PHYSOL-3 EXAMINATION SERIES FOR PLUS ONE CHAPTERS 4,5,6 \& 7
 SUNDAY 08-05-2022 @ 7.00pm

General Instructions to Students

- There is a 'cool-off time' of 15 minutes in addition to maximum writing time
- Use cool-off time to get familiarise with questions and their answers
- Read questions and instructions carefully before answering
- Calculations, figures, graphs should be shown in the answer sheet itself
- You can write questions as per instruction in each section to get a maximum score of 30
- Electronic devices except non-programmable calculators are not allowed in the examination

Answer any 3 questions from 1 to 5. Each carries 1 score

1	At the top of a projectile vertical velocity of the object will be..........	$\mathbf{1}$			
2	If $\|\vec{A}+\vec{B}\|=\|\vec{A}-\vec{B}\| \quad$, what is the angle between $\quad \vec{A}$ and \vec{B}	$\mathbf{1}$			
3	The rotational analogue of mass is	$\mathbf{1}$			
4	A machine gun fires a bullet of mass 40 g with a velocity of $1200 \mathrm{~ms}^{-1}$. The man holding it can exert a maximum force of 144 N on the gun. How many bullets can he fire per second at the most? a) one \quad b) four$\quad \mathbf{1}$ c) two d) three		$	$	(A standing passenger in a moving bus tends to fall forward while the driver applies a sudden brake. It is due to...........(Inertia of Rest/Inertia of Motion)
:---					

Answer any 5 questions from 6 to 13. Each carries 2 score

6	If horizontal range is equal to 4 times maximum height. Find the angle of projection?			2
7	A ball thrown by one player is caught by another player in 5 seconds then calculate the maximum height reached by the ball ($\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$)			2
8	Using Newton's second law of motion, derive the equation F = ma			2
9	Match the following			
	SL No	A	B	
	1	Newton's First law	Change in momentum.	
	2	Conservation of Linear momentum	Action \Leftrightarrow Reaction	2
	3	Newton's third law	Law of inertia	
	4	Impulse	Momentum before collision = Momentum after collision	
10	Force and displacement vector is given as $\vec{F}=3 \hat{i}+4 \hat{j}-5 \hat{k}$ and $\vec{d}=5 \hat{i}+4 \hat{j}+3 \hat{k}$ a) Find work done. b) State the conditions under which a force does no work.			1
11	Derive an expression for potential energy of a stretched string.			2
12	Explain the parallel axes theorem about moment of inertia.			2

Answer any 3 questions from 14 to 17. Each carries 3 score

14	A stone is thrown with the help of a sling with initial velocity ' u ' at an angle ' θ ' from the horizontal. a) Working of sling is based on........... law of vector addition. b) Derive the expression for the maximum height reached by the stone.	
15	A ball of mass 50 g is moving with a velocity $20 \mathrm{~m} / \mathrm{s}$ hit on a wall and bounce back with same speed. The time of contact between ball and wall is 0.1 sec . Find the force due to hitting?	3
16	A motor pump can fill water in a tank of $40 \mathrm{~m}^{3}$ at a height 5 m from the ground in 30 minutes. Find the power required for this process? Given density of water is $1000 \mathrm{~kg} / \mathrm{m}^{3}$.	3
17	Moment of inertia of a uniform disc about an axis passing through the centre and perpendicular to the plane is $\mathrm{MR}^{2} / 2$ a) State Perpendicular axes theorem b) Derive the expression for moment of inertia of a uniform disc about an axis passing through the diameter.	1

Answer any 2 questions from 18 to 20. Each carries 4 score

18	With the help of a diagram derive the expression for the resultant of two vectors in parallelogram law of vector addition (Derive the law of cosines)	4
19	To reduce friction and accident by skidding the roads are banked at curves. a)What is meant by bakking of roads? b)Sketch the schematic diagram of a vehicle on a banked road with friction and mark the various forces. c) Derive an expression for maximum safe speed of a vehicle on a banked road with friction.	1

20 a) State the work energy theorem. 1
b) Show that the potential energy of a body is completely converted into kinetic energy during its free fall under the gravity.
c) A man carefully brings down a glass sheet from a height 2 m to the ground. The work done by him is \qquad
(i) negative
(ii) zero
(iii) positive
(iv) unpredictable

OR
a) In the absence of external torque. \qquad .of an isolated system remains constant
b) Why planets move faster at near region of sun and slower when they are far away?

