}$ $\frac{d\vec{l} = \frac{d}{dt}(\vec{r} \times \vec{P}) = \vec{r} \times \frac{d\vec{P}}{dt} + \frac{d\vec{r}}{dt} \times \vec{P}$ $\frac{d\vec{L}}{dt} = \frac{d}{dt}(\vec{r} \times \vec{P}) = \vec{r} \times \frac{d\vec{P}}{dt} + \frac{d\vec{r}}{dt} \times \vec{P}$ $\frac{d\vec{L}}{dt} = \vec{r} \times \vec{F} = \tau \text{ (Torque)}$ $\frac{d\vec{L}}{dt} = \vec{r} \times \vec{F} = \tau \text{ (Torque)}$ $\frac{d\vec{L}}{dt} = \vec{r} \text{ Maximum height(H):}$	2
$\frac{1}{2} kx^{2} = 0$ $\frac{1}{2} kx^{2}$ Ilel axes theorem statement $I' = I_{c} + MR^{2}$ ular momentum $\vec{L} = \vec{r} \times \vec{P} \qquad P = m \times v$ $\frac{d\vec{L}}{dt} = \frac{d}{dt} (\vec{r} \times \vec{P}) = \vec{r} \times \frac{d\vec{P}}{dt} + \frac{d\vec{r}}{dt} \times \vec{P} \qquad Where \qquad \frac{d\vec{r}}{dt} \times \vec{P} = \vec{v} \times m \times \vec{v} = 0$ $\frac{d\vec{L}}{dt} = \vec{r} \times \vec{F} = \tau \text{ (Torque)}$ my 3 questions from 14 to 17. Each carries 3 score rallelogram law of vector addition. xpression for Maximum height(H):	2
¹ / ₂ kx ² llel axes theorem statement $I' = I_c + MR^2$ ular momentum $\vec{L} = \vec{r} \times \vec{P}$ P=m×v $\frac{d\vec{L}}{dt} = \frac{d}{dt}(\vec{r} \times \vec{P}) = \vec{r} \times \frac{d\vec{P}}{dt} + \frac{d\vec{r}}{dt} \times \vec{P}$ Where $\frac{d\vec{r}}{dt} \times \vec{P} = \vec{v} \times m \times \vec{v} = 0$ $\frac{d\vec{L}}{dt} = \vec{r} \times \vec{F} = \tau$ (Torque) try 3 questions from 14 to 17. Each carries 3 score rallelogram law of vector addition. xpression for Maximum height(H):	2
Ilel axes theorem statement $I' = I_{c} + MR^{2}$ ular momentum $\vec{L} = \vec{r} \times \vec{P}$ P=m×v $\frac{d\vec{L}}{dt} = \frac{d}{dt}(\vec{r} \times \vec{P}) = \vec{r} \times \frac{d\vec{P}}{dt} + \frac{d\vec{r}}{dt} \times \vec{P}$ Where $\frac{d\vec{r}}{dt} \times \vec{P} = \vec{v} \times m \times \vec{v} = 0$ $\frac{d\vec{L}}{dt} = \vec{r} \times \vec{F} = \tau \text{ (Torque)}$ my 3 questions from 14 to 17. Each carries 3 score rallelogram law of vector addition. xpression for Maximum height(H):	2
$I' = I_{c} + MR^{2}$ ular momentum $\vec{L} = \vec{r} \times \vec{P}$ P=m×v $\frac{d\vec{L}}{dt} = \frac{d}{dt}(\vec{r} \times \vec{P}) = \vec{r} \times \frac{d\vec{P}}{dt} + \frac{d\vec{r}}{dt} \times \vec{P}$ Where $\frac{d\vec{r}}{dt} \times \vec{P} = \vec{v} \times m \times \vec{v} = 0$ $\frac{d\vec{L}}{dt} = \vec{r} \times \vec{F} = \tau \text{ (Torque)}$ my 3 questions from 14 to 17. Each carries 3 score rallelogram law of vector addition. xpression for Maximum height(H):	2
$\frac{d\vec{L}}{dt} = \vec{r} \times \vec{F} = \tau \text{ (Torque)}$ Introductions from 14 to 17. Each carries 3 score rallelogram law of vector addition. xpression for Maximum height(H):	2
$\frac{d\vec{L}}{dt} = \vec{r} \times \vec{F} = \tau \text{ (Torque)}$ Introductions from 14 to 17. Each carries 3 score rallelogram law of vector addition. xpression for Maximum height(H):	2
any 3 questions from 14 to 17. Each carries 3 score rallelogram law of vector addition. xpression for Maximum height(H):	1
rallelogram law of vector addition. xpression for Maximum height(H):	1
rallelogram law of vector addition. xpression for Maximum height(H):	1
xpression for Maximum height(H):	
We have $V^2 = u^2 + 2as$	
Taking the vertical components;	
$V_{y}^{2} = u_{y}^{2} + 2a_{y}s_{y}$	
Here Vy=0, u_y =usin θ , a_y =-g and S_y =H	
Therefore $0 = (u \sin \theta)^2 - 2 g H$	
$2gH = u^2 \sin^2 \theta$	2
Maximum Height, $H = \frac{u^2 \sin^2 \theta}{2g}$	
n(x-11)/t	
$\underline{m(v-u)}$	
t	
$=\frac{0.05(20-20)}{0.1}$	3
$=\frac{0.05(40)}{2}$	
$wer = \frac{WOIN}{2}$	
time	
	$\frac{h(v-u)/t}{t}$ $=\frac{m(v-u)}{t}$ $=\frac{0.05(20-20)}{0.1}$ $=\frac{0.05(40)}{0.1}$ 20N $wer = \frac{Work}{time}$

Prepared by Higher Secondary Physics Teachers Association Malappuram

Prepared by Higher Secondary Physics Teachers Association Malappuram

potential energy of a body is completely converted in to kinetic energy during its free faunder the gravity.	11
c) negative.	
Or	
a) Angular momentum.	
b) We know that when external torque is zero, Angular momentum remains constant. $I\omega$ = a constant.	
When planets are at near region of sun their r will be small. So I will be small. (I=MI So their ω will be large. When planets are at far regions, r is large, so I is large, then ω w be small. So planets are slow at far regions.	