SEARCH ON GOOGLE RAVI MATHS TUITION CENTER, CHENNAI-82. WHATSAPP - 8056206308
 2ND REVISION MODEL 3

10th Standard
Maths

SUBSCRIBE MY YOUTUBE CHANNEL NAME RAVI MATHS TUITION CENTER WHATSAPP - 8056206308

Exam Time : 03:00:00 Hrs
Total Marks : 100
ANSWER ALL
$14 \times 1=14$

1) A tangent is perpendicular to the radius at the
(a) centre
(b) point of contact
(c) infinity
(d) chord
2) How many tangents can be drawn to the circle from an exterior point?
(a) one
(b) two
(c) infinite
(d) zero
3) The two tangents from an external points P to a circle with centre at O are PA and PB.If $\angle A P B=70^{\circ}$ then the value of $\angle A O B$ is
(a) 100°
(b) 110°
(c) 120°
(d) 130°
4) In figure CP and CQ are tangents to a circle with centre at O. ARB is another tangent touching the circle at R. If $C P=11 \mathrm{~cm}$ and $B C=7 \mathrm{~cm}$, then the length of $B R$ is

(a) 6 cm
(b) 5 cm
(c) 8 cm
(d) 4 cm
5) In figure if $P R$ is tangent to the circle at P and O is the centre of the circle, then $\angle P Q R$ is

(a) 120°
(b) 100°
(c) 110°
(d) 90°
6) Consider four straight lines
(i) $I_{1}: 3 y=4 x+5$
(ii) $I_{2}: 4 y=3 x-1$
(iii) $I_{3}: 4 y+3 x=7$
(iv) $I_{4}: 4 x+3 y=2$

Which of the following statement is true?
(a) I_{1} and I_{2} are perpendicular
(b) I_{1} and I_{4} are parallel
(c) I_{2} and I_{4} are perpendicular
(d) I_{2} and I_{3} are parallel
7) A straight line has equation $8 y=4 x+21$. Which of the following is true
(a) The slope is 0.5 and the y intercept is 2.6
(b) The slope is 5 and the y intercept is 1.6
(c) The slope is 0.5 and the y intercept is 1.6
(d) The slope is 5 and the y intercept is 2.6
8) When proving that a quadrilateral is a trapezium, it is necessary to show
(a) Two sides are parallel.
(b) Two parallel and two non-parallel sides.
(c) Opposite sides are parallel.
(d) All sides are of equal length.
9) When proving that a quadrilateral is a parallelogram by using slopes you must find
(a) The slopes of two sides
(b) The slopes of two pair of opposite sides
(c) The lengths of all sides
(d) Both the lengths and slopes of two sides
10) $(2,1)$ is the point of intersection of two lines.
(a) $x-y-3=0 ; 3 x-y-7=0$
(b) $x+y=3 ; 3 x+y=7$
(c) $3 x+y=3 ; x+y=7$
(d) $x+3 y-3=0 ; x-y-7=0$
11) If the altitude of the sun is at 60°, then ttre height of the vertical tower that will cast a shadow of length 30 m is
(a) $30 \sqrt{3} \mathrm{~m}$
(b) 15 m
(c) $\frac{30}{\sqrt{3}} m$
(d) $15 \sqrt{2} m$
12) The angle of elevation and depression are usually measured by a device called
(a) Theodolite
(b) Kaleidoscope
(c) Periscope
(d) Telescope
13) A tower subtends an angle 30° at a point on the same level as its foot. At a second point h metres above ttre first the depression of the foot of the tower is 60°. The height of the tower is
(a) $\frac{h}{2} m$
(b) $\sqrt{3} \mathrm{hm}$
(c) $\frac{h}{3} m$
(d) $\frac{h}{\sqrt{3}} m$
14) If the altitude of the light house is h metres and from it the angre of depression of Two ships on opposite sides of the light house are observed to be 30° and 45°, then the distance between the ships are
(a) $(\sqrt{3}+1) h$ metres
(b) $(\sqrt{3}-1) h$ metres
(c) $(\sqrt{3} h$ metres
(d) $1+\left(1+\frac{1}{\sqrt{3}}\right) h$ metres

ANSWER 10
$10 \times 2=20$
15) Find the length of the tangent drawn from a point whose distance from the centre of a circle is 5 cm and radius of the circle is 3 cm .

16) In Fig, $\triangle A B C$ is circumscribing a circle. Find the length of $B C$.

17) If radii of two concentric circles are 4 cm and 5 cm then find the length of the chord of one circle which is a tangent to the other circle

18) Find the equation of a line whose inclination is 30° and making an intercept - 3 on the Y axis.
19) Find the slope and y intercept of $\sqrt{3 x}+(1-\sqrt{3}) y=3$
20) The length of the tangent to a circle from a point P, which is 25 cm away from the centre is 24 cm . What is the radius of the circle?
21) Two circles with centres O and O^{\prime} of radii 3 cm and 4 cm , respectively intersect at two points P and Q, such that $O P$ and $O^{\prime} P$ are tangents to the two circles. Find the length of the common chord PQ .
22) Determine whether the sets of points are collinear? $(a, b+c),(b, c+a)$ and (c, a +b)
23) Check whether $A D$ is bisector $\angle A$ of $\triangle A B C$ in each of the following $A B=4 c m$, $A C=6 \mathrm{~cm}, B D=1.6 \mathrm{~cm}$ and $C D=2.4 \mathrm{~cm}$.
24) Find the intercepts made by the following lines on the coordinate axes. $4 x+3 y+$ $12=0$
25) A kite is flying at a height of 60 m above the ground. The inclination of the string with the ground where its string is tied is 60°. Find the length of the string.
26) The angle between the top of a building and a point 80 m away from the base on level ground is 60°. How tall is the building?
27) The angle of depression of a vehicle on the ground from the top of a tower is 60°. If the vehicle is at a distance of 100 m away from the building, find, the height of the tower.
28) From the top of a fire tower, a forest ranger sees his partner on the ground at an angle of depression of 45°. If the tower is 45 feet in height, how far is the partner from the base of the tower?
ANSWER 10

ANSWERS AVAILABLE IN MY YOUTUBE CHANNEL NAME - RAVI MATHS TUITION CENTER WHATSAPP - 8056206308

29) Let $P(11,7), Q(13.5,4)$ and $R(9.5,4)$ be the midpoints of the sides $A B, B C$ and $A C$ respectively of $\triangle A B C$. Find the coordinates of the vertices A, B and C. Hence find the area of $\triangle A B C$ and compare this with area of $\triangle P Q R$.
30) Let $A(3,-4), B(9,-4), C(5,-7)$ and $D(7,-7)$. Show that $A B C D$ is a trapezium.
31) In Fig, $A B C$ is a triangle with $\angle B=90^{\circ}, B C=3 \mathrm{~cm}$ and $A B=4 \mathrm{~cm}$. D is point on $A C$ such that $A D=1 \mathrm{~cm}$ and E is the midpoint of $A B$. Join D and E and extend $D E$ to
meet $C B$ at F. Find $B F$.

32) In figure, O is the centre of the circle with radius 5 cm . T is a point such that $\mathrm{OT}=$ 13 cm and $O T$ intersects the circle E, if $A B$ is the tangent to the circle at E, find the lenght of $A B$

33) In the given figure $A B\|C D\| E F$.If $A B=6 \mathrm{~cm}, C D=x \mathrm{~cm}, E F=4 \mathrm{~cm}, B D=5 \mathrm{~cm}$ and $D E=y$ can. Final x and y

34) Two trains leave a railway station at the same time. The first train travels due west and the second train due north. The first train travels at a speed of $20 \mathrm{~km} / \mathrm{hr}$ and the second train travels at $30 \mathrm{~km} / \mathrm{hr}$. After 2 hours, what is the distance between them?
35) Find the equations of the lines, whose sum and product of intercepts are 1 and 6 respectively.
36) The angles of elevation and depression of the top and bottom of a lamp post from the top of a 66 m high apartment are 60° and 30° respectively. Find The height of the lamp post.
37) Three villagers A, B and C can see each other across a valley. The horizontal distance between A and B is 8 km and the horizontal distance between B and C is 12 km . The angle of depression of B from A is 20° and the angle of elevation of C from B is 30°. Calculate : the vertical height between A and $B .\left(\tan 20^{\circ}=0.3640,(\right.$ $\sqrt{3}=1.732$)

38) An aeroplane is flying parallel to the Earth's surface at a speed of $175 \mathrm{~m} / \mathrm{sec}$ and at a height of 600 m . The angle of elevation of the aeroplane from a point on the Earth's surface is 37° at a given point. After what period of time does the angle of elevation increase to 53° ? $\left(\tan 53^{\circ}=1.3270, \tan 37^{\circ}=0.7536\right)$
39) A man is watching a boat speeding away from the top of a tower. The boat makes an angle of depression of 60° with the man's eye when at a distance of 200 m from the tower. After 10 seconds, the angle of depression becomes 45°. What is
the approximate speed of the boat (in $\mathrm{km} / \mathrm{hr}$), assuming that it is sailing in still water? $(\sqrt{3}=1.732)$
40) In the figure, find the area of quadrilateral BCEG.

41) Find the equation of a straight line Passing through ($-8,4$) and making equal intercepts on the coordinate axes
42) State and prove pythagoras theorem?

ANSWER ALL
43) a) Draw the two tangents from a point which is 10 cm away from the centre of a circle of radius 5 cm . Also, measure the lengths of the tangents.
(OR)
b) Take a point which is 11 cm away from the centre of a circle of radius 4 cm and draw the two tangents to the circle from that point.
44)a) Construct a triangle similar to a given triangle $A B C$ with its sides equal to $\frac{6}{5}$ of thecorresponding sides of the triangle ABC (scale factor $\frac{6}{5}>1$).
(OR)
b) Draw a triangle $A B C$ of base $B C=5.6 \mathrm{~cm}, \angle A=40^{\circ}$ and the bisector of $\angle A$ meets $B C$ at D such that $C D=4 \mathrm{~cm}$.

CHAPTERWISE TEST PAPERS AVAILABLE . WHATSAPP 8056206308

