

Chapter - 1
 Arithmetic Sequence

Main Concepts

* A sequence got by starting with any number and adding a fixed number repeatedly is called an arithmetic sequence.
* The numbers forming a sequence are called its terms . The terms in a sequence are written in algebra as

$$
\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}, \mathbf{x}_{4}, \ldots \ldots
$$

* The fixed number which is adding repeatedly is called common difference and usually denoted using the letter 'd'

We can find the terms of given A.S when any term and common difference is given

$$
\text { Eg: } \begin{array}{rlr}
\mathbf{x}_{8}=\mathbf{x}_{2}+\mathbf{6 d} & \mathbf{x}_{8}=\mathbf{x}_{12}-\mathbf{4 d} \\
& \mathbf{x}_{9}=\mathbf{x}_{5}+\mathbf{4 d} & \mathbf{x}_{15}=\mathbf{x}_{20}-\mathbf{5 d} \\
& \mathbf{x}_{15}=\mathbf{x}_{7}+\mathbf{8 d} & \mathbf{x}_{6}=\mathbf{x}_{12}-\mathbf{6 d}
\end{array}
$$

In any arithmetic sequence

$$
\text { Common difference }=\frac{\text { Term difference }}{\text { Position difference }}
$$

So,
Term difference $=$ Position difference \times Common difference
$\%$

Considering an arithmetic sequence with terms and common difference as natural numbers, the terms of this sequence leave same remainder when they are divided by its common difference
nth term (Algebraic form) of any arithmetic sequence is

$$
\begin{array}{cl}
\mathbf{X}_{n}=\mathbf{f}+(n-1) d & \text { Where, } \\
\text { or } & \text { f - first term }
\end{array}
$$

$\mathbf{X}_{\mathrm{n}}=\mathbf{d} \mathbf{n}+\mathbf{f}-\mathbf{d}$
d-Common difference
$n^{\text {th }}$ term (Algebraic form) of an arithmetic sequence can also be written as

$$
\begin{gathered}
X_{n}=a n+b \\
\text { where } \quad d=a, f=a+b
\end{gathered}
$$

No: of terms of an $A . S$ is

$$
\mathbf{n}=\frac{\mathbf{x}_{\mathrm{n}}-\mathbf{x}_{1}}{\mathrm{~d}}+1 \quad \begin{aligned}
& \text { Where, } \\
& \\
& \begin{array}{l}
\mathbf{x}_{\mathrm{n}}-\mathbf{n}^{\text {th }} \text { term } / \text { last term } \\
\\
\\
\\
\\
\text { d- common difference }
\end{array}
\end{aligned}
$$

Sum of Terms

The Sum of any consecutive odd number of terms of an arithmetic sequence

Sum of terms = Middle Term \times No: of terms
Middle Term $=\frac{\text { Sum }}{\text { No: of terms }}$

Some peculiarities of arithmetic sequence

a) When number of terms odd

Pair sum $=2 \times$ middle term
Middle term $=\frac{\text { Pair Sum }}{2}$
b) When number of terms even

Sum of terms $=$ No: of pairs \times Pair sum

$$
\text { Pair sum }=\frac{\text { Sum of terms }}{\text { No: of pairs }}
$$

Sums

* The sum of any number of consecutive natural numbers, starting with one is

$$
1+2+3+\ldots \ldots \ldots \ldots \ldots \ldots+n=\frac{n(n+1)}{2}
$$

* Sum of first ' n ' even natural numbers

$$
2+4+6+\ldots+2 n=n(n+1)
$$

* Sum of first ' n ' odd natural numbers

$$
1+3+5+\ldots+2 n-1=n^{2}
$$

The sum of any number of consecutive terms of an arithmetic sequence

Chapter - 2

Circles

Main Concepts

If we join the ends of a diameter of a circle to a point on the circle, we get a right angle.

Angle in a semicircle is right.

Joining the ends of the diameter of a circle to a point inside the circle gives an angle greater than 90°.

Joining the ends of the diameter of a circle to a point outside the circle gives an angle less than 90°.

The angle made by an arc of a circle on the alternate arc is half the angle made at the centre.

A pair of an angles on an arc and its alternate arc are supplementary.

All angles made by an arc on its alternate arc are equal.

If all four vertices of a quadrilateral are on a circle, then its opposite angles are supplementary.

$$
\begin{aligned}
& \angle B+\angle D=180^{\circ} \\
& \angle A+\angle C=180^{\circ}
\end{aligned}
$$

If the opposite angles of a quadrilateral are supplementary, we can draw a circle passing through all four of its vertices

This quadrilateral can be called as a Cyclic Quadrilateral

ABCD is a Cyclic Quadrilateral

If vertex D of quadrilateral $A B C D$ is ,

Cyclic quadrilaterals are those quadrilaterals with opposite angles supplementary.
Quadrilaterals which are always cyclic are
(i) Square
(i) Rectangle
(iii) Isosceles Trapezium

In a cyclic quadrilateral any outer angle is equal to the inner angle at the opposite vertex.

If two chords of a circle intersect within the circle, then the products of the parts of the two chords are equal.

$$
\mathbf{P A} \times \mathbf{P B}=\mathbf{P C} \times \mathbf{P D}
$$

The product of the parts into which a diameter of a circle is cut by a perpendicular chord, is equal to the square of half the chord.

$$
P A \times P B=P C^{2}
$$

If the chords AB and CD of the circle are extended to meet at P.

Then,
$\mathbf{P A} \times \mathbf{P B}=\mathbf{P C} \times \mathbf{P D}$

Chapter 3
 Mathematics Of Chance

$$
\text { Probability }=\frac{\text { Number of favourable outcomes }}{\text { Total number of outcomes }}
$$

$$
\text { Probability of pairs }=\frac{\text { Number of favourable pairs }}{\text { Total number of pairs }}
$$

To Remember

* Even numbers 2, 4, 6, 8, 10, 12,
* Odd Numbers $1,3,5,7,9,11$,
* Prime numbers 2, 3, 5, 7, 11, 13, 17, 19, \qquad
* Perfect Squares 1, 4, 9, 16, 25, 36, 49,

Total two digit numbers $=90$
Total three digit numbers $=900$

When a die is thrown, total number of outcomes = 6 When two dice are thrown, total number of outcomes $=6 \times 6$ $=36$

Chapter-4
 Second Degree Equations

Main Concepts

Equations of the form $\mathbf{a} x^{2}+b x+c=0, a \neq 0$ are second degree equations.
The values of x satisfying the equation are called solutions of the equation.

Completing the square method

To convert ' $x^{2}+2 a x$ ' to the perfect square($\left.x+a\right)^{2}$ add the square of half the coefficient of ' x '. i.e ' a ',

$$
x^{2}+2 \mathbf{a} x+a^{2}=(x+\mathbf{a})^{2}
$$

$$
\begin{aligned}
& x^{2}+2 x \rightarrow \text { Completing square } \rightarrow x^{2}+2 x+1^{2}=(x+1)^{2} \\
& x^{2}+20 x \rightarrow \text { Completing square } \rightarrow x^{2}+20 x+10^{2}=(x+10)^{2} \\
& x^{2}+6 x \rightarrow \text { Completing square } \longrightarrow x^{2}+6 x+3^{2}=(x+3)^{2} \\
& x^{2}+8 x \rightarrow \text { Completing square } \rightarrow x^{2}+8 x+4^{2}=(x+4)^{2}
\end{aligned}
$$

Standard form of second degree equation is

$$
a x^{2}+b x+c=0 \quad \text { where } a \neq 0
$$

To get $a^{2}+b x+c=0$, we must take

$$
\begin{aligned}
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} & \\
a & =\text { Coefficient of } x^{2} \\
b & =\text { Coefficient of } x \\
c & =\text { Constant }
\end{aligned}
$$

Important points

Statement	Algebra
Three more than a number	$\mathbf{x + 3}$
Three less than a number	$\mathbf{x}-\mathbf{3}$
Two times a number	$\mathbf{2 x}$
Half of a number	$\frac{\mathbf{x}}{\mathbf{2}}$
Two consecutive natural numbers	$\mathbf{x}, \mathbf{x}+\mathbf{1}$
Two consecutive even numbers	$\mathbf{x}, \mathbf{x}+\mathbf{2}$
Two consecutive odd numbers	$\mathbf{x}, \mathbf{x}+\mathbf{2}$
A number and its reciprocal	$\mathbf{x}, \frac{1}{x}$
A number and is square	$\mathbf{x}, \mathbf{x}^{2}$
Two numbers with sum 10	$\mathbf{x}, \mathbf{1 0}-\mathbf{x}$
Two numbers with difference 10	$\mathbf{x}, \mathbf{1 0}+\mathbf{x}$
Two numbers with product 10	$\mathbf{x}, \frac{10}{x}$

Chapter $\mathbf{- 5}$
 Trigonometry

The sides of any triangle of angles $45^{\circ}, 45^{\circ}, 90^{\circ}$ are in the ratio $1: 1: \sqrt{2}$

1

In any triangle of angles $30^{\circ}, 60^{\circ}, 90^{\circ}$ the sides are in the ratio $1: \sqrt{ } 3: 2$

1

Trisonometric Ratios

$$
\operatorname{Sin} \mathbb{A}=\begin{array}{l|l}
\text { Opposite Side } \\
\text { Hypotenuse } & \operatorname{Cos} \mathbf{A}=\frac{\text { Adjacent Side }}{\text { Hypotenuse }}
\end{array}
$$

$$
\operatorname{Tan} A=\frac{\text { Opposite Side }}{\text { Adjacent Side }}
$$

Cecilia Joseph , St. John De Britto's A.I.H.S , Fortkochi

In a circle of radius ' \mathbf{r} ',
Length of a chord of central angle $\left.x^{\circ}\right\}=2 r \operatorname{Sin}\left(\frac{x^{\circ}}{2}\right)$

Consider $\triangle \mathrm{ABC}$, let the sides be a, b, c If ' r ' is the circumradius,

$$
\frac{a}{\operatorname{Sin} A}=\frac{b}{\operatorname{Sin} B}=\frac{c}{\operatorname{Sin} C}=2 r
$$

Chapter - 6
 Coordinates

$\Delta_{y \text {-axis }}$

The x coordinate of any point on the y axis is 0
The y coordinate of any point on the x axis is 0
The x coordinate of any point on a line
parallel to y axis are equal
The y coordinate of any point on a line
parallel to x axis are equal

For any two points $\mathbf{A}\left(\mathbf{x}_{1}, \mathbf{y}_{1}\right), \mathbf{B}\left(\mathbf{x}_{2}, \mathbf{y}_{2}\right)$ on a plane, Distance $\quad \mathbf{A B}=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$

Distance of any point (x, y) from the origin is $\sqrt{(x)^{2}+(y)^{2}}$

Cecilia Joseph , St. John De Britto's A.I.H.S , Fortkochi

Chapter - 7

Tangents

Main Concepts

The tangent line to a circle at a given point is the straight line that "just touches" the circle at that point.

The tangent at a point on a circle is perpendicular to the diameter through that point.

From a point outside a circle, two tangents can be drawn. \&
The tangents to a circle from a point are of the same length

$\mathbf{P A}=\mathbf{P B}$

Lengths of the tangents

$$
\mathbf{P A}=\mathbf{P B}=\sqrt{h^{2}-r^{2}}
$$

In a circle, the angles between the radii through two points and the angle between the tangents at these points are supplementary.

In a circle, the angle between a chord and tangent at either end is half the central angle of the chord.

In a circle, the angle which a chord makes with the tangent at one end on any side is equal to the angle which it makes on the part of the circle on the other side.

The product of an intersecting line and the part of it outside the circle is equal to the square of the tangent.

A circle is drawn inside a triangle such that it touches all three sides of the triangle is called the incircle of a triangle.

The radius of the incircle of a triangle is its area divided by half the perimeter.

$$
\mathbf{r}=\frac{A}{s}
$$

$r=$ Radius of encircle
A = Area of triangle
S = Half the perimeter of the triangle

Chapter 8

solids

Main Concepts

Square Pyramid

A square pyramid is a pyramid having a square base.
In a square pyramid there are four lateral faces which are equal isosceles triangles.

The sides of the polygon forming the base of a pyramid are called base edges (a) and the other sides of the triangles are called lateral edges (e).
The topmost point of a pyramid is called its apex.
The height (h)of a pyramid is the perpendicular distance from the
 apex to the base.
The height of the triangle is called the slant height (l) of the pyramid.

Net of a square pyramid

A square pyramid has a square in the middle and four triangles around it;
all four of them are isosceles triangles and they are equal.

Folding the four triangles gives the square pyramid.

Click here to view pyramid and its net

$$
\begin{aligned}
\text { Base area } & =(\text { Base edge })^{2}=a^{2} \\
\text { Area of one lateral face } & =\frac{1}{2} \times \text { base edge } \times \text { slant height } \\
& =\frac{1}{2} \times a \times 1 \\
\text { Lateral surface area } & =4 \times \frac{1}{2} \times a \times 1 \\
& =2 \times \mathbf{a} \times 1=2 \text { al } \\
\text { Total surface area } & =\text { Base area }+ \text { Lateral surface area } \\
& =a^{2}+2 a l
\end{aligned}
$$

3 right triangles in a square pyramid and relation between

 different measures using pythagores theoremi)

Right triangle consisting of slant height (l) half of base edge $\frac{a}{2}$ \& height(h),

$$
l^{2}=\left(\frac{a}{2}\right)^{2}+h^{2}
$$

iii)

Right triangle consisting of lateral edge(e), half of base edge $\frac{a}{2} \&$ slant height (l)

$$
\mathbf{e}^{2}=\left(\frac{\mathbf{a}}{2}\right)^{2}+I^{2}
$$

iiii)
Right triangle consisting of lateral edge (e), half of diagonal $\left(\frac{d}{2}\right) \quad \& \operatorname{height}(h)$

$$
e^{2}=\left(\frac{d}{2}\right)^{2}+h^{2}
$$

$$
\begin{aligned}
\text { Volume of square pyramid } & =\frac{1}{3} \times \text { base area } \times \text { height } \\
& =\frac{1}{3} \times \mathbf{a}^{2} \times \mathbf{h}
\end{aligned}
$$

Click here to view animation on volume

Cone

Pyramid like solids with circular bases are called cones.

We can make a cone by rolling up a sector of a circle.

Relation between the dimensions of the sector we start with and the cone we end up with.

Radius (R) of the sector = Slant height (l) of the cone ie,

$$
\mathbf{R}=l
$$

Arc length of the sector $=$ Circumference of base of the cone

$$
\begin{aligned}
\frac{x^{\circ}}{360^{\circ}} \times 2 \pi R & =2 \pi r \\
\therefore \quad \frac{x^{\circ}}{360^{\circ}} & =\frac{r}{R} \\
\frac{x^{\circ}}{360^{\circ}} & =\frac{r}{l} \quad \begin{aligned}
& x^{\circ}=\begin{array}{l}
\text { Central angle of the } \\
\\
\\
\text { sector }
\end{array} \\
& \mathbb{R}=\begin{array}{l}
\text { Radius of the } \\
\\
\text { sector }
\end{array} \\
& l=\begin{array}{l}
\text { Slant height of } \\
\text { the cone }
\end{array} \\
& x=\text { radius of base } \\
& \text { circle of cone }
\end{aligned}
\end{aligned}
$$

Curved surface area of a cone

It is the area of the curved part of the cone (Excluding the circular base)

Area of the sector used to make the cone

Curved surface area of the cone
Curved surface area of

$\therefore \quad$| Curved surface area of |
| ---: |
| the cone |$=\frac{x^{\circ}}{360^{\circ}} \times \pi \mathbb{R}^{2}$

Since $\mathbf{R}=\boldsymbol{l}$
Curved surface area of the cone $=\frac{x^{\circ}}{360^{\circ}} \times \pi l^{2}$

We have $\quad \frac{x^{\circ}}{360^{\circ}}=\frac{r}{l}$

$$
\therefore \begin{aligned}
& \text { Curved surface area of } \\
& \text { the cone }=\frac{r}{l} \times \pi l^{2} \\
&=\pi r l
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{x}^{0}= \text { Central angle } \\
& \text { of the sector } \\
& \mathbb{R}= \text { Radius of the } \\
& \text { sector } \\
& \boldsymbol{l}= \text { Slant height of } \\
& \text { the cone } \\
& \mathbf{r}= \text { radius of base } \\
& \text { circle of cone }
\end{aligned}
$$

Surface area of the cone

$$
\begin{aligned}
\text { Surface area of a Cone } & =\text { Curved Surface area + Base Area } \\
& =\pi r l+\pi r^{2}
\end{aligned}
$$

Heiqht of a cone

The height of a cone is the perpendicular distance from the apex to the base

Relation between height (h),slant heipht (l) \& base-radius(r) of a cone
$(\text { Slant height })^{2}=(\text { height })^{2}+(\text { base-radius })^{2}$

Volume of a cone

Volume of cone $=\frac{1}{3} \times$ base area \times height
$=\frac{1}{3} \times \pi r^{2} \times h$
Where, $r=$ base-radius of cone

$$
h=\text { height of cone }
$$

Sphere

A sphere has only one face.

Surface area of a sphere of radius ' \mathbf{r} ' $=4 \mathbf{\pi r}{ }^{\mathbf{2}}$

$$
\text { Volume of a sphere of radius ' } \mathbf{r} \text { ' }=\frac{4}{3} \pi \mathbf{r}^{3}
$$

Hemisphere

Total Surface Area sphere of radius ' \mathbf{r} ' = $\mathbf{3 \pi} \mathbf{\pi} \mathbf{r}$
Volume of a sphere of radius ' \mathbf{r} ' $=\frac{2}{3} \pi \mathbf{r}^{\mathbf{3}}$

Chapter-9

Geometry and Algebra

Main Concepts

Mid Point of line joining the points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is

$$
\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)
$$

Slope of line joining the points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$

$$
\text { Slope }=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

If $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right)$ are thre vertices of a parallelogram, then coordinates of its fourth vertex is $\left(x_{1}+x_{2}-x_{3}, y_{1}+y_{2}-y_{3}\right)$

Equation of a line

$y-y_{1}=\operatorname{Slope}\left(x-x_{1}\right) \quad$ where $\left(x_{1}, y_{1}\right)$ is a point on the line

If the point $P(x, y)$ divides the line joining the points $\left(x_{1}, y_{1}\right)$ and ($\left.x_{2}, y_{2}\right)$ in the ratio $m: n$, then $\mathrm{x}=\mathrm{X}_{1}+\frac{\mathrm{m}}{\mathrm{m}+\mathrm{n}}\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)$
$y=y_{1}+\frac{m}{m+n}\left(y_{2}-y_{1}\right)$

If $\left(x_{1}, y_{1}\right),\left(x_{1}, y_{1}\right),\left(x_{1}, y_{1}\right)$ are three vertices of a triangle Coordinates of Centroid $=\left(\frac{x_{1}+x_{2}+x_{3}}{3}, \frac{y_{1}+y_{2}+y_{3}}{3}\right)$

The equation of a circle with centre at the origin and radius ' r ' is

$$
x^{2}+y^{2}=r^{2}
$$

The equation of a circle with centre (a,b) and radius ' r ' is

$$
(x-a)^{2}+(y-b)^{2}=\mathbf{r}^{2}
$$

Chapter - 10
 Polynomials

Main Concepts

Polvnomials and Factors

* For the second degree polynomial $P(x)$ If $P(x)=q(x) r(x)$, then $q(x), r(x)$ are factors of $P(x)$.

$$
\begin{aligned}
\mathbf{x}^{2}+\mathbf{a x} & =\mathbf{x}(\mathbf{x}+\mathbf{a}) \\
\mathbf{x}^{2}+(\mathbf{a}+\mathbf{b}) \mathbf{x}+\mathbf{a b} & =(\mathbf{x}+\mathbf{a})(\mathbf{x}+\mathbf{b}) \\
\mathbf{x}^{2}-\mathbf{a}^{2} & =(\mathbf{x}+\mathbf{a})(\mathbf{x}-\mathbf{a}) \\
\mathbf{x}^{2}+\mathbf{2 a x}+\mathbf{b}^{2} & =(\mathbf{x}+\mathbf{a})^{2} \\
\mathbf{x}^{2}-\mathbf{2 a x}+\mathbf{b}^{2} & =(\mathbf{x}-\mathbf{a})^{2}
\end{aligned}
$$

Remainders and Factors

* For the second degree polynomial $P(x)$

The remainder when $P(x)$ is divided by $x-a$ is $P(a)$ The remainder when $P(x)$ is divided by $x+a$ is $P(-a)$

If $P(a)=0$ then $x-a$ will be a factor of $P(x)$
If $P(-a)=0$ then $x+a$ will be a factor of $P(x)$ On the other hand,
If $x-a$ is a factor of $P(x)$, then $P(a)=0$
If $x+a$ is a factor of $P(x)$, then $P(-a)=0$

If $P(x)$ is a polynomial and a is a number, then $x-a$ will be a factor of $P(x)-P(a)$ $x+a$ will be a factor of $P(x)-P(-a)$

If $x=a$ and $x=-b$ are solutions of $P(x)=0$ then $x-a$ and $x+b$ are the 2 factors of $P(x)$

Chapter - 11 Statistics

Main Concepts

$$
\begin{aligned}
& \text { Mean } \\
& \text { Arithmetic mean (Mean) }=\frac{\text { Sum of items }}{\text { Number of items }}
\end{aligned}
$$

Median

Median is the middle most number, when the numbers are arranged in ascending or descending order.

* If the number of terms is odd

$$
\text { Median }=\text { Middle Number }
$$

* If the number of terms is even

Here two numbers comes in the middle
Half of their sum is taken as the median

Median in frequency table

Prepare cumulative frequency table.

If the total number of terms(\mathbf{n}) is odd

$$
\text { Median }=\left(\frac{n+1}{2}\right)^{\text {th }} \quad \text { term }
$$

If the total number of terms (n) is even

$$
\text { Median }=\frac{\left(\frac{n}{2}\right)^{\text {th }} \text { term }+\left(\frac{n}{2}\right)+1^{\text {th }} \text { term }}{2}
$$

