

Displacement = $PP' = \sqrt{(\pi R^2) + (2R^2)} = R\sqrt{\pi^2 + 4}$ The slope is given by $Slope = \tan \theta$ $= \frac{\Delta x}{\Delta t}$ = velocity. That is the slope of position time graph gives the Velocity.	
$= \frac{\Delta x}{\Delta t}$ = velocity. = velocity.	
That is the slope of position time graph gives the Velocity.	
1	
er any 4 questions from 11 to 14 each carries 3 score	1
Coefficient of viscosityForce/area x velocity gradient[ML-1T-1]Gravitational constantForce x (distance)²/(mass)²[M-1L3T-2]Modulus of elasticityForce/area x number[ML-1T-2]	
Centripetal force $F \alpha m^a v^b r^c$ ie., $F = k m^a v^b r^c$ (1) Taking dimensions $M^1L^1T^{-2} = (M^1)^a (L^1T^{-1})^b (L^1)^c$ $M^1L^1T^{-2} = M^a L^bT^{-b} L^c$ $M^1L^1T^{-2} = M^a L^{b+c} T^{-b}$ Equating dimensions on both sides $a=1 \ b=2 \ c=-1$ also given $k=1$ Thus equation (1) becomes $F = \frac{mv^2}{r}$	
Average velocity = 0 (because total displacement =0)	
Average speed = $\frac{Total distance}{Total time}$ $= \frac{S+S}{t_1+t_2}$ $= \frac{2S}{\frac{S}{V_1} + \frac{S}{V_2}}$ $= \frac{2V_1V_2}{V_1+V_2}$ $= \frac{2x60 x90}{150} = 72 \text{km/hr}$	
a) By the equation of motion, $v^2 = u^2 + 2as$ Here v=0 a=-a retardation, S> Stopping distances Therefore $0=u^2-2as$	
F	Gravitational constant Modulus of elasticityForce x (distance)²/(mass)²[M ⁻¹ L ³ T ⁻ ?]Centripetal forceF α m ^a v ^b r ^c ie., F = k m ^a v ^b r ^c (1) Taking dimensions M ¹ L ¹ T ⁻² = (M ¹) ^a (L ¹ T ⁻¹) ^b (L ¹) ^c M ¹ L ¹ T ⁻² = M ^a L ^{b+c} T ^{-b} Equating dimensions on both sides a=1 b=2 c=-1 also given k=1 Thus equation (1) becomes $F = \frac{mv^2}{r}$ Average velocity = 0(because total displacement =0)Average speed = $\frac{Total distance}{Total time}$ = $\frac{2S}{V_1 + V_2}$ = $\frac{2V_1V_2}{V_1 + V_2}$ = $\frac{2x60 x 90}{150}$ =72 km/hr) By the equation of motion, $v^2 = u^2 + 2as$ Here v=0 a=-a

PHYSOL-The solution for learning Physics Prepared by Higher Secondary Physics Teachers Association Malappuram

Prepared by Higher Secondary Physics Teachers Association Malappuram

	This is the displacement – time relation. c) i) An object with constant velocity has always constant speed.	
17		
	Let u> initial velocity	1.
	v>final velocity	1
	a>acceleration	1
	t>time.	
	We have $acceleration = \frac{Change invelocity}{time}$	
	$a = \frac{v - u}{t}$	
	v-u=at	
	v = u + at This is the velocity -time relation.	
	b) <u>Velocity-Displacement relation</u> : $v^2 = u^2 + 2as$	
	Let S-> Displacement u->initial velocity v> final velocity a->acceleration t->time.	
	We have $Average \ velocity = \frac{Total \ displacement}{Time}$	
	$V_{av} = \frac{S}{t}$	
	Also $V_{av} = \frac{v+u}{2}$	
	Therefore $\frac{s}{t} = \frac{v+u}{2}$	
	That is $v + u = \frac{2S}{t}$ (1)	
	But $v-u=at$ (2) Multiplying (1) and (2) $(v+u)(v-u)=\frac{2S}{t}at$	
	$v^2 - u^2 = 2aS$	
	$V^2 = u^2 + 2as$	
	This is the velocity-displacement relation.	