Government of Karnataka

Department of Public Instruction

OFFICE OF THE D.D.P.I. kOLAR DISTRICT, KOLAR

2021-22

GLANCE ME ONCE

$a x^{2}+b x+c=0$

Subject : MATHEMATICS

CLASS: $10^{\text {TH }}$ STANDARD

CONTENTS :

Unit No.	Name of the Unit	Page No.
1	ARITHMETIC PROGRESSIONS	$3-5$
2	TRIANGLES	$6-12$
3	PAIR OF LINEAR EQUATIONS IN TWO VARIABLES	$13-15$
4	CIRCLES	$16-17$
5	AREAS RELATED TO CIRCLES	$18-20$
6	CONSTRUCTIONS	$21-22$
7	COORDINATE GEOMETRY	$28-27$
10	QUADRATIC EQUATIONS	$32-35$
11	INTRODUCTION TO TRIGONOMETRY	$36-40$
12	SOME APPLICATIONS OF TRIGONOMETRY	$41-44$
13	STATISTICS	$45-49$
15	SURFACE AREAS AND VOLUMES	

(As per the reduction of $\mathbf{2 0 \%}$ of the Syllabus, Unit-8,9 and $\mathbf{1 4}$ are not considered for the year 2021-22.)

Unit-1: ARITHMETIC PROGRESSION

Multiple Choice Questions

1. The $\mathrm{n}^{\text {th }}$ term of an arithmetic progression with first term ' a ' and common difference ' d ', is
(A) $a_{n}=a+(n-1) d$
(B) $a_{n}=a-(n-1) d$
(C) $a_{n}=a-(n+1) d$
(D) $a_{n}=a+(n+1) d$
2. In an arithmetic progression, if the first term is ' a ' and the common difference is ' d ', then the sum of its first ' n ' terms is
(A) $\mathrm{S}_{\mathrm{n}}=\frac{2}{n}[a+(n-1) d]$
(B) $\mathrm{S}_{\mathrm{n}}=2[a+(n-1) d]$
(C) $\mathrm{S}_{\mathrm{n}}=\frac{n}{2}[a+(n-1) d]$
(D) $\mathrm{S}_{\mathrm{n}}=\frac{n}{2}[2 a+(n-1) d]$
3. If $\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}, \mathrm{a}_{4}, \ldots$. are in arithmetic progression, then the common difference is
(A) $a_{2}-a_{1}$
(B) $a_{1}-a_{2}$
(C) $a_{2}-a_{3}$
(D) $a_{3}-a_{4}$
4. The common difference of the arithmetic progression, $3,7,11,15, \ldots$. is
(A) -4
(B) 3
(C) 4
(D) 5
5. An arithmetic progression among the following is
(A) $3,5,7,10, \ldots$
(B) $3,5,6,9, \ldots$
(C) $-2,-1,0,3$,
(D) $4,7,10,13, \ldots$

6 . If the $\mathrm{n}^{\text {th }}$ term of an arithmetic progression is $3 \mathrm{n}-2$, then its $9^{\text {th }}$ term is
(A) 15
(B) 25
(C) 29
(D) 11
7. If the terms $4, x, 10$ are in arithmetic progression then the value of ' x ' is
(A) 6
(B) 7
(C) 8
(D) 9
8. The $25^{\text {th }}$ term of an arithmetic progression, $3,8,13,18$, is
(A) 25
(B) 123
(C) 128
(D) 80
9. The sum of the first 30 odd natural numbers is
(A) 300
(B) 600
(C) 150
(D) 900
10. The sum of $5+10+15+20+$ to 10 terms is
(B) 75
(A) 50
(C) 100
(D) 275

One Mark Questions

1. Write the formula to find the sum of first ' n ' terms of an arithmetic progression with the first term ' a ' and the last term a_{n}.

$$
S_{n}=\frac{n}{2}\left(a+a_{n}\right)
$$

2. Write the formula to find the sum of first ' n ' terms of an arithmetic progression whose the first term is ' a ' and the common difference is ' d '.

$$
S_{n}=\frac{n}{2}[2 a+(n-1) d]
$$

3. If the common difference of an arithmetic progression is 3 , then find the value of $a_{7}-a_{2}$.

$$
\begin{aligned}
& a_{7}-a_{2}=a+6 d-(a+d) \\
& =a+6 d-a-d=5 d=5(3)=15 \\
& \quad \therefore a_{7}-a_{2}=15
\end{aligned}
$$

Two Marks Questions

1. If the first and the last term of an A.P are 4 and 40 respectively. Find the sum of first 20 terms.

$$
\begin{aligned}
& a=4, \quad l=40, \quad n=20 \\
& S_{n}=\frac{n}{2}(a+1) \\
& S_{20}=\frac{20}{2}(4+40)=10 \times 44=440 \\
& \quad \therefore S_{\mathbf{2 0}}=\mathbf{4 4 0}
\end{aligned}
$$

3. Find the sum of first 20 terms of the arithmetic series $2+7+12+$ \qquad using the formula.

$$
\begin{aligned}
& \mathrm{a}=2, \quad \mathrm{~d}=5, \quad \mathrm{n}=20 \\
& \mathrm{~S}_{\mathrm{n}}=\frac{\mathrm{n}}{2}[2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d}] \\
& \mathrm{S}_{20}=\frac{20}{2}[2(2)+(20-1)(5)]=10[4+95] \\
& \quad=10[99]=990 \\
& \therefore \mathbf{S}_{\mathbf{2 0}}=\mathbf{9 9 0}
\end{aligned}
$$

2. Find the $12^{\text {th }}$ term of an A.P, $2,5,8,11, \ldots$ using formula

$$
\begin{aligned}
& \mathrm{a}=2, \quad \mathrm{~d}=5-2=3, \quad \mathrm{n}=12 \\
& \mathrm{a}_{\mathrm{n}}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d} \\
& \mathrm{a}_{12}=2+(12-1) 3 \\
& \quad=2+33=35 \\
& \therefore \mathbf{a}_{\mathbf{1 2}}=\mathbf{3 5}
\end{aligned}
$$

4. Find the $10^{\text {th }}$ term from last (towards the first term) of the A.P, $4,7,10,13, \ldots 64$.

From last term, the A.P becomes
64, . . . 13,10,7,4.
$\mathrm{a}=64 \mathrm{~d}=10-13=-3, \mathrm{n}=10$
$\mathrm{a}_{\mathrm{n}}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d}$
$\mathrm{a}_{10}=64+(10-1)(-3)$
$=64-27=37$
$\therefore \mathbf{a}_{10}=37$
5. Examine, whether 92 is a term of the A.P., $2,5,8,11, \ldots$
$\mathrm{a}=2 \mathrm{~d}=5-2=3$
Let $\mathrm{a}_{\mathrm{n}}=92$
$\mathrm{a}_{\mathrm{n}}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d}$
$92=2+(n-1) 3=2+3 n-3$
$3 n=93 \quad n=31$
Since \mathbf{n} is an whole number, 92 is a term of the A.P 2,5,8,11, . .

Three Marks questions

1. The interior angles of a quadrilateral are in A.P. The smallest among them is 15°. Find the measure of remaining angles.
Let the angles be $a-3 d, a-d, a+d, a+3 d$.
By the angle sum property of quadrilateral

$$
(a-3 d)+(a-d)+(a+d)+(a+3 d)=360^{\circ}
$$

$$
4 a=3600 \quad \Rightarrow \quad a=900
$$

Substituting the value of " a " in $\mathrm{a}-3 \mathrm{~d}=15$

$$
90-3 d=15 \quad \Rightarrow \quad d=25
$$

The measure of remaining angles $65^{\circ}, 115^{0}$ and 165^{0}
2. In an A.P., the $3^{\text {rd }}$ term is 3 and the $5^{\text {th }}$ term is -11 . Find its $50^{\text {th }}$ term.

$$
\begin{aligned}
& a_{3}=3, a_{5}=-11 \quad a_{50}=? \\
& a+2 d=3 \\
& \begin{array}{r}
a+4 d=-11 \\
-2 d=14
\end{array} \quad \text { (subtraction) }
\end{aligned}
$$

Substituting the value of " d " in $a+2 d=3$

$$
\begin{aligned}
& a+2(-7)=3 \quad \Rightarrow \quad a=17 \\
& a_{n}=a+(n-1) d \\
& a_{50}=17+(50-1)(-7) \\
& \boldsymbol{a}_{\mathbf{5 0}}=-\mathbf{3 2 6}
\end{aligned}
$$

Four or Five Marks Questions

1. In an A.P, the sum of $3^{\text {rd }}$ and $6^{\text {th }}$ term is 28 and the sum of $4^{\text {th }}$ and $8^{\text {th }}$ term is 34 . Find the A.P.

According to the data
$a_{3+} a_{6}=28$
$a+2 d+a+5 d=28$
$2 a+7 d=28$
(1)
$a_{4+} a_{8}=34$
$a+3 d+a+7 d=34$
$2 a+10 d=34$
solving (1) and (2)
$2 a+7 d=28$
$2 a+10 d=34 \quad$ (subtraction)

$$
-3 d=-6 \quad \Rightarrow d=2
$$

Substituting the value of " d " in $a+5 d=17$

$$
a=7
$$

A.P. is $7,9,11,13, \ldots$
3. The $4^{\text {th }}$ term of an A.P is 14 and $8^{\text {th }}$ term is 8 less than twice the $5^{\text {th }}$ term. Find the sum of first 25 terms of the A.P.

$$
\begin{align*}
& \qquad \begin{array}{r}
a_{4}=14, a_{8}=2 a_{5}-8, S_{25}=? \\
a+3 d=14----(1) \\
a+7 d=2(a+4 d)-8
\end{array} \\
& \qquad \begin{array}{r}
\text { solving (1) and (2) } \begin{array}{r}
a+3 \mathrm{~d}=14 \\
\frac{\mathrm{a}+\mathrm{d}=8}{2 \mathrm{~d}=6} \\
\mathrm{~d}=3
\end{array}
\end{array}
\end{align*}
$$

By substituting the value of " d " in $a+d=8$ we get

$$
\begin{aligned}
& a=5 \\
& S_{n}=\frac{n}{2}[2 a+(n-1) d] \\
& S_{25}=\frac{25}{2}[2 \times 5+(25-1) 3] \\
& =\frac{25}{2}[10+72] \\
& \therefore \boldsymbol{S}_{\mathbf{2 5}}=\mathbf{1 0 2 5}
\end{aligned}
$$

2. A sum of Rs. 1600 is to be used to give ten cash prizes to the students of a school for their overall academic performances. If each prize is Rs 20 less than its preceding prize, find the value of each of the prizes.

Here, $n=10, d=20$.
Let the amounts of the prizes be

$$
\begin{gathered}
a, a-20, a-40, \ldots \ldots ., a-180 \\
a+a-20+a-40+\ldots \ldots+a-180=1600 \\
a=a, l=a-180, S_{n}=1600, \quad n=10 \\
S_{n}=\frac{n}{2}[a+l] \\
S_{10}=\frac{10}{2}[a+a-180] \\
1600=5(2 a-180)
\end{gathered}
$$

$$
2 a-180=320=>a=250
$$

Value of each prize is $\mathbf{2 5 0 , 2 3 0}, \mathbf{2 1 0}$,
4. The sum of three terms of an A.P is 18 and the sum of the squares of extremes is 104 . Find the A.P and the sum of first 40 terms.

Let the three terms be $a-d, a, a+d$

$$
\begin{aligned}
&(a-d)+(a)+(a+d)=18 \\
& 3 a=18 \\
& \boldsymbol{a}=\mathbf{6} \\
&(a-d)^{2}+(a+d)^{2}=104 \\
& a^{2}+d^{2}-2 a d+a^{2}+d^{2}+2 a d=104 \\
& 2 a^{2}+2 d^{2}=104 \\
& a^{2}+d^{2}=54 \\
& 6^{2}+d^{2}=52 \\
& d= \pm 4
\end{aligned}
$$

Let $d=4$, then the $\mathbf{A . P}$ is $\mathbf{2}, \mathbf{6}, \mathbf{1 0}, \ldots$
Sum of 40 terms is $S_{n}=\frac{n}{2}[2 a+(n-1) d]$

$$
S_{40}=\frac{40}{2}[2 \times 6+(40-1) 4]
$$

$\therefore \mathrm{S}_{40}=\mathbf{3 3 6 0}$

Unit-2: TRIANGLES

Multiple Choice Questions

1. If two triangles are congruent, then the ratio of their areas is
(A) $\mathbf{1 : 1}$
(B) $1: 2$
(C) $2: 1$
(D) $2: 3$
2. In two similar triangles, if the corresponding sides are in the ratio $4: 9$, then the ratio of their areas is
(A) $81: 16$
(B) 16:81
(C) $9: 4$
(D) $2: 3$
3. In a $\triangle \mathrm{ABC}$, if $\mid \underline{B}=90^{0}$ then $\mathrm{AB}^{2}=$
(A) $\mathrm{AB}^{2}+\mathrm{BC}^{2}$
(B) $\mathrm{AC}^{2}-\mathrm{BC}^{2}$
(C) $\sqrt{A C^{2}-B C^{2}}$
(D) $\mathrm{AC}^{2}+\mathrm{BC}^{2}$
4. In a right angled triangle, if lengths of the perpendicular sides are 3 cm and 4 cm , then the length of the hypotenuse is
(A) 5 cm
(B) 9 cm
(C) 16 cm
(D) 7 cm
5. A pole of height 10 m casts a shadow of length 4 m on the ground. At the same time the length of the shadow cast by a building of height 50 m is
(A) 20 m
(B) 10 m
(C) 25 m
(D) 30 m
6. In the given figure, $\mathrm{DE} \| \mathrm{BC}$, then $\frac{A D}{D B}=$
(A) $\frac{B D}{A D}$
(B) $\frac{B C}{D E}$
(C) $\frac{C E}{A E}$
(D) $\frac{A E}{E C}$

7. In the adjoining figure, in $\triangle \mathrm{ABC}, \mathrm{DE} \| \mathrm{BC}$, if $\mathrm{AD}=6 \mathrm{~cm}, \mathrm{BD}=10 \mathrm{~cm}$ and $\mathrm{AE}=3 \mathrm{~cm}$ then CE is
(A) 5
(B) 3
(C) 6
(D) 10

8. In the figure, in $\triangle \mathrm{PQR}, \mid \underline{Q}=90^{\circ}, \mathrm{QT}^{\perp} \mathrm{PR}$ then $\mathrm{QT}^{2}=$
(A) PT.PR
(B) QR.TR
(C) PR.TR
(D) PT.RT

9. In the adjoining figure, similarity criterion used to say that, the triangles are similar is
(A) S.S.S.
(B) S.A.S.
(C) A.A.A.
(D) A.S.A.

10. In triangle $A B C \angle B=90^{\circ}, A C=4 \mathrm{~cm}, A B=3 \mathrm{~cm}$, measure of $B C$ is.
(A) 5 cm
(B) 7 cm
(C) $\sqrt{7} \mathrm{~cm}$
(D) 1 cm

One Mark questions

1. Write the statement of Pythagoras theorem.

In a right triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.
2. Write the statement of Basic proportionality (Thales) theorem.

If a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct points, the other two sides are divided in the same ratio.
3. Each side of a square is 12 cm . Find its diagonal.

Diagonal of a square $=\sqrt{2}($ side of a square $)$
Diagonal of a square $=12 \sqrt{2} \mathrm{~cm}$.

Two Marks questions

1. $\triangle A B C \sim \triangle D E F$ and their areas be $64 \mathrm{~cm}^{2}$ and $121 \mathrm{~cm}^{2}$. If $\mathrm{EF}=15.4 \mathrm{~cm}$ then find BC .

$$
\begin{aligned}
& \frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle D E F)}=\frac{B C^{2}}{E F^{2}} \\
& \frac{64}{121}=\frac{B C^{2}}{15.4^{2}} \\
& \frac{8^{2}}{11^{2}}=\frac{B C^{2}}{15.4^{2}} \\
& \frac{8}{11}=\frac{B C}{15.4} \\
& B C=\frac{123.2}{11} \\
& \therefore B C=11.2 \mathrm{~cm} .
\end{aligned}
$$

3. In the adjoining figure, in $\triangle \mathrm{ABC}, \mid \underline{B}=90^{\circ}$ and $\mathrm{BD}^{\perp} \perp \mathrm{AC}$. Show that $\mathrm{BC}^{2}=\mathrm{AC} . \mathrm{CD}$

In $\triangle B D C$ and $\triangle A B C$
$\underline{\underline{B D C}}=\underline{\underline{A B C}}$
$\left[\mathrm{BD}^{\perp} \mathrm{AC}\right]$
$\underline{B C D}=\underline{A C B}$
[Common angle]
$\therefore \triangle B D C \sim \triangle A B C$ [By AA-criterion]
$\frac{B D}{A B}=\frac{D C}{B C}=\frac{B C}{A C}$
$B C^{2}=A C \times D C$
Hence the proof.

2. $A B C$ is an isosceles triangle right angled at B.

Prove that $\mathrm{AC}^{2}=2 \mathrm{AB}^{2}$.
In $\triangle A B C, \underline{B}=90^{\circ}$
$\therefore|\underline{A}=| \underline{C}$ and $A B=B C$
[Given]
From Pythagoras Theorem, we have,
$A C^{2}=A B^{2}+B C^{2}$
$A C^{2}=A B^{2}+A B^{2}$
$A C^{2}=2 A B^{2}$
\therefore Hence the proof.

4. Given $\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$, such that $\underline{A}=40^{\circ}$ and $\underline{Q}=60^{\circ}$. Find the measure of $\underline{\mathcal{C}}$.

$$
\underline{B}=\underline{Q}=60^{\circ} \quad[\Delta \mathrm{ABC} \sim \Delta \mathrm{PQR}] \quad \Lambda^{P}
$$

In $\triangle \mathrm{ABC}$, [angle sum property]
$\left|\underline{A}+|\underline{B}+| \underline{C}=180^{\circ}\right.$

$$
40^{\circ}+60^{\circ}+\underline{\underline{C}}=180^{\circ}
$$

$$
Q
$$

$\underline{C}=180^{\circ}-100^{\circ}=80^{\circ}$

$$
\therefore \underline{C}=\mathbf{8 0}^{\mathbf{0}}
$$

Three marks questions

1. In the adjoining figure, $\mathrm{DE} \| \mathrm{AC}$ and $\mathrm{DF} \| \mathrm{AE}$.

Prove that $\frac{B F}{F E}=\frac{B E}{E C}$
In $\triangle B E A, \mathrm{DF} \| \mathrm{AE}$

$$
\begin{equation*}
\frac{B F}{F E}=\frac{B D}{D A} \tag{1}
\end{equation*}
$$

2. In the adjoining figure, AP and BQ are perpendiculars on AB . prove that $\frac{\mathrm{AO}}{\mathrm{PO}}=\frac{\mathrm{BO}}{\mathrm{QO}}$.
In $\triangle \mathrm{AOP}$ and $\triangle \mathrm{BOQ}$
$\underline{O A P}=\underline{O B Q}=90^{\circ}$
[Given]
$\underline{A O P}=\underline{\mid B O Q}$
[Vertically opposite angles]
$\therefore \triangle \mathrm{AOP} \sim \triangle \mathrm{BOQ} \quad$ [By AA-criterion]

$$
\begin{aligned}
\frac{\mathrm{AO}}{\mathrm{BO}} & =\frac{\mathrm{PO}}{\mathrm{QO}} \\
\therefore \frac{\mathrm{AO}}{\mathrm{PO}} & =\frac{\mathrm{BO}}{\mathrm{QO}}
\end{aligned}
$$

\therefore Hence the proof.
3. In the adjoining figure, in a trapezium $A B C D, A B \| C D$ and $A B=2 C D$. Find the ratio of the areas of $\triangle \mathrm{AOB}$ and $\triangle \mathrm{COD}$.

In $\triangle A O B$ and $\triangle C O D$ we have,
$\underline{A O B}=\underline{C O D} \quad[$ Vertically opposite
angles]
$\underline{O A B}=\underline{O C D} \quad$ [Alternate angles, $\mathrm{AB} \| \mathrm{DC}]$
$\triangle A O B \sim \triangle C O D \quad$ [By AA-criterion]
$\frac{\operatorname{ar}(\triangle A O B)}{\operatorname{ar}(\triangle C O D)}=\frac{A B^{2}}{D C^{2}}$
$\frac{\operatorname{ar}(\triangle A O B)}{\operatorname{ar}(\triangle C O D)}=\frac{(2 D C)^{2}}{(D C)^{2}}=\frac{4}{1}$
$\therefore \operatorname{ar}(\triangle A O B): \operatorname{ar}(\triangle C O D)=4: 1$
4. A ladder of 15 m long reaches a window of a building 12 m above the ground. Find the distance of the foot of the ladder from the base of the wall.

Let $A C$ be the ladder and $A B$ be the wall with the window at A.
Also, $\mathrm{AC}=15 \mathrm{~m}$ and $\mathrm{AB}=12 \mathrm{~m}$
From Pythagoras Theorem, $B C^{2}=A C^{2}-A B^{2}$
$B C^{2}=15^{2}-12^{2}$
$B C^{2}=81 \quad \Rightarrow \boldsymbol{B C}=\mathbf{9}$
Thus, the distance of the foot of the ladder from the base of the wall is 9 m .

5. A vertical pole of height 12 m casts a shadow of length 8 m on the plane ground. At the same time a tower casts a shadow of length 40 m on the plane ground. Find the height of the tower.

Length of the vertical pole $=A B=12 \mathrm{~m}$
Length of the shadow casts by the pole $=\mathrm{BC}=8 \mathrm{~m}$
Length of the shadow casts by the tower $=\mathrm{EF}=40 \mathrm{~m}$
Let the height of the tower $=\mathrm{h} \mathrm{m}$
In $\triangle A B C$ and $\triangle D E F$
$\underline{B}=\mid \underline{E}=90^{\circ}$
$\underline{C}=\underline{F} \quad$ [The angles made by sun at the same time]
$\therefore \triangle A B C \sim \triangle D E F \quad$ [By AA-criterion of similarity]
$\frac{A B}{D E}=\frac{B C}{E F}$

$\frac{12}{h}=\frac{8}{40} \frac{12 \times 40}{8}=h$
$h=60 \quad \therefore$ Height of the tower $=60 \mathrm{~m}$.

Four or Five marks questions:-

1. State and prove the Basic proportionality (Thales') theorem.

If a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct points, the other two sides are divided in the same ratio.

Data: In $\triangle \mathrm{ABC}$ DE \| BC .

To Prove : $\frac{A D}{D B}=\frac{A E}{E C}$

Construction : Draw DM $\perp \mathrm{AC}$ and
$\mathrm{EN} \perp \mathrm{AB}$. Join BE and CD.

Proof:
$\frac{\operatorname{ar}(\triangle \mathrm{ADE})}{\operatorname{ar}(\triangle \mathrm{BDE})}=\frac{\frac{1}{2} \times \mathrm{AD} \times \mathrm{EN}}{\frac{1}{2} \times \mathrm{DB} \times \mathrm{EN}} \quad\left(\because\right.$ Area of $\Delta=\frac{1}{2} \times$ base \times height $)$
$\frac{\operatorname{ar}(\triangle \mathrm{ADE})}{\operatorname{ar}(\triangle \mathrm{BDE})}=\frac{\mathrm{AD}}{\mathrm{DB}}$
$\frac{\operatorname{ar}(\triangle \mathrm{ADE})}{\operatorname{ar}(\triangle \mathrm{CED})}=\frac{\frac{1}{2} \times \mathrm{AE} \times \mathrm{DM}}{\frac{1}{2} \times \mathrm{EC} \times \mathrm{DM}} \quad\left(\because\right.$ Area of $\Delta=\frac{1}{2} \times$ base \times height $)$
$\frac{\operatorname{ar}(\triangle \mathrm{ADE})}{\operatorname{ar}(\triangle \mathrm{CED})}=\frac{\mathrm{AE}}{\mathrm{EC}}$

But $\triangle \mathrm{BDE}$ and $\triangle \mathrm{CED}$ are standing on the same base DE and between $\mathrm{DE} \| \mathrm{BC}$. $\operatorname{ar}(\triangle \mathrm{BDE})=\operatorname{ar}(\triangle \mathrm{CED})$ \qquad
\therefore from equations (1), (2) and (3)
$\frac{\mathrm{AD}}{\mathrm{DB}}=\frac{\mathrm{AE}}{\mathrm{EC}}$

Hence the proof.
2. State and prove the Pythagoras theorem.
" In a right angled triangle, the square on the hypotenuse is equal to the sum of the squares on other two sides ".

Data : $\triangle \mathrm{ABC}$ is a right triangle and $\angle \mathrm{B}=90^{\circ}$
To Prove : $\mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}$
Construction: Draw BD $\perp \mathrm{AC}$

Proof: In $\triangle \mathrm{ADB}$ and $\triangle \mathrm{ABC}$
$\angle \mathrm{D}=\angle \mathrm{B}=90^{\circ} \quad(\because$ Data and Construction $)$
$\angle \mathrm{A}=\angle \mathrm{A} \quad(\because$ Common angle $)$
$\triangle \mathrm{ADB} \sim \triangle \mathrm{ABC} \quad(\because$ AAA Similarity Criterion)
$\therefore \frac{\mathrm{AD}}{\mathrm{AB}}=\frac{\mathrm{AB}}{\mathrm{AC}} \quad(\because$ Proportional sides $)$
$A C \cdot A D=A B^{2}----->(1)$
Similarly
In $\triangle B D C$ and $\triangle A B C$
$\angle \mathrm{D}=\angle \mathrm{B}=90^{\circ} \quad(\because$ Data and Construction)
$\angle \mathrm{C}=\angle \mathrm{C} \quad(\because$ Common angle)
$\Delta \mathrm{BDC} \sim \triangle \mathrm{ABC} \quad(\because \mathrm{AAA}$ Similarity Criterion)
$\therefore \frac{\mathrm{DC}}{\mathrm{BC}}=\frac{\mathrm{BC}}{\mathrm{AC}} \quad(\because$ Proportional sides $)$
AC. $\mathrm{DC}=\mathrm{BC}^{2}$ \qquad
$\mathrm{AC} \cdot \mathrm{AD}+\mathrm{AC} \cdot \mathrm{DC}=\mathrm{AB}^{2}+\mathrm{BC}^{2}[\because$ By adding (1) and (2) $]$
$\mathrm{AC}(\mathrm{AD}+\mathrm{DC})=\mathrm{AB}^{2}+\mathrm{BC}^{2}$
$A C \times A C=A B^{2}+B C^{2} \quad(\because$ from fig. $A D+D C=A C)$
$\mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}$
Hence the proof.
3. Prove that "The ratio of the areas of two similar triangles is equal to the ratio of their corresponding sides".

Data: $\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$
$\Rightarrow \frac{A B}{P Q}=\frac{B C}{Q R}=\frac{A C}{P R}$
To Prove : $\frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle \mathrm{PQR})}=\left(\frac{\mathrm{AB}}{\mathrm{PQ}}\right)^{2}=\left(\frac{\mathrm{BC}}{\mathrm{QR}}\right)^{2}=\left(\frac{\mathrm{AC}}{\mathrm{PR}}\right)^{2}$
Construction : Draw AM $\perp \mathrm{BC}$ and $\mathrm{PN} \perp \mathrm{QR}$.
Proof: $\frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle \mathrm{PQR})}=\frac{\frac{1}{2} \times \mathrm{BC} \times \mathrm{AM}}{\frac{1}{2} \times \mathrm{QR} \times \mathrm{PN}} \quad\left(\because\right.$ Area of $\Delta=\frac{1}{2} \times$ base \times height $)$
$\frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle \mathrm{PQR})}=\frac{\mathrm{BC} \times \mathrm{AM}}{\mathrm{QR} \times \mathrm{PN}}$
In $\triangle A B M$ and $\triangle P Q N$
$\angle \mathrm{B}=\angle \mathrm{Q} \quad(\because \triangle \mathrm{ABC} \sim \triangle \mathrm{PQR})$
$\angle \mathrm{M}=\angle \mathrm{N}=90^{\circ} \quad(\because$ Construction $)$
$\therefore \triangle \mathrm{ABM} \sim \triangle \mathrm{PQN} \quad(\because \mathrm{AA}$ Similarity criterion)
$\therefore \frac{\mathrm{AM}}{\mathrm{PN}}=\frac{\mathrm{AB}}{\mathrm{PQ}}$
But $\frac{A B}{P Q}=\frac{B C}{Q R}=\frac{A C}{P R} \cdots>(3)(\because$ Data $)$
$\frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle \mathrm{PQR})}=\frac{\mathrm{AB}}{\mathrm{PQ}} \times \frac{\mathrm{AB}}{\mathrm{PQ}} \quad(\because$ substituting eqs.(2) and (3) in (1))
$\frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle \mathrm{PQR})}=\left(\frac{\mathrm{AB}}{\mathrm{PQ}}\right)^{2}$
Now from eq.(3)
$\frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle \mathrm{PQR})}=\left(\frac{\mathrm{AB}}{\mathrm{PQ}}\right)^{2}=\left(\frac{\mathrm{BC}}{\mathrm{QR}}\right)^{2}=\left(\frac{\mathrm{AC}}{\mathrm{PR}}\right)^{2}$
Hence the proof.
4. Prove that "If in two triangles, corresponding angles are equal, then their corresponding sides are in the same ratio (proportion) and hence the two triangles are similar'.

Data: In $\triangle A B C$ and $\triangle D E F$

$$
\begin{aligned}
& |\underline{A}=| \underline{D} \\
& \underline{B}=\mid \underline{E} \\
& \underline{\underline{C}}=\underline{\underline{E}}
\end{aligned}
$$

To prove: $\frac{A B}{D E}=\frac{B C}{E F}=\frac{A C}{D F}$

Construction: Mark points P and Q on DE and DF such that $\mathrm{DP}=\mathrm{AB}$ and $\mathrm{DQ}=\mathrm{AC}$. Join PQ .

Proof: In $\triangle A B C$ and $\triangle D P Q$
$\underline{A}=\underline{D} \quad$ [Data]
$\mathrm{AB}=\mathrm{DP} \quad$ [Construction]
$\mathrm{AC}=\mathrm{DQ} \quad$ [Construction]
$\therefore \triangle A B C \cong \triangle D P Q$ [SAS postulate]
$B C=P Q$
[By CPCT]
$\underline{B}=\mid \underline{P} \quad[\mathrm{By} \mathrm{CPCT}]$
$\underline{B}=\mid \underline{E}$
[Data]
$|\underline{P}=| \underline{E}$
[Axiom 1]
$P Q \| E F$
$\frac{D P}{D E}=\frac{P Q}{E F}=\frac{D Q}{D F} \quad$ [Corollary of BPT]
$\frac{A B}{D E}=\frac{B C}{E F}=\frac{A C}{D F} \quad$ [From (1) and construction]
\therefore Hence the proof.

Unit-3:PAIR OF LINEAR EQUATIONS IN TWO VARIABLES

Multiple Choice Questions

1. A pair of linear equations $a_{1} x+b_{1} y+c_{1}=0, a_{2} x+b_{2} y+c_{2}=0$ is said to be inconsistent if
(A) $\frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{\mathrm{~b}_{2}}$
(B) $\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}}$
(C) $\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$
(D) $\frac{a_{1}}{a_{2}}=\frac{c_{2}}{\mathrm{c}_{1}}$
2. If two lines representing the pair of linear equations $a_{1} x+b_{1} y+c_{1}=0$ and $a_{2} x+b_{2} y+c_{2}=0$ intersect at a point, then the correct relation among the following is
(A) $\frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}}$
(B) $\frac{a_{1}}{a_{2}}=\frac{b_{1}}{\mathrm{~b}_{2}}=\frac{c_{1}}{c_{2}}$
(C) $\frac{a_{1}}{a_{2}}=\frac{b_{1}}{\mathrm{~b}_{2}} \neq \frac{c_{1}}{c_{2}}$
(D) $\frac{a_{1}}{a_{2}}=\frac{b_{2}}{b_{1}}$
3. The lines representing the pair of linear equations $2 x+3 y-9=0$ and $4 x+6 y-18=0$ are
(A) intersecting lines
(B) perpendicular lines
(C) parallel lines
(D) coincident lines
4. The Pair of linear equations $x+2 y=6$ and $3 x-6 y=18$ have
(A) No solution
(B) Infinitely many solutions
(C) Exactly one solution
(D) Two solutions

One Mark Questions

1. The graph represents the pair of linear equations in ' x^{\prime} and ' y '.

Write the solution for this pair of equations.
Ans : $x=2$ and $y=1$

2. Write the general form of pair of linear equations in two variables ' x ' and ' y '
$a_{1} \boldsymbol{x}+b_{1} \boldsymbol{y}+\boldsymbol{c}_{\mathbf{1}}=\mathbf{0}$ and $\boldsymbol{a}_{2} \boldsymbol{x}+\boldsymbol{b}_{\mathbf{2}} \boldsymbol{y}+\boldsymbol{c}_{\mathbf{2}}=\mathbf{0}$, where $a_{1}, b_{1,}, c_{1}, a_{2}, b_{2}$ and c_{2} are all real numbers.
3. In the pair of linear equations $\mathrm{a}_{1} \mathrm{x}+\mathrm{b}_{1} \mathrm{y}+\mathrm{c}_{1}=0$ and $\mathrm{a}_{2} \mathrm{x}+\mathrm{b}_{2} \mathrm{y}+\mathrm{c}_{2}=0$, if $\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$, then write the number of solutions these equations have.

Ans: Infinitely many solutions.

Two Marks Questions

1. Solve the following pair of linear equations by any of the algebraic method:
$x+y=8$ and $2 x-y=7$

$$
x+y=8
$$

$$
\begin{gathered}
\frac{2 x-y=7}{3 x=15} \\
x=5
\end{gathered} \text { (addition) }
$$

Substituting the value of x in $x+y=8$

$$
5+y=8
$$

$$
y=3
$$

$\therefore x=5$ and $y=3$
2. Solve by elimination method: $x+y=5$ and $2 x+3 y=12$

$$
\begin{aligned}
x+y & =5 \\
2 x+3 y & =12
\end{aligned}
$$

Multiplying the equation (1) by 2 we get
$2 x+2 y=10----$ - (3)
Solving equation (2) and (3)

$$
\begin{aligned}
& 2 x+3 y=12 \\
& \frac{2 x+2 y=10}{y=2} \quad \text { (subtraction) }
\end{aligned}
$$

Substitute the value of y in $x+y=5$, we get $x=3$
$\therefore x=3$ and $y=2$

Three or Four Marks Questions.

1. The cost of 5 oranges and 3 apples is Rs. 35 and the cost of 2 oranges and 4 apples is Rs. 28.
Find the cost of an orange and an apple.
Let the cost of an orange and an apple be x and y respectively. $=>5 x+3 y=35$ and

$$
2 x+4 y=28
$$

$$
\begin{aligned}
(5 x+3 y=35) \times 4=>20 x+12 y & =140 \\
(2 x+4 y=28) \times 3=>6 x+12 y & =84
\end{aligned}
$$

Multiply the equation (1) by 4 and equation (2) by 3 we get,

$$
\begin{gathered}
20 x+12 y=140 \\
6 x+12 y=84 \\
\hline 14 x=56 \\
x=4
\end{gathered} \quad \text { (subtraction) }
$$

Substituting the value of x in $5 x+3 y=35$

$$
\begin{gathered}
5 x+3 y=35 \\
20+3 y=35 \\
3 y=15 \\
y=5
\end{gathered}
$$

2. Solve: $141 x+93 y=189$ and
$93 x+141 y=45$.
$141 x+93 y=189-----(1)$
$93 x+141 y=45-----$ (2)
By adding (1) and (2) we get

$$
\begin{gather*}
141 x+93 y=189 \\
\frac{93 x+141 y=45}{234 x+234 y=234} \quad x+y=1 \tag{3}\\
x+y=1
\end{gather*}
$$

By subtracting (1) by (2) we get

$$
\begin{gather*}
141 x+93 y=189 \\
\frac{93 x+141 y=45}{48 x-48 y=144} \\
x-y=3 \tag{4}
\end{gather*} \quad x-y=3
$$

Solving (3) and (4)

$$
\begin{gathered}
x+y=1 \\
x-y=3 \\
\hline 2 x=4 \\
x=2
\end{gathered}
$$

By substituting the value of x in (3) or (4) we get $y=-1$

$$
\therefore x=2 \text { and } y=-1
$$

4. If twice the age of the son is added to age of the father the sum is 56 . But if twice the age of the father is added to the age of the son, then the sum is 82 . Find the ages of the father and the son.

Let the age of son be ' x ' years and the age of father be ' y ' years

$$
\begin{align*}
& 2 x+y=56-----(1) \\
& x+2 y=82-----(2) \tag{2}
\end{align*}
$$

Multiply the equation (2) by 2 we get
$2 x+4 y=164----(3)$

$$
2 x+4 y=164
$$

Solving (1) and (3) $\frac{2 x+y=56}{3 y=108}$

$$
y=36
$$

By substituting the value of y in (1) we get $x=10$

\therefore The age of the son and the age of father al
 10 years and 36 years respectively.

5) 4 men and 6 boys can finish a piece of work in 5 days, while 3 men and 4 boys can finish the same work in 7 days. Find the time taken by one man alone or then by 1 boy alone.
Number of days taken by $1 \mathrm{man}=x$ days.
Number of days taken by 1 boy $=y$ days.
Work done by 1 man in 1 day $=\frac{1}{x}$
Work done by 1 boy in 1 day $=\frac{1}{y}$

$$
\begin{equation*}
\frac{4}{x}+\frac{6}{y}=\frac{1}{5}----(1) ; \frac{3}{x}+\frac{4}{y}=\frac{1}{7}-\cdots \tag{2}
\end{equation*}
$$

Take $\frac{1}{x}=a, \quad \frac{1}{y}=b$, then (1) and (2)
becomes
$\begin{array}{ll}4 a+6 b=\frac{1}{5} & 20 a+30 b=1 \\ 3 a+4 b=\frac{1}{7} & 21 a+28 b=1\end{array}$
By solving (3) and (4) we get $x=35, y=70$
\therefore One man will take 35 days and One boy will take $\mathbf{7 0}$ days to finish the work.
7) Solve graphically:
$2 x+y=5$ and $x+y=4$.
$2 x+y=5$
$x+y=4$

$y=5-2 x$			
x	0	1	2
y	5	3	1

x	1	2	3
y	3	2	1

$\therefore \mathrm{x}=1$ and $\mathrm{y}=3$
6) Ritu can row, down-stream 20 km in 2 hours, and upstream 4 km in 2 hours. Find her speed of rowing in still water and the speed of the current.
Let the speed of Ritu in still water be $=x \mathrm{~km} / \mathrm{h}$.
Speed of current be $y \mathrm{~km} / \mathrm{h}$.
The speed of downstream $=(x+y) \mathrm{km} / \mathrm{h}$.
The speed of upstream $\quad=(x-y) \mathrm{km} / \mathrm{h}$
Time $=\frac{\text { distance }}{\text { speed }}$

$$
\begin{gathered}
\mathrm{t}_{1}=\frac{20}{(\mathrm{x}+\mathrm{y})}=2 \quad 2 x+2 y=20--(1) \\
\mathrm{t}_{2}=\frac{4}{(\mathrm{x}-\mathrm{y})}=2 \Rightarrow 2 x-2 y=4--(2) \\
2 x+2 y=20 \\
\frac{2 x-2 y=4}{4 x}=24
\end{gathered}
$$

$$
=>x=6
$$

Considering $2 x+2 y=20$

$$
2(6)+2 y=20 \quad \Rightarrow \quad y=4
$$

\therefore The speed of Ritu in still water $=6 \mathbf{k m} / \mathrm{hr}$ and the speed of the stream $=4 \mathrm{~km} / \mathrm{hr}$.
8) Solve graphically:

$$
x+y=5 \text { and } x-y=1
$$

$\therefore \mathbf{x}=\mathbf{3}$ and $\mathrm{y}=\mathbf{2}$

UNIT-4 : CIRCLES

Multiple Choice Questions

1 In the figure, TP and TQ are the tangents drawn to a circle with centre O . If $\angle \mathrm{POQ}=110^{\circ}$, then the value of $\angle P \mathrm{TQ}$ is
A. 70°
B. 80°
C. 60°
D. 140°

2 The tangents drawn at the ends of a diameter of a circle are
A. perpendicular to each other
B. parallel to each other
C. equal
D. Not equal

3 A straight line which intersects a circle at two distinct points is
A. tangent
B. chord
C. secant
D. diameter

4 If the angle between the two tangents to a circle is 40°, then the angle between the radii is
A. 90°
B. 100^{0}
C. 140^{0}
D. 180°

5 Distance between two parallel tangents of a circle of radius 3.5 cm is
A. 3.5 cm
B. 7 cm
C. 10 cm
D. 14 cm .

6 In the given figure PA, PC and CD are the tangents to a circle with centre O . If $\mathrm{CD}=5 \mathrm{~cm}$ and $\mathrm{AP}=3 \mathrm{~cm}$, then length of the tangent PC is
A. 8 cm
B. 5 cm
C. 3 cm
D. 2 cm

7 In the figure, Chord of the circle with centre ' O ' is
A. XY
B. OP
C. MN
D. $A B$

8 A tangent of length 8 cm is drawn from an external point ' A ' to a circle of radius 6 cm . Then the distance between ' A ' and the centre of the circle is
A. 12 cm
B. 5 cm
C. 10 cm
D. 14 cm

9 Maximum number of tangents drawn to a circle from an external point is
A. 2
B. 3
C. 4
D. 5

One Mark Questions

1	What is the measure of the angle between radius and tangent at the point of contact? Ans: $\mathbf{9 0}^{\mathbf{0}}$
2	Define the Secant of a Circle. A line that intersects a circle at two points is called a Secant.
3	Define the tangent of a circle. A line that touches a circle at only one point is called a Tangent.
4	Define Point of contact of a circle. The common point of the tangent and the circle is called the Point of contact.

Three Marks Questions

1 Prove that "the length of tangents drawn from an external point to a circle are equal."
Given : ' O ' is the centre of the circle, ' P ' is an external point. AP and BP are the tangents

To Prove : AP = BP
Construction : Join OA, OB and OP.

Proof :

In $\triangle O Q P$ and $\triangle O R P$

$\angle \mathrm{OAP}=\angle \mathrm{OBP}=90^{\circ}$
$\mathrm{OP}=\mathrm{OP}$
$\mathrm{OA}=\mathrm{OB}$
$\triangle O A P \cong \triangle O B P$
$\mathrm{AP}=\mathrm{BP}$
[Theorem 4.1]
[Common side]
[Radii of same circle]
[RHS Postulate]
[CPCT]

Hence proved.
2 Prove that " the tangent at any point of a circle is perpendicular to the radius through the point of contact."

Given : XY is the tangent at P to the circle with centre
To Prove : OP \qquad XY
Construction : Mark Any point 'Q' on XY, join OQ and it cuts the circle at R
Proof : OR < OQ

$$
\mathrm{OR}=\mathrm{OP} \quad(\text { Radii of the same circle })
$$

$\therefore \quad \mathrm{OP}<\mathrm{OQ}$
This holds good for all the points on XY
$\therefore \mathrm{OP}$ is the least distance
$=>$ OP _l_XY

UNIT-5 : AREAS RELATED TO CIRCLES

Multiple Choice Questions

1 Area of Quadrant of a circle with radius ' r ' is
A. $\frac{\pi r^{2}}{2}$
B. $\frac{\pi r^{2}}{4}$
C. πr
D. $\frac{\pi r}{2}$

2 If the radius of a semicircle is 7 cm , the length of its arc is
A. 11 cm
B. 44 cm
C. 22 cm
D. 14 cm

3 Length of the arc of a sector with radius 9 cm and the angle 120° is
A. $2 \pi \mathrm{~cm}$
B. $3 \pi \mathrm{~cm}$
C. $\mathbf{6 \pi ~ c m}$
D. $9 \pi \mathrm{~cm}$

4 If the angle of a sector is ' P ' (in degrees) and radius is ' R ' then its area is
A. $\frac{P}{180} \times 2 \pi R$
B. $\frac{P}{180} \times \pi R^{2}$
C. $\frac{P}{360} \times 2 \pi R$
D. $\frac{P}{720} \times 2 \pi R^{2}$

5 If the ratio of circumference of two circles is $4: 5$ then the ratio of their areas is
A. $4: 5$
B. 16:25
C. $64: 125$
D. $5: 4$

One Mark Questions

1 Write the formula to find the area of the shaded region in the given figure.

$$
\frac{\theta}{360^{0}} \times \pi r^{2}
$$

2 Define the segment of a circle.
A segment is a region covered by a chord and a corresponding arc.
3 What is meant by a sector of the circle?
The area bounded by two radii and the corresponding arc of a circle is called the Sector.

4
If the diameter of a semicircle is 14 cm , then find its perimeter [use $\pi=\frac{22}{7}$]
Perimeter of the semicircle $=\pi r+d$

$$
=\frac{22}{7} \times \frac{14}{2}+14
$$

\therefore Perimeter of the semicircle $=36 \mathrm{~cm}$

5 If the area of a circle and the perimeter are numerically equal, then find the radius of that circle.

$$
\begin{gathered}
\quad \pi r^{2}=2 \pi r \\
\therefore r=2 \text { units }
\end{gathered}
$$

Two Marks Questions (Use $\pi=\frac{22}{7}$ unless given)

1 In a circle of radius 21 cm an arc subtends an angle 60° at the centre of the circle. Find the length of the arc formed in the circle.
Length of the arc $=\frac{\theta}{360^{\circ}} \times 2 \pi r$

$$
=\frac{60^{\circ}}{360^{\circ}} \times 2 \times \frac{22}{7} \times 21
$$

\therefore Length of the arc $=22 \mathrm{~cm}$

2 In a circle of radius 21 cm and arc subtends angle 60° at the centre of the circle, find the area of sector formed in the circle.

$$
\begin{aligned}
\text { Area of the sector } & =\frac{\theta}{360^{\circ}} \times \pi r^{2} \\
& =\frac{60^{\circ}}{360^{\circ}} \times \frac{22}{7} \times 21 \times 21
\end{aligned}
$$

\therefore Area of the sector $=\mathbf{2 3 1}$ sq.cm

3 In the figure ABCD is a square of side 14 cm . With centre $\mathrm{A}, \mathrm{B}, \mathrm{C} \& \mathrm{D}$ four circles are drawn such that each circle touch externally two of the remaining three circles. Find the Area of the shaded region.
Radius of each quadrant $=\frac{14}{2}=7 \mathrm{~cm}$
Area of the shaded region $=$ Area of the square - Area of 4 Quadrants.

$$
\begin{aligned}
\text { Area of the shaded region } & =14^{2}-4 \times \frac{\pi r^{2}}{4} \\
& =196-4 \times \frac{22}{7} \times \frac{7 \times 7}{4} \\
& =196-154
\end{aligned}
$$

\therefore Area of the shaded region $=42 \mathrm{~cm}^{2}$

4 A drain cover is made from a square metal plate of side 40 cm having 441 holes of diameter 1 cm each drilled in it. Find the area of the remaining square plate.
Area of each hole $=\pi r^{2}$

$$
\begin{aligned}
& =\frac{22}{7} \times\left(\frac{1}{2}\right)^{2} \\
& =\frac{11}{14} \mathrm{~cm}^{2}
\end{aligned}
$$

Area of 441 holes $=441 \times \frac{11}{14}=346.5 \mathrm{~cm}^{2}$
Area of Square metal plate $=40^{2}=1600 \mathrm{~cm}^{2}$
Area of remaining square plate $=1600-346.5$

$$
=1253.5 \mathrm{~cm}^{2}
$$

5 In the figure, a circle is circumscribed in a square ABCD . If each side of the square is 14 cm find the area of shaded region
Radius of the circle; $r=\frac{14}{2}$

$$
r=7 \mathrm{~cm}
$$

$\operatorname{Ar}($ shaded region $)=\operatorname{Ar}($ Square $)-\operatorname{Ar}($ Circle $)$

$$
\begin{aligned}
& =(\text { side })^{2}-\pi r^{2} \\
& =14^{2}-\frac{22}{7} \times 7 \times 7 \\
& =196-154
\end{aligned}
$$

\therefore Area of the shaded region $=42 \mathrm{~cm}^{2}$

Three Marks Questions (Use $\pi=\frac{22}{7}$ unless given)

Find the area of a quadrant of a circle, where the circumference of circle is 44 cm .
$2 \pi r=$ Circumference
$2 \pi r=44 \mathrm{~cm}$
$2 \times \frac{22}{7} \times r=44$

$$
\mathrm{r}=\frac{44 \times 7}{22 \times 2} \quad=>\quad \mathrm{r}=7 \mathrm{~cm}
$$

Area of quadrant $=\frac{1}{4} \times \pi r^{2}$

$$
\begin{aligned}
& =\frac{1}{4} \times \frac{22}{7} \times 7 \times 7 \\
& =\frac{77}{2}
\end{aligned}
$$

\therefore Area of quadrant $=\mathbf{3 8 . 5} \mathbf{~ c m}^{2}$

3 OABC is a square inscribed in a quadrant OPBQ. If $\mathrm{OA}=20 \mathrm{~cm}$. (use $\pi=3.14$)
$\operatorname{Ar}($ Square $)=20^{2}$

$$
=400 \mathrm{~cm}^{2}
$$

Radius of the quadrant; $\mathrm{r}=\mathrm{OB}$

$r=O B=\sqrt{O A^{2}+A B^{2}}$

$$
=\sqrt{20^{2}+20^{2}}=>r=20 \sqrt{2} \mathrm{~cm}
$$

$\operatorname{Ar}($ Quadrant $)=\frac{\pi r^{2}}{4}$

$$
\begin{aligned}
& =\frac{3.14 \times(20 \sqrt{2})^{2}}{4} \\
& =\frac{3.14 \times 400 \times 4}{4}
\end{aligned}
$$

$\operatorname{Ar}($ Quadrant $)=628 \mathrm{~cm}^{2}$
$\operatorname{Ar}($ Shaded region $)=\boldsymbol{A r}($ Quadrant $)-\boldsymbol{A r}($ Square $)$

$$
=628-400
$$

\therefore Area of the shaded region $=\mathbf{2 2 8} \mathbf{c m}^{2}$

2 Area of a sector of a circle of radius 14 cm is $154 \mathrm{~cm}^{2}$. Find the length of the corresponding arc of the sector.
Given, $r=14 \mathrm{~cm} \quad$ Area of sector $=154 \mathrm{~cm}^{2}$
$\frac{\theta}{360^{\circ}} \times \pi r^{2}=154$
$\frac{\theta}{360^{\circ}} \times \frac{22}{7} \times 14 \times 14=154$
$\frac{\theta}{360^{\circ}} \times 22 \times 2 \times 14=154$
$\theta=\frac{154 \times 360}{22 \times 2 \times 14} \Rightarrow \theta=90^{\circ}$
Length of an arc $=\frac{\theta}{360^{\circ}} \times 2 \pi r$

$$
=\frac{90^{\circ}}{360^{\circ}} \times 2 \times \frac{22}{7} \times 14
$$

\therefore Length of the arc $=22 \mathrm{~cm}$
4 The radii drawn from the end points of a chord of a circle subtend an angle of 120° at the centre. If the radius of the circle is 12 cm Find the area of the corresponding segment of the circle. (use $\pi=3.14$ and $\sqrt{3}=1.73$).
Radius $r=12 \mathrm{~cm}, \theta=120^{\circ}=>\frac{\theta}{2}=60^{\circ}$ $\operatorname{Ar}($ Segment $)=r^{2}\left(\frac{\pi \theta}{360^{\circ}}-\sin \frac{\theta}{2} \cos \frac{\theta}{2}\right)$
$=(12)^{2}\left(\frac{3.14 \times 120^{\circ}}{360^{\circ}}-\sin 60^{\circ} \times \cos 60^{\circ}\right)$
$=144\left(\frac{3.14}{3}-\frac{\sqrt{3}}{2} \times \frac{1}{2}\right)$
$=144\left(\frac{3.14}{3}-\frac{1.73}{4}\right)$
$=144\left(\frac{12.56-5.19}{12}\right)$

$$
=12(7.37)
$$

\therefore Area of the segment $=88.44 \mathrm{~cm}^{2}$

UNIT-6: CONSTRUCTIONS

Two Marks Questions

Construct a tangent at any point P on a circle of radius 5 cm .

2 Draw a line segment of length 7.6 m and divide the line segment in the ratio $8: 5$.

Three Marks Questions

1 Construct a pair of tangents to a circle of radius 3 cm which are inclined to each other at an angle of 70°.

Draw a circle of radius 3 cm and construct a pair of tangents to it from a point 7 cm away from its centre.

UNIT-7 : COORDINATE GEOMETRY

Multiple Choice Questions

1 The co-ordinates of the mid-point of the line segment joining the points $(2,0)$ and $(6,0)$ is
A. $(2,4)$
B. $(2,6)$
C. $(4,0)$
D. $(0,4)$

2 The distance of point $(4,-3)$ from the origin
A. 4 units
B. 5 units
C. 9 units
D. 16 units

3 The perpendicular distance of the point $\mathrm{P}(2,3)$ from the x -axis is
A. 1 unit
B. 2 units
C. 3 units
D. 5 units

4 The Coordinates of the origin is
A. $(1,1)$
B. $(\mathbf{0}, 0)$
C. $(0,1)$
D. $(1,0)$

5 The coordinates of a point P on the x -axis are of the form
A. $(\boldsymbol{x}, 0)$
B. $(0, y)$
C. $(y, 0)$
D. $(0, x)$

6 Area of the triangle with vertices $\mathrm{P}(0,6), \mathrm{Q}(0,2)$ and $\mathrm{R}(2,0)$ is
A. 4 square units
B. 0
C. 8 square units
D. 6 square units

7 If $\mathrm{M}(6,3)$ is the midpoint of line joining $\mathrm{P}(-2,5)$ and $\mathrm{Q}(8, y)$ then $\mathrm{y}=$
A. 4
B. 3
C. 2
D. 1

8 Distance of the point $P(x, y)$ from the origin is
A. $\sqrt{(x-y)^{2}}$
B) $\sqrt{x^{2}-y^{2}}$
C) $\sqrt{x^{2}+y^{2}}$
D. $\sqrt{(x+y)^{2}}$

One Mark Questions

1 What is the value of the y-coordinate of a point on x-axis?
Ans: 0
2 Write the coordinates of the origin.
OR
Write the coordinates of the point of intersection of x-axis and y-axis. Ans: (0,0)

3 Write the coordinates of the midpoint of a line segment joining the points $P\left(x_{1}, y_{1}\right)$ and $\mathrm{Q}\left(x_{2}, y_{2}\right)$.
Ans: $\quad P(x, y)=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$
4 Find the distance of the point $(3,4)$ from the origin.
Distance from the origin $d=\sqrt{x^{2}+y^{2}}$

$$
\begin{aligned}
d=\sqrt{3^{2}+4^{2}} \Rightarrow & d=\sqrt{9+16} \\
& \Rightarrow d=\sqrt{25} \\
& \therefore \boldsymbol{d}=\mathbf{5}
\end{aligned}
$$

Find the co-ordinates of the midpoint of the line segment joining the points $(0,8)$ and $(4,0)$.

$$
\begin{aligned}
& P(x, y)=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right) \\
& P(x, y)=\left(\frac{0+4}{2}, \frac{8+0}{2}\right) \\
& P(x, y)=\left(\frac{4}{2}, \frac{8}{2}\right) \\
& P(x, y)=(2,4)
\end{aligned}
$$

Two Marks Questions

Find the distance between the points $(3,2)$ and $(-5,6)$.

$$
\begin{aligned}
d & =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& =\sqrt{(-5-3)^{2}+(6-2)^{2}} \\
& =\sqrt{(-8)^{2}+(4)^{2}} \\
& =\sqrt{(64+36} \\
& =\sqrt{(100}
\end{aligned}
$$

$\therefore \boldsymbol{d}=10$ units

2 If the distance between the points $(4, p)$ and $(1,0)$ is 5 units, find the value of ' p ' $d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
$5=\sqrt{(1-4)^{2}+(0-p)^{2}} \quad$ [Squaring on both sides]
$25=(-3)^{2}+p^{2}$
$25=9+p^{2}$
$25-9=p^{2}$
$16=p^{2}$
$\therefore p= \pm 4$

3 Find the area of a triangle with vertices $D(0,2), E(0,6)$ and $F(-4,-2)$ Area of the Triangle $=\frac{1}{2}\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right]$

$$
\begin{aligned}
& =\frac{1}{2}[0(6-(-2))-0(-2-2)+(-4)(2-6)] \\
& =\frac{1}{2}[0+0+(-4)(-4)] \\
& =\frac{1}{2}(16)
\end{aligned}
$$

\therefore Area of the Triangle $=8$ sq.units

4 Find the coordinates of the midpoint of the line segment joining the points $(2,3)$ and $(4,7)$.
Midpoint $P(x, y)=\left(\frac{x_{1+} x_{2}}{2}, \frac{y_{1+} y_{2}}{2}\right)$

$$
\begin{aligned}
& =\left(\frac{2+4}{2}, \frac{3+7}{2}\right) \\
& =\left(\frac{6}{2}, \frac{10}{2}\right)
\end{aligned}
$$

\therefore Midpoint $P(x, y)=(3,5)$

5 Find the radius of the circle whose center is $(3,2)$ and if the circle passes through $(-5,6)$.

Radius is the distance between center and any point on the circle.
\therefore Radius of the circle $=\mathrm{d}$

$$
\begin{aligned}
d & =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& =\sqrt{(-5-3)^{2}+(6-2)^{2}} \\
& =\sqrt{(-8)^{2}+(4)^{2}} \\
& =\sqrt{80}
\end{aligned}
$$

\therefore Radius of circle $=4 \sqrt{5}$ units

Three Marks Questions

1 Find the co-ordinates of the point which divides the line segment joining the point $(1,6)$ and $(4,3)$ in the ratio $1: 2$.

$$
\begin{aligned}
P(x, y)= & {\left[\frac{m_{1} x_{2}+m_{2} x_{1}}{m_{1}+m_{2}}, \frac{m_{1} y_{2}+m_{2} y_{1}}{m_{1}+m_{2}}\right] } \\
& =\left[\frac{(1)(4)+2(1)}{1+2}, \frac{(1)(3)+(2)(6)}{1+2}\right] \\
& =\left[\frac{4+2}{3}, \frac{3+12}{3}\right] \\
& =\left[\frac{6}{3}, \frac{15}{3}\right]
\end{aligned}
$$

$\therefore P(x, y)=(2,5)$
2 If $D(1,2), E(-5,6)$ and $F(a,-2)$ are collinear, then find the value of 'a.' If three points are collinear then, Area of the Triangle $=0$
$=>\frac{1}{2}\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right]=0$

$$
\begin{aligned}
& {[1(6-(-2))-5(-2-2)+a(2-6)]=0 \times 2} \\
& [1(6+2))-5(-4)+a(-4)]=0 \\
& {[8+20-4 a]=0} \\
& 28=4 a \\
& \frac{28}{4}=a \\
& \therefore a=7
\end{aligned}
$$

Find the area of the triangle whose vertices are $(1,2),(3,7)$ and $(5,3)$.

$$
\begin{aligned}
\text { Area of triangle } & =\frac{1}{2}\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right] \\
& =\frac{1}{2}[1(7-3)+3(3-2)+5(2-7)] \\
& =\frac{1}{2}[1(4)+3(1)+5(-5)] \\
& =\frac{1}{2}[4+3-25] \\
& =\frac{1}{2}[-18]=-9
\end{aligned}
$$

But Area cannot be negative

\therefore Area of given triangle is 9 square units

4 In what ratio does the point $(-4,6)$ divide the line segment joining the points $(-6,10)$ and $(3,-8)$?
$\therefore \mathrm{P}(\mathrm{x}, \mathrm{y})=\left(\frac{m_{1} x_{2}+m_{2} x_{1}}{m_{1}+m_{2}}, \frac{m_{1} y_{2}+m_{2} y_{1}}{m_{1}+m_{2}}\right)$

$$
\begin{aligned}
&(-4,6)=\left(\frac{3 m_{1}-6 m_{2}}{m_{1}+m_{2}}, \frac{-8 m_{1}+10 m_{2}}{m_{1}+m_{2}}\right) \\
&=>-4=\frac{3 m_{1}-6 m_{2}}{m_{1}+m_{2}} \quad \text { and } 6=\frac{-8 m_{1}+10 m_{2}}{m_{1}+m_{2}}
\end{aligned}
$$

Consider, $-4=\frac{3 m_{1}-6 m_{2}}{m_{1}+m_{2}}$

$$
\begin{gathered}
-4 m_{1}-4 m_{2}=3 m_{1}-6 m_{2} \\
2 m_{2}=7 m_{1} \\
=>\frac{m_{1}}{m_{2}}=\frac{2}{7}
\end{gathered}
$$

$$
\therefore m_{1}: m_{2}=2: 7
$$

5 Find the value of ' p ' if the point $\mathrm{A}(0,2)$ is equidistant from $(3, p)$ and $(p, 3)$.
Let $B(3, p)$ and $C(p, 3)$
Given $\quad \mathrm{AB}=\mathrm{AC}$

$$
\begin{aligned}
& d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& \sqrt{(0-3)^{2}+(2-p)^{2}}=\sqrt{(p-0)^{2}+(3-2)^{2}} \\
&(0-3)^{2}+(2-p)^{2}=(p-0)^{2}+(3-2)^{2} \\
& 9+4+p^{2}-4 p=p^{2}+1 \\
& 13-4 p=1 \\
&-4 p=1-13 \\
&-4 p=-12 \\
& \therefore \boldsymbol{p}=\mathbf{3}
\end{aligned}
$$

$$
(0-3)^{2}+(2-p)^{2}=(p-0)^{2}+(3-2)^{2} \quad[\text { squaring on both sides] }
$$

Four Marks Questions

Find the area of the triangle formed by joining the mid-points of the triangle whose vertices are $K(2,1), L(4,3)$ and $M(2,5)$.

$$
\begin{aligned}
\text { Midpoint }= & \left(\frac{x_{1+} x_{2}}{2}, \frac{y_{1+} y_{2}}{2}\right) \\
& K(2,1), \quad L(4,3)
\end{aligned}
$$

Midpoint of KL is $\mathrm{A}=\left(\frac{2+4}{2}, \frac{1+3}{2}\right)=\left(\frac{6}{2}, \frac{4}{2}\right)=\mathrm{A}(3,2)$.

$$
\mathrm{K}(2,1), \quad \mathrm{M}(2,5)
$$

Midpoint of KM is $\mathrm{B}=\left(\frac{2+2}{2}, \frac{1+5}{2}\right)=\left(\frac{4}{2}, \frac{6}{2}\right)=\mathrm{B}(2,3)$.

$$
\mathrm{L}(4,3), \quad \mathrm{M}(2,5)
$$

Midpoint of LM is $\mathrm{C}=\left(\frac{4+2}{2}, \frac{3+5}{2}\right)=\left(\frac{6}{2}, \frac{8}{2}\right)=\mathrm{C}(3,4)$.

$$
\mathrm{A}(3,2), \quad(\mathrm{B}(2,3) \text { and } \quad(3,4)
$$

Area of $\Delta=\frac{1}{2}\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right]$
Area of $\triangle A B C=\frac{1}{2}[3(3-4)+2(4-2)+3(2-3)]$

$$
\begin{aligned}
& =\frac{1}{2}[3(-1)+2(2)+3(-1)] \\
& =\frac{1}{2}[-3+4-3] \\
& =-1
\end{aligned}
$$

But area cannot be negative, \therefore Area of Triangle $\mathbf{A B C}=1$ square unit.
2 Show that the points $\mathrm{K}(4,5), \mathrm{L}(7,6), \mathrm{M}(6,3)$ and $\mathrm{N}(3,2)$ are the vertices of a rhombus.

$$
\begin{gathered}
d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
\mathrm{~K}(4,5), \quad \mathrm{L}(7,6) \\
\mathrm{KL}=\sqrt{(7-4)^{2}+(6-5)^{2}}=\sqrt{(3)^{2}+(1)^{2}}=\sqrt{9+1}=\sqrt{10} \text { units. } \\
\mathrm{L}(7,6), \quad \mathrm{M}(6,3) \\
\mathrm{LM}=\sqrt{(6-7)^{2}+(3-6)^{2}}=\sqrt{(-1)^{2}+(-3)^{2}}=\sqrt{1+9}=\sqrt{10} \text { units. } \\
\mathrm{M}(6,3), \quad \mathrm{N}(3,2) \\
\mathrm{MN}=\sqrt{(3-6)^{2}+(2-3)^{2}}=\sqrt{(-3)^{2}+(-1)^{2}}=\sqrt{9+1}=\sqrt{10} \text { units. } \\
\quad \mathrm{N}(3,2), \quad \mathrm{K}(4,5)
\end{gathered} \begin{aligned}
& \mathrm{NK}=\sqrt{(3-4)^{2}+(2-5)^{2}}=\sqrt{(-1)^{2}+(-3)^{2}}=\sqrt{1+9}=\sqrt{10} \text { units. } \\
& \mathrm{KL}=\mathrm{LM}=\mathrm{MN}=\mathrm{NK}
\end{aligned}
$$

Here all sides are equal.

$\therefore K, L, M$ and N are the vertices of a Rhombus.

Unit-10 : QUADRATIC EQUATIONS

Multiple Choice Questions

The value of the discriminant of a quadratic equation is 3 . Then the nature of its roots is
A. Real and Distinct
B. Real and equal
C. There is no any root
D. Imaginary numbers

2 The standard form of quadratic equation is
A. $a x^{2}-b x+c=0$
B. $a x^{2}+b x+c=0$
C. $a x^{2}-b x-c=0$
D. $a x^{2}+b x-c=0$

3 The quadratic equation whose roots are -1 and 2 is
A. $x^{2}-x-2=0$
B. $x^{2}-x+2=0$
C. $x^{2}+x-2=0$
D. $x^{2}+x+2=0$

4 The standard form of the quadratic equation $x(x+1)=30$ is
A. $x^{2}-x=30$
B. $\boldsymbol{x}^{2}+\boldsymbol{x}-30=\mathbf{0}$
C. $x^{2}-x-30=0$
D. $x^{2}-x=30$

5 "Sum of the squares of two consecutive odd numbers is 130 ." Mathematical form of this statement is
A. $x^{2}+(x+1)^{2}=130$
B. $x^{2}+(2 x)^{2}=130$
C. $x^{2}+(x+2)^{2}=130$
D. $(x+2 x)^{2}=130$

6 If the roots of $a x^{2}+b x+c=0$ are equal, then the correct relation among the following is
$A \cdot \frac{b}{2 a}=\frac{2 c}{b}$
B. $b^{2}+4 a c=0$
C. $\frac{b}{2 a}=\frac{b}{2 c}$
D. $a=b$

One Mark Questions

1	Write the standard form of a quadratic equation. $\quad \begin{array}{l}\text { Ans: } \boldsymbol{a} \boldsymbol{x}^{2}+\boldsymbol{b x}+\boldsymbol{c}=\mathbf{0}, \text { where } \boldsymbol{a} \neq \mathbf{0}\end{array}$		
2	$\begin{array}{l}\text { Find the discriminant of the quadratic } \\ \text { equation } x^{2}+2 x+1=0 \\ b^{2}-4 a c=2^{2}-4(1)(1) \\ =4-4\end{array}$	3	$\begin{array}{l}\text { Find the roots of the quadratic equation } \\ x^{2}-25=0\end{array}$
$\therefore b^{2}-4 a c=0$			

x=\sqrt{25}

\therefore x= \pm 5\end{array}\right\}\)

Two Marks Questions

1	Solve the quadratic equation $\begin{aligned} & x^{2}+7 x+12=0 \text { by Factorization method } \\ & x^{2}+3 x+4 x+12=0 \\ & x(x+3)+4(x+3)=0 \\ & (x+3)(x+4)=0 \\ & x+3=0 \text { or } x+4=0 \\ & x=-3 \text { or } x=-4 \end{aligned}$	2	Solve the quadratic equation $x^{2}+x-6=0$ by Factorization method $\begin{aligned} & x^{2}+3 x-2 x-6=0 \\ & x(x+3)-2(x+3)=0 \\ & (x+3)(x-2)=0 \\ & x+3=0 \text { or } x-2=0 \\ & x=-3 \text { or } x=2 \end{aligned}$
3	Solve the quadratic equation $\begin{aligned} & 2 x^{2}-15 x+18=0 \text { by Factorization method } \\ & 2 x^{2}-12 x-3 x+18=0 \\ & 2 x(x-6)-3(x-6)=0 \\ & (x-6)(2 x-3)=0 \\ & x-6=0 \text { or } 2 x-3=0 \\ & x=6 \text { or } x=\frac{3}{2} \end{aligned}$	4	Solve the quadratic equation $\begin{aligned} & 3 x^{2}-x-14=0 \text { by Factorization method } \\ & 3 x^{2}+6 x-7 x-14=0 \\ & 3 x(x+2)-7(x+2)=0 \\ & (x+2)(3 x-7)=0 \\ & x+2=0 \text { or } 3 x-7=0 \\ & x=-2 \text { or } x=\frac{7}{3} \end{aligned}$
5	Solve $2 x^{2}-5 x+3=0$ by using the quadratic formula. $\begin{aligned} & a=2, \quad b=-5, \quad c=3 \\ & x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\ & x=\frac{-(-5) \pm \sqrt{(-5)^{2}-4(2)(3)}}{2(2)} \\ & x=\frac{5 \pm \sqrt{25-24}}{4} \\ & x=\frac{5 \pm 1}{4} \\ & x=\frac{5+1}{4} \text { or } \frac{5-1}{4} \\ & x=\frac{3}{2} \text { or } x=1 \end{aligned}$		Solve $x^{2}+2 x+4=0$ by using the quadratic formula. $\begin{aligned} & \quad a=1, \quad b=2, \quad c=4 \\ & x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\ & x=\frac{-(2) \pm \sqrt{(2)^{2}-4(1)(4)}}{2(1)} \\ & x=\frac{-2 \pm \sqrt{4-16}}{2} \\ & x=\frac{-2 \pm \sqrt{-12}}{2} \\ & x=\frac{-2 \pm \sqrt{4(-3)}}{2} \\ & x=\frac{2(-1 \pm \sqrt{-3})}{2} \\ & x=(-1+\sqrt{-3}) \text { or } x=(-\mathbf{1}-\sqrt{-\mathbf{3}}) \end{aligned}$

7	Find the nature of the roots of the equation $4 x^{2}-12 x+9=0$ $\begin{aligned} & a=4, \quad b=-12, \quad c=9 \\ & b^{2}-4 a c=(-12)^{2}-4(4)(9) \\ & \\ & =144-144 \\ & b^{2}-4 a c=0 \end{aligned}$ \therefore Roots are Real and Equal	8	Find the nature of the roots of the equation $x^{2}+2 x-15=0$ $\begin{aligned} & a=1, \quad b=2, \quad c=-15 \\ & b^{2}-4 a c=(2)^{2}-4(1)(-15) \\ & \\ & =4+60 \\ & \\ & =64 \end{aligned}$ Here $b^{2}-4 a c>0$ \therefore Roots are Real and Distinct
9	Find the nature of the roots of the equation $x^{2}-x+12=0$ $\begin{aligned} a=1, & b=-1, \quad c=12 \\ b^{2}-4 a c & =(-1)^{2}-4(1)(12) \\ & =1-48 \\ & =-47 \end{aligned}$ Here $b^{2}-4 a c<0$ \therefore The equation has no real roots.	10	Find the value of ' k ' if the quadratic equation $x^{2}-k x+4=0$ has equal roots. $a=1, \quad b=-k, \quad c=4$ Given; Roots are Equal $\begin{aligned} \therefore & b^{2}-4 a c=0 \\ & (-k)^{2}-4(1)(4)=0 \\ & k^{2}-16=0 \\ & k^{2}=16 \\ & k= \pm \sqrt{16} \\ & \therefore k= \pm 4 \end{aligned}$
Three Marks Questions			
1	A girl is twice as old as her sister. Four years hence, the product of their ages (in years) will be 160 . Find their present ages. Let the present age of sister be ' x ' years and girls present age be ' $2 x$ ' years Product of their ages 4 years hence $=$ $(x+4)(2 x+4)$ $\therefore(x+4)(2 x+4)=160$ $2 x^{2}+12 x-144=0$ $x^{2}+6 x-72=0$ $x^{2}+12 x-6 x-72=0$ $x(x+12)-6(x+12)=0$ $x=-12$ or $x=6$ Age cannot be negative $=>x=6$ \therefore Girl's present age is $\mathbf{1 2}$ years and present age of her sister is 6 years	2	The altitude of a right triangle is 7 cm less than its base. If the hypotenuse is 13 cm . find the other two sides. Let the base is ' x ' cm and altitude is $(x-7)$ cm and hypotenuse is 13 cm By Pythagoras theorem. $\begin{aligned} & 13^{2}=(x-7)^{2}+x^{2} \\ & 169=x^{2}+49-14 x+x^{2} \\ & 2 x^{2}-14 x-12=0 \\ & x^{2}-7 x-60=0 \\ & x^{2}-12 x+5 x-60=0 \\ & x(x-12)+5(x-12)=0 \\ & x-12=0 \quad \text { or } x+5=0 \\ & x=12 \quad \text { or } \quad x=-5 \end{aligned}$ Base is $\mathbf{1 2} \mathbf{~ c m}$ and Altitude is $\mathbf{5 c m}$

3 The difference of squares of two positive numbers is 180 . The square of small number is 8 times the big number. Find the numbers.
Let the bigger number be x and smaller be y
Given $x^{2}-y^{2}=180$ and

$$
y^{2}=8 x
$$

$\therefore x^{2}-8 x=180$
$x^{2}-8 x-180=0$
$x^{2}-18 x+10 x-180=0$
$x(x-18)+10(x-18)=0$
$(x-18)(x+10)=0$
$\Rightarrow x=18$ or $x=-10$
$y^{2}=8(18) \Rightarrow y^{2}=144$
$\therefore y=12$
\therefore The numbers are 18 and 12

4 The sum of the squares of two consecutive positive integers is 13 . Find the numbers.
Let the numbers be x and $(x+1)$
$x^{2}+(x+1)^{2}=13$
$x^{2}+x^{2}+1+2 x=13$
$2 x^{2}+2 x-12=0$
$x^{2}+x-6=0$
$x^{2}+3 x-2 x-6=0$
$x(x+3)-2(x+3)=0$
$(x+3)=0$ or $(x-2)=0$
$x=-3$ or $x=2$
The other number $=x+1=3$

\therefore The numbers are 2 and 3

Four Marks Questions

5 A person on tour has Rs 4200 for his expenses. If he extends his tour for 3 days, he has to cut down his daily expenses by Rs 70. Find the original duration of the tour.
original duration of the tour be ' x ' days.
Given, $\frac{4200}{x}-\frac{4200}{x+3}=70$
$4200\left(\frac{1}{x}-\frac{1}{x+3}\right)=70$
$\frac{(x+3)-x}{x(x+3)}=\frac{70}{4200}$
$x(x+3)=180$
$x^{2}+3 x-180=0$
$x^{2}+15 x-12 x-180=0$
$(x+15)(x-12)=0$
$x+15=0$ or $x-12=0$
$x=-15$ or $x=12$
number of days can't be negative
$\Rightarrow x=12$

\therefore Original duration of the tour is 12 days.

6 A motor boat whose speed in still water is $18 \mathrm{~km} / \mathrm{hr}$, takes 1 hour more to go 24 km upstream than to return downstream to the same spot. Find the speed of the stream.

Let the speed of the stream be $x \mathrm{~km} / \mathrm{hr}$
Speed of the boat in upstream $=(18-x) \mathrm{km} / \mathrm{hr}$
Speed of the boat downstream $=(18+x) \mathrm{km} / \mathrm{hr}$

$$
\text { Speed }=\frac{\text { distance }}{\text { time }}
$$

The time taken to go upstream $=\frac{24}{18-x}$
and the time taken to go downstream $=\frac{24}{18+x}$
Given, $\frac{24}{18-x}-\frac{24}{18+x}=1$
$\frac{24(18+x)-24(18-x)}{(18-x)(18+x)}=1$
$24(18+x)-24(18-x)=(18-x)(18+x)$
$x^{2}+48 x-324=0$
$x^{2}+54 x-6 x-324=0$
$x(x+54)-6(x+54)=0$
$(x+54)(x-6)=0$
$x=-54$ or $x=6$
speed can't be negative

\therefore The speed of the stream is $6 \mathbf{k m} / \mathrm{hr}$

Unit-11 : INTRODUCTION TO TRIGONOMETRY

Multiple Choice Questions

1 If $\sin \theta=\frac{12}{13}$, then the value of $\operatorname{cosec} \theta$ is
A. $\frac{5}{12}$
B. $\frac{5}{13}$
C. $\frac{13}{12}$
D. $\frac{12}{13}$

2 The value of $\tan 45^{\circ}$ is
A. $\sqrt{3}$
B. 0
C. 1
D. $\frac{1}{\sqrt{3}}$

3 If $2 \cos \theta=1$ and θ is an acute angle then the value of θ is
A. 0°
B. 30°
C. 45°
D. 60°

4 If $\cos \theta=\frac{1}{2}$, then the value of $\tan \theta$ is
A. $\frac{1}{\sqrt{3}}$
B. $\sqrt{3}$
C. 1
D. 0
$5 \frac{\sin A}{\cos A}$ is equal to
A. $\sec A$
B. $\operatorname{cosec} A$
C. $\tan A$
D. $\cot A$
$6(1+\cos \theta)(1-\cos \theta)=$
A. $\sin ^{2} \theta$
B. $\tan ^{2} \theta$
C. $\operatorname{cosec}^{2} A$
D. $\sec ^{2} A$

7 The value of $\left(\cos 48^{\circ}-\sin 42^{\circ}\right)$ is
A. 0
B. $\frac{1}{4}$
C. 1
D. $\frac{1}{2}$

One Mark Questions

1	Find the value of $\sin ^{2} 25^{0}+\sin ^{2} 65^{0}$. $\begin{aligned} \sin ^{2} 25^{0}+\sin ^{2} 65^{\circ}= & \sin ^{2} 25^{\circ}+\sin ^{2}\left(90^{\circ}-25^{\circ}\right) \\ & =\sin ^{2} 25^{\circ}+\cos ^{2} 25^{\circ} \\ & =1 \end{aligned}$	2	If $\sin A=\frac{1}{2}$ where A is an acute angle then find the value of A. $\begin{gathered} \sin A=\frac{\mathbf{1}}{\mathbf{2}} \\ \sin A=\sin 60^{\circ} \\ =>\boldsymbol{A}=\mathbf{6 0}^{\circ} \end{gathered}$
3	Find the value of $\left(1+\tan ^{2} \theta\right) \cdot \cos ^{2} \theta$. $\begin{aligned} \left(1+\tan ^{2} \theta\right) \cdot \cos ^{2} \theta & =\sec ^{2} \theta \times \frac{1}{\sec ^{2} \theta} \\ & =1 \end{aligned}$	4	If $\cos A=\sin B$, then find the value $A+B$. $\begin{aligned} & \sin \left(90^{\circ}-A\right)=\sin B \\ & 90^{\circ}-A=B \\ & \Rightarrow \quad \boldsymbol{A}+\boldsymbol{B}=\mathbf{9 0}^{\circ} \end{aligned}$

Two Marks Questions

1	$\begin{aligned} & \text { Evaluate: } \sin 18^{\circ}-\cos 72^{\circ}-\cos 18^{\circ}+\sin 72^{\circ} \\ & \begin{aligned} \sin 18^{\circ}-\cos 72^{\circ}-\cos 18^{\circ}+\sin 72^{\circ} & =\sin \left(90^{\circ}-72^{\circ}\right)-\cos 72^{\circ}-\cos \left(90^{\circ}-72^{\circ}\right)+\sin 72^{\circ} \\ & =\cos 72^{\circ}-\cos 72^{\circ}-\sin 72^{\circ}+\sin 72^{\circ} \\ & =0 \end{aligned} \end{aligned}$		
2	If $\tan 2 A=\cot \left(A-18^{\circ}\right)$, where2A is an acute angle. Find the value of A . $\begin{aligned} & \cot \left(90^{0}-2 A\right)=\cot \left(A-18^{0}\right) \\ & 90^{\circ}-2 A=A-18^{o} \\ & 90^{\circ}+18^{o}=A+2 A \\ & 3 A=108^{\circ} \\ & \boldsymbol{A}=\mathbf{3 6}^{\circ} \end{aligned}$	3	$\begin{aligned} & \text { If } \quad \mathrm{A}=60^{\circ}, \quad \mathrm{B}=30^{\circ} \quad \text { then show that } \\ & \cos (A+B)=\cos A \cdot \cos B-\sin A \cdot \sin B \\ & \cos (A+B)=\cos A \cdot \cos B-\sin A \cdot \sin B \\ & \cos \left(60^{\circ}+30^{\circ}\right)=\cos 60^{\circ} \cdot \cos 30^{\circ}-\sin 60^{\circ} \cdot \sin 30^{\circ} \\ & \cos 90^{\circ}=\frac{1}{2} \times \frac{\sqrt{3}}{2}-\frac{\sqrt{3}}{2} \times \frac{1}{2} \\ & 0=0 \end{aligned}$
4	Show that $(\tan A \cdot \sin A)+\cos A=\sec A$ $\begin{aligned} L H S= & \left(\frac{\sin A}{\cos A} \mathrm{x} \sin \mathrm{~A}\right)+\cos A \\ & =\frac{\sin ^{2} \mathrm{~A}}{\cos \mathrm{~A}}+\cos A \\ & =\frac{\sin ^{2} \mathrm{~A}+\cos ^{2} \mathrm{~A}}{\cos \mathrm{~A}}=\frac{1}{\cos \mathrm{~A}} \\ & =\sec \mathrm{A} \end{aligned}$		If A, B, and C are interior angles of a triangle ABC, then show that, $\sin \left(\frac{A+B}{2}\right)=\cos \frac{A}{2}$ We know, Sum of the interior angles of a Triangle $=180^{\circ}$ $\begin{gathered} =>A+B+C=180^{\circ} \\ B+C=180^{\circ}-A \\ \frac{B+C}{2}=\frac{180^{\circ}-A}{2} \end{gathered}$ Taking \sin on both sides $\begin{aligned} & \sin \left(\frac{B+C}{2}\right)=\sin \left(90^{\circ}-\frac{A}{2}\right) \\ & \therefore \sin \left(\frac{\boldsymbol{B}+\boldsymbol{C}}{2}\right)=\cos \left(\frac{\boldsymbol{A}}{\mathbf{2}}\right) \end{aligned}$

6 Prove that $\tan 10^{\circ} \cdot \tan 15^{\circ} \cdot \tan 75^{\circ} \cdot \tan 80^{\circ}=1$
$L H S=\tan 10^{\circ} \cdot \tan 15^{\circ} \cdot \tan 75^{\circ} \cdot \tan 80^{\circ}$
$=\tan \left(90^{\circ}-80^{\circ}\right) \times \tan \left(90^{\circ}-75^{\circ}\right) \times \tan 75^{\circ} \times \tan 80^{\circ}$
$=\cot 80^{\circ} \times \cot 75^{\circ} \times \frac{1}{\cot 75^{\circ}} \times \frac{1}{\cot 80^{\circ}}$
$=1$

Three Marks Questions

5	Prove that $\sqrt{\frac{1+\sin A}{1-\sin A}}=\sec A+\tan A$ $\begin{aligned} \mathrm{LHS} & =\sqrt{\frac{1+\sin A}{1-\sin A}} \\ & =\sqrt{\frac{1+\sin A}{1-\sin A}} \times \sqrt{\frac{1-\sin A}{1-\sin A}} \\ & =\sqrt{\frac{(1+\sin A)(1+\sin A)}{(1-\sin A)(1-\sin A)}} \\ & =\sqrt{\frac{(1+\sin A)^{2}}{1-\sin ^{2} A}} \\ & =\sqrt{\frac{(1+\sin A)^{2}}{\cos A^{2}}} \\ & =\frac{1+\sin \mathrm{A}}{\cos \mathrm{~A}} \\ & =\frac{1}{\cos \mathrm{~A}}+\frac{\sin \mathrm{A}}{\cos \mathrm{~A}} \\ & =\sec A+\tan A \\ & =R H S \end{aligned}$	6	Prove that $\frac{\sin \theta}{1+\cos \theta}+\frac{1+\cos \theta}{\sin \theta}=2 \operatorname{cosec} \theta$ $\begin{aligned} \mathrm{LHS} & =\frac{\sin \theta}{1+\cos \theta}+\frac{1+\cos \theta}{\sin \theta} \\ & =\frac{\sin ^{2} \theta+(1+\cos \theta)^{2}}{(1+\cos \theta) \sin \theta} \\ & =\frac{\sin ^{2} \theta+1^{2}+\cos ^{2} \theta+2 \cos \theta}{(1+\cos \theta) \sin \theta} \\ & =\frac{1+1+2 \cos \theta}{(1+\cos \theta) \sin \theta} \\ & =\frac{2+2 \cos \theta}{(1+\cos \theta) \sin \theta} \\ & =\frac{2(1+\cos \theta)}{(1+\cos \theta) \sin \theta} \\ & =\frac{2}{\sin \theta} \\ & =2 \operatorname{cosec} \theta \\ & =R H S \end{aligned}$

Unit-12 : SOME APPLICATIONS OF TRIGONOMETRY

Two Marks Questions

1 The top of a building is observed from a point on the ground $100 \sqrt{3} f t$. away from its base. If the angle of elevation is 30°, then find the height of the building.
Let A be the point of observation and C be the top of the building.
Then $\mathrm{AB}=100 \sqrt{3} \mathrm{ft}$ and $\underline{\mathrm{A}}=30^{\circ}$
$\tan A=\frac{B C}{A B}$
$\tan 30^{\circ}=\frac{B C}{100 \sqrt{3}}$
$\frac{1}{\sqrt{3}}=\frac{B C}{100 \sqrt{3}}$

$=>B C=100 \mathrm{~m}$
\therefore height of the building is 100 ft .
2 A kite flying at a height of $50 \sqrt{3} \mathrm{~m}$ above the ground is tied to a point on the ground by a thread of 100 m length without any slack. Find the angle formed by the thread with the ground.
Let P be the point on the ground where thread is tied and
R be the position of kite.
Then $\mathrm{QR}=50 \sqrt{3} \mathrm{~m}$ and $\mathrm{PR}=100 \mathrm{~m}$

$$
\begin{aligned}
& \sin P=\frac{Q R}{P R} \\
& \sin P=\frac{50 \sqrt{3}}{100}
\end{aligned}
$$

$\sin P=\frac{\sqrt{3}}{2}$
$\Rightarrow \mid \underline{P}=60^{\circ}$
\therefore Thread makes an angle of 60^{0} with the ground.
3 In an amusement park, there is a slide of height 6 m , which is inclined at an angle of 30° to the ground. Then, find the length of the slide.
Let QR be the height of the slide and $\underline{\mathrm{P}}$ is the angle of inclination
PR is the length of the slide
Then $\mathrm{QR}=6 \mathrm{~m}$ and $\mathrm{P}=30^{\circ}$
$\sin P=\frac{Q R}{P R}$
$\sin 30^{\circ}=\frac{6}{P R}$
$\frac{1}{2}=\frac{6}{P R}$

$\Rightarrow>P R=12 \mathrm{~m}$
\therefore The length of the slide is 12 m .

Three Marks Questions

The angle of elevation of a cloud is 30° from a point 60 m above a lake and from the same point, the angle of depression of the reflection of cloud in the lake is 60°. Find the height of the cloud.
Let $A B$ be the surface of lake.
P be the point of observation. $A P=60 \mathrm{~m}$
Let C be the position of cloud. C^{\prime} be its reflection in the lake.
$\mathrm{CB}=\mathrm{C}^{\prime} \mathrm{B}$
Let $\mathrm{CM}=h$, then $\mathrm{C}^{\prime} \mathrm{B}=(h+60)$
In $\triangle \mathrm{CMP}, \tan 30^{\circ}=\frac{h}{P M}$

$$
P M=\sqrt{3} h-----(1)
$$

In $\triangle P^{\prime} C^{\prime} \tan 60^{\circ}=\frac{C I M}{P M}$

$$
\begin{array}{r}
\sqrt{3}=\frac{h+60+60}{P M} \\
\mathrm{PM}=\frac{h+120}{\sqrt{3}}-\cdots---(2 \tag{2}
\end{array}
$$

From (1) and (2) $\sqrt{3} h=\frac{h+120}{\sqrt{3}} \Rightarrow h=60 m$
$C B=C M+M B=60+60=120 \mathrm{~m}$
Height of the cloud from the surface of the lake is $\mathbf{1 2 0} \mathbf{~ m}$.
2 The top of a tower is observed from two points on the same straight line on the ground. The distances of these points from the base of the tower is a and b meters. If the angles of elevation are complementary prove that the height of the tower is $\sqrt{a b}$ meter.
Let CD be the building of height 60 m and
AB be the tower
$\square \mathrm{FCA}=\boxed{\mathrm{CAE}}=30^{\circ}$
$\boxed{\mathrm{FCB}}=\triangle \mathrm{CBD}=60^{\circ}$
In $\triangle \mathrm{ACE}, \tan 30^{\circ}=\frac{C E}{A E}$

$$
\begin{aligned}
& \frac{1}{\sqrt{3}}=\frac{60-h}{A E} \\
& A E=(60-h) \sqrt{3} \\
& A E=B D=(60-h) \sqrt{3}
\end{aligned}
$$

In $\triangle \mathrm{BCD}, \tan 60^{\circ}=\frac{60}{B D}$

$\sqrt{3}=\frac{60}{(60-h) \sqrt{3}} \quad \Rightarrow(60-h) 3=60$
$60-h=20$
$h=60-20$
\therefore height of the tower $=40 \mathrm{~m}$

3 The angle of elevation of the top of a tower from two points on the ground at distances ' a ' and ' b ' meters from the base of a tower and in the same straight line with it are complementary. Prove that height of the tower is $\sqrt{a b}$ meter.
Height of the tower be ' x ' m

$$
\begin{aligned}
& \tan \theta=\frac{x}{b}----(i) \\
& \tan \left(90^{\circ}-\theta\right)=\frac{x}{a} \\
& \cot \theta=\frac{x}{a}------(i i)
\end{aligned}
$$

Multiplying (i) and (ii)

$$
\begin{aligned}
\tan \theta x \cot \theta & =\frac{x}{b} \mathrm{x} \frac{x}{a} \\
1 & =\frac{x^{2}}{a b} \\
x^{2} & =a b \\
\Rightarrow x & =\sqrt{a b}
\end{aligned}
$$

\therefore Height of the tower is $\sqrt{a b}$ meter.

4 The deck of a ship is 10 m high from the level of water. A man standing on it observes the top of a hill with an angle of elevation 60° and from the same point, he observes the base of the same hill at an angle of depression 30°. Then, find the distance of the ship from the hill and also the height of the hill.
In $\triangle \mathrm{ADE}, \tan 60^{\circ}=\frac{h}{A D}$

$$
\sqrt{3}=\frac{h}{x}
$$

$$
\begin{equation*}
h=x \sqrt{3} \tag{i}
\end{equation*}
$$

In $\triangle \mathrm{ABC}, \tan 30^{\circ}=\frac{A B}{B C}$

$$
\begin{align*}
\frac{1}{\sqrt{3}} & =\frac{10}{x} \\
\Rightarrow x & =10 \sqrt{3} . \tag{ii}
\end{align*}
$$

Distance of the ship from the hill $=10 \sqrt{3} \mathrm{~m}$
Substituting (ii) in (i) gives $h=10 \sqrt{3} x \sqrt{3}$

$$
h=30 m
$$

\Rightarrow Height of the hill $=30+10=40 \mathrm{~m}$.

Four Marks Questions

1 From a window 15 m high above the ground in a street, the angles of elevation and depression of the top and foot of another house on the opposite side of the street are 30° and 45° respectively. Show that the height of the opposite house is 23.66 m . (take $\sqrt{3}=1.73$)
AB - ground, C - position of window
BD - house in the opposite side of the street
$\left\lfloor\mathrm{DCE}=30^{\circ}, \underline{\mathrm{ECB}}=\underline{\mathrm{CBA}}=45^{\circ}\right.$

$$
\mathrm{AC}=\mathrm{BE}=15 \mathrm{~m}, \text { Let } \mathrm{BD}=x m, \therefore D E=(x-15) m
$$

In $\triangle \mathrm{CDE}, \tan 30^{\circ}=\frac{x-15}{C E}$

$$
\frac{1}{\sqrt{3}}=\frac{x-15}{C E} \Rightarrow C E=\sqrt{3}(x-15)
$$

In $\triangle \mathrm{ACB}, \tan 45^{\circ}=\frac{A C}{A B}$

$$
\begin{aligned}
1= & \frac{15}{\sqrt{3}(x-15)} \\
& \sqrt{3}(x-15)=15 \\
& (x-15)=\frac{15}{\sqrt{3}} \\
& x-15=8.66 \\
& x=23.66 m
\end{aligned}
$$

2 An aero plane when flying at a height of 4000 m from the ground passes vertically above another aero plane at an instant when the angles of the elevation of the two planes from the same point on the ground are 60° and 45° respectively. Find the vertical distance between the aero planes at that instance.
Let P and Q be the positions of two aero planes, when Q is vertically below P and $O P=4000 \mathrm{~m}$
A be the point of observation on the ground
In $\triangle \mathrm{AOP}$ and in $\triangle \mathrm{AOQ}$
$\tan 60^{\circ}=\frac{O P}{O A}$

$$
\tan 45^{\circ}=\frac{O Q}{O A}
$$

$\sqrt{3}=\frac{4000}{O A}$
$1=\frac{O Q}{O A}$
$\mathrm{OA}=\frac{4000}{\sqrt{3}}$
$\mathrm{OQ}=\mathrm{OA}$
Vertical distance $\mathrm{PQ}=\mathrm{OP}-\mathrm{OQ}$

$$
\begin{aligned}
\mathrm{PQ}=4000-\frac{4000}{\sqrt{3}} & =>\frac{4000 \sqrt{3}-4000}{\sqrt{3}} \\
& =>\frac{4000(\sqrt{3}-1)}{\sqrt{3}}
\end{aligned}
$$

\therefore The vertical distance $=1690.53 \mathrm{~m}$
$3 \quad$ The angle of elevation of a jet plane from a point A on the ground is 60°. After a flight of 30 seconds, the angle of elevation changes to 30°. if the jet plane is flying at a constant height of $3600 \sqrt{3} \mathrm{~m}$, find the speed of the plane.

Let P and Q be the two positions of plane
A be the point of observation
In $\triangle \mathrm{ABP}, \tan 60^{\circ}=\frac{P B}{A B} \Rightarrow \sqrt{3}=\frac{3600 \sqrt{3}}{A B}$

$$
A B=3600 \mathrm{~m}
$$

In $\triangle \mathrm{ACQ}, \tan 30^{\circ}=\frac{C Q}{A C} \Rightarrow \frac{1}{\sqrt{3}}=\frac{3600 \sqrt{3}}{A C}$

$$
\begin{aligned}
& \quad \mathrm{AC}=10800 \mathrm{~m} \\
& \mathrm{BC}=10800-3600 \\
& \mathrm{BC}=7200 \mathrm{~m}
\end{aligned}
$$

$$
\text { but } \mathrm{BC}=\mathrm{PQ}=>\text { Distance travelled is } 7200 \mathrm{~m}
$$

Speed of the plane $=\frac{\mathbf{7 2 0 0}}{\mathbf{3 0}}=\mathbf{2 4 0} \mathrm{m} / \mathrm{s}$
4 A person at the top of a hill observes that the angles of depression of two consecutive kilo metre stones on a road leading to the foot of the hill and on the same vertical plane containing the position of the observer are 30° and 60°. Find the height of the hill.

AB - hill
C and D are kilometer stones
AX is the horizontal through A
A is the position of observation

$$
\boxed{\mathrm{XAC}}=\underline{\mathrm{ACD}}=30^{\circ}, \underline{\mathrm{XAD}}=\underline{\mathrm{ADB}}=60^{\circ}
$$

In $\triangle \mathrm{ABC}, \quad \tan 30^{\circ}=\frac{A B}{B C}=>\frac{1}{\sqrt{3}}=\frac{h}{B C}$

$$
B C=h \sqrt{3}-\cdots-(i)
$$

In $\triangle \mathrm{ABD}, \quad \tan 60^{\circ}=\frac{h}{B D}=>\sqrt{3}=\frac{h}{B D}$

$$
\begin{equation*}
B D=\frac{h}{\sqrt{3}} \tag{ii}
\end{equation*}
$$

$$
B C=B D+D C=>\mathrm{h} \sqrt{3}=\frac{h}{\sqrt{3}}+1
$$

$$
\begin{aligned}
\mathrm{h} \sqrt{3}-\frac{h}{\sqrt{3}} & =1 \\
\frac{3 h-h}{\sqrt{3}} & =1
\end{aligned}
$$

\therefore Height of the hill. $=\frac{\sqrt{3}}{2} \mathrm{~km}$.

Unit 13: STATISTICS

Multiple Choice Questions

1 The mean value of $10,15,5,20$ and 50 is
(A)
10
(B) 5
(C) 15
(D) 20

The median of $7,3,6,14,13,11,19$ is
(A) 7
(B) 13
(C) 11
(D) 19

3 The mode of $6,7,2,4,2,8,5,2,2,7$ is
(A) 7
(B) 6
(C) 4
(D) 2

4 The measure of central tendency that gives the middle most value of the data is
A. midpoint
B. mean
C. median
D. mode

5 Mode of the given set of scores is
A) Middle most value
B) Least frequent value
C) Most frequent value
D) None of these

One Mark Questions

1. Write the empirical relationship between the three measures of central tendency.

3Median $=$ Mode +2 Mean
2.Find the median of $24,31,17,29,36,39$
$17,24,29,31,36,39$
Median $=\frac{29+31}{2}$
\therefore Median $=\mathbf{3 0}$
3. Find the class mark of the class interval 40-50

Class mark $=\frac{\text { lower limit }+ \text { upper limit }}{2}$
Class mark $=\frac{40+50}{2}$
\therefore Class mark $=45$

Three Marks Questions

1) Find mean for the following frequency distribution.

Class	$0-$	$10-$	$20-$	$30-$	$40-$
Interval	10	20	30	40	50
Frequency	3	5	9	5	3

Class Interval	Frequency	\boldsymbol{x}	$\boldsymbol{f} \boldsymbol{x}$
$0-10$	3	5	15
$10-20$	5	15	75
$20-30$	9	25	225
$30-40$	5	35	175
$40-50$	3	45	135
	$\boldsymbol{\Sigma f}=\mathbf{2 5}$		$\mathbf{\Sigma} \boldsymbol{f} \boldsymbol{x}$ $\mathbf{6 2 5}$

Mean $=\frac{\Sigma f x}{\Sigma f}=\frac{625}{25}$
\therefore Mean $=\mathbf{2 5}$
2) Find the Median of the following frequency distribution.

Class interval	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$
Frequency	4	7	13	9	3

Class Interval Frequency Cumulative Frequency $0-10$ 4 4 $10-20$ 7 $4+7=\mathbf{1 1}$ $\mathbf{2 0 - 3 0}$ $\mathbf{1 3}$ $11+13=24$ $30-40$ 9 $24+9=33$ $40-50$ 3 $33+3=36$ $n n=36, \quad$$n$ 2$=18, \quad f=13$, $c f=11$, $h=10, \quad l=20$

Median $=l+\left[\frac{\frac{n}{2}-c f}{f}\right] \times h$
Median $=20+\left[\frac{18-11}{13}\right] \times 10$
Median $=20+5.38$
\therefore Median $=25.38$
3) Find the mode of the following frequency distribution.

$$
f_{1}=11, \quad f_{0}=9, \quad f_{2}=6, \quad l=60, \quad h=10
$$

$$
\text { Mode }=l+\left[\frac{f_{1-f_{0}}}{2 f_{1}-f_{0}-f_{2}}\right] \times h
$$

$$
\text { Mode }=60+\left[\frac{11-9}{2(11)-9-6}\right] \times 10
$$

$$
\text { Mode }=60+2.86
$$

\therefore Mode $=62.86$

Three Marks Questions

4) The marks scored by 30 Students of class X, in the Mathematics are given below. Draw a less than type ogive.

Marks	$0-20$	$20-40$	$40-60$	$60-80$	$80-100$
Number of students	5	3	11	2	9

Marks	Number of students
Less than 20	5
Less than 40	$5+3=8$
Less than 60	$8+11=19$
Less than 80	$19+2=21$
Less than 100	$21+9=30$

5) During the medical check-up of 35 students of a class, their weights were recorded as follows. Draw a less than type ogive for the given data.

Weights (in kg)		Number of students
Less than	40	3
Less than	45	5
Less than	50	9
Less than	55	14
Less than	60	28
Less than	65	32
Less than	70	35

6)Heights of 60 children are given below. Draw a more than type ogive.

Height(in cm)	$90-100$	$100-110$	$110-120$	$120-130$	$130-140$	$140-150$
Number of children	5	10	7	24	11	3

Height (in cm)		Number of children
More than or equal to 90	60	
More than or equal to 100	$60-5=55$	
More than or equal to	110	$55-10=45$
More than or equal to	120	$45-7=38$
More than or equal to	130	$38-24=14$
More than or equal to	140	$14-11=3$

7) Details of daily income of 50 workers in a food industry are given below. Draw a more than type ogive for the following data.

Daily Income (in Rs.)	Number of workers
More than or equal to 80	50
More than or equal to 100	38
More than or equal to 120	24
More than or equal to 140	16
More than or equal to 160	10
More than or equal to 180	0

Unit 15: SURFACE AREA AND VOLUME

Multiple Choice Questions

1. The volume of a hemisphere of radius ' r ' is
(A) πr^{2}
(B) $\frac{4}{3} \pi r^{3}$
(C) $4 \pi r^{3}$
(D) $\frac{2}{3} \pi r^{3}$
2. If two solid hemispheres with same radii of their bases are joined together along their bases, then, the curved surface area of the new solid formed is
(A) $3 \pi r^{2}$
(B) $4 \pi r^{2}$
(C) $5 \pi r^{2}$
(D) $6 \pi r^{2}$
3. A cylinder and a cone are of same heights and same radii of their bases. If the volume of the cylinder is $924 \mathrm{~cm}^{3}$ then, the volume of the cone is
(A) $924 \mathrm{~cm}^{3}$
(B) $\mathbf{3 0 8} \mathrm{cm}^{3}$
(C) $462 \mathrm{~cm}^{3}$
(D) $38 \mathrm{~cm}^{3}$
4. While conversion of a solid from one shape to another, the volume of the new shape will
(A) increases
(B) decreases
(C) remain unaltered
(D) doubled
5. The surface area of a sphere of radius 7 cm is
(A) $308 \mathrm{~cm}^{2}$
(B) $154 \mathrm{~cm}^{2}$
(C) $616 \mathrm{~cm}^{2}$
(D) $462 \mathrm{~cm}^{2}$
6. If the slant height of a frustum of a cone is 4 cm and radii of its two circular ends are 5 cm and 2 cm , then its curved surface area is
(A) $88 \mathrm{~cm}^{2}$
(B) $22 \mathrm{~cm}^{2}$
(C) $48 \mathrm{~cm}^{2}$
(D) $26 \mathrm{~cm}^{2}$
7. Three cubes of edge 4 cm are joined end to end, then the volume of the cuboid so formed is
(A) $162 \mathrm{~cm}^{3}$
(B) $172 \mathrm{~cm}^{3}$
(C) $182 \mathrm{~cm}^{3}$
(D) $192 \mathrm{~cm}^{3}$
8. The radius of the base of a cone is 9 cm and slant height is 15 cm , then its height is
(A) 6 cm
(B) 3 cm
(C) 5 cm
(D) 12 cm

One Mark Questions

1. A frustum of a cone is of radii of circular ends r_{1} and r_{2} and height ' h '. Then write the formula to find its volume.

$$
\text { Ans: } \quad V=\frac{1}{3} \pi h\left(r_{1}{ }^{2}+r_{2}{ }^{2}+r_{1} r_{2}\right)
$$

2. Find the ratio of the total surface areas of a sphere and a solid hemisphere having equal radii.
$\frac{\text { Area of sphere }}{\text { Area of solid hemisphere }}=\frac{4 \pi r^{2}}{3 \pi r^{2}} \quad \frac{A_{1}}{A_{2}}=\frac{4}{3} \quad \therefore \boldsymbol{A}_{\mathbf{1}}: \boldsymbol{A}_{\mathbf{2}}=\mathbf{4}: \mathbf{3}$
3. If the area of base of a right circular cylinder is $38.5 \mathrm{~cm}^{2}$ and its height is 6 cm , then find its volume.
Given: area $=\pi r^{2}=38.5 \mathrm{~cm}^{2}, h=6 \mathrm{~cm}, V=$?
Volume of a cylinder $=\pi r^{2} h=38.5 \times 6$
\therefore Volume of a cylinder $=\mathbf{2 3 1} \mathbf{c m}^{3}$

Two Marks Questions

1. Two cubes of edge 8 cm each are kept together joining their faces to form a cuboid. Find the total surface area of the cuboid.

Given: $\quad l=8+8=16 \mathrm{~cm}, b=8 \mathrm{~cm}, h=8 \mathrm{~cm}$, T.S.A Of cuboid $=$?

$$
\begin{aligned}
& \text { T.S.A.of a cuboid }=2[l b+b h+h l] \\
& \quad=2[(16)(8)+(8)(8)+(8)(16)] \\
& \therefore \text { T.S.A.of a cuboid }=\mathbf{6 4 0} \mathrm{cm}^{2}
\end{aligned}
$$

3. A metal container is in the shape of a frustum of a cone of height 21 cm and radii of its circular ends are 8 cm and 20 cm . Find its capacity.
$r_{1}=20 \mathrm{~cm}, r_{2}=8 \mathrm{~cm}, h=21 \mathrm{~cm}$

$$
\begin{aligned}
& \text { Capacity }=\mathrm{V}=\frac{1}{3} \pi \mathrm{~h}\left(\mathrm{r}_{1}{ }^{2}+\mathrm{r}_{2}{ }^{2}+\mathrm{r}_{1} \mathrm{r}_{2}\right) \\
& \quad=\frac{1}{3} \times \frac{22}{7} \times 21\left(20^{2}+8^{2}+20 \times 8\right)
\end{aligned}
$$

\therefore Volume $=13728 \mathrm{~cm}^{3}$

Three Marks Questions

1. The diameter of a solid metallic sphere is 6 cm . It is melted and drawn into a wire having diameter of the uniform cross-section is 0.2 cm . Find the length of the wire.
radius of the sphere $R=3 \mathrm{~cm}$,
radius of the wire (cylinder) $r=0.1 \mathrm{~cm}$
length of the wire (cylinder) $h=$?
Volume of cylinder $=$ Volume of sphere

$$
\begin{gathered}
\pi r^{2} h=\frac{4}{3} \pi R^{3} \\
\pi(0.1)^{2} h=\frac{4}{3} \pi(3)^{3} \\
0.01 \pi h=36 \pi
\end{gathered}
$$

$\therefore h=3600 \mathrm{~cm}=36 \mathrm{~m}$
2. If the total surface area of a cube is $150 \mathrm{~cm}^{2}$, find its volume.

$$
\begin{aligned}
\text { T.S.A Of a cube } & =6 a^{2} \\
150 & =6 a^{2} \\
a & =5 \mathrm{~cm}
\end{aligned}
$$

Volume of a cube $=a^{3}=5^{3}$

$$
\therefore \text { Volume of a cube }=125 \mathrm{~cm}^{3}
$$

4. If the total surface area of a hemispherical bowl is $462 \mathrm{~cm}^{2}$, then find its radius.

$$
\begin{aligned}
\text { TSA of hemisphere }=2 \pi r^{2} & =462 \\
2 \times \frac{22}{7} \times r^{2} & =462 \\
r^{2} & =\frac{462 \times 7}{2 \times 22}
\end{aligned}
$$

$$
\therefore \text { Radius of the bowl }=7 \mathrm{~cm}
$$

2. A big solid metal sphere of diameter 48 cm is melted and casted into small solid spheres of radius 3 cm . Find the number of small solid spheres so formed.
radius of big solid sphere $R=24 \mathrm{~cm}$ radius of small solid sphere $r=3 \mathrm{~cm}$ Number of small solid spheres $=$?

Number of small spheres $=\frac{V(\text { big sphere })}{V(a \text { small sphere }}$

$$
\begin{gathered}
=\frac{\frac{4}{3} \pi R^{3}}{\frac{4}{3} \pi r^{3}}=\frac{R^{3}}{r^{3}} \\
=\frac{24^{3}}{3^{3}}
\end{gathered}
$$

\therefore The number of small solid sphere $\mathbf{= 5 1 2}$

Four Marks Questions

1. A toy is in the form of a cone of radius 3.5 cm mounted on a hemisphere of same radius. The total height of the toy is 15.5 cm . Find the total surface area of the toy.
Cone: $h=15.5-3.5=12 \mathrm{~cm}, r=3.5 \mathrm{~cm}$
Hemisphere: $R=3.5 \mathrm{~cm}$
Slant height: $l=\sqrt{h^{2}+r^{2}}$

$$
=\sqrt{(12)^{2}+(3.5)^{2}}
$$

$\therefore l=12.5 \mathrm{~cm}$
TSA of a toy $=$ CSA of cone + CSA of hemisphere

$$
\begin{aligned}
& =\pi r l+2 \pi R^{2} \\
= & \frac{22}{7} \times 3.5 \times 12.5+2 \times \frac{22}{7} \times 3.5 \times 3.5
\end{aligned}
$$

\therefore TSA of the toy $=214.5 \mathrm{~cm}^{2}$

2. A Toy is made in the shape of a cylinder with one hemisphere stuck to one end and a cone to the other end. The length of the cylindrical part of the toy is 20 cm and its diameter is 10 cm . If the height of the cone is 12 cm . Find the surface area of the toy.

Hemisphere: $r_{h s}=5 \mathrm{~cm}$
Cylinder: $r_{\text {cylinder }}=5 \mathrm{~cm}, h_{\text {cylinder }}=20 \mathrm{~cm}$
Cone: $r_{\text {cone }}=5 \mathrm{~cm}, h_{\text {cone }}=12 \mathrm{~cm}$

$$
\begin{aligned}
\text { Slant height: } l_{\text {cone }} & =\sqrt{r_{\text {cone }}^{2}+h_{\text {cone }}{ }^{2}} \\
& =\sqrt{5^{2}+12^{2}} \\
\therefore l_{\text {cone }} & =13 \mathrm{~cm}
\end{aligned}
$$

TSA of the toy $=$ CSA of hemisphere + CSA of cylinder + CSA of cone

$$
\begin{aligned}
& =2 \pi r_{h s}^{2}+2 \pi r_{\text {cylinder }}{ }^{2}+\pi r_{\text {cone }} l_{\text {cone }} \\
& =2 \times \frac{22}{7} \times 5^{2}+2 \times \frac{22}{7} \times 5^{2}+\frac{22}{7} \times 5 \times 13
\end{aligned}
$$

\therefore TSA of the toy $=518.57 \mathrm{~cm}^{2}$
3. A tent is in the shape of a cylinder surmounted by a conical top of same diameter. If the height and diameter of cylindrical parts are 2.1 m and 4 m respectively and the slant height of conical part is $\quad 2.8 \mathrm{~m}$. Find the area of the canvas used for making the tent. Also find the cost of canvas of the tent at the rate of Rs. 500 per m^{2}.

Cylinder: $H=2.1 m, D=4 m, R=2 m$
Cone: $l=2.8 m, r=2 m$
TSA of the canvas $=$ CSA of cylinder + CSA of cone

$$
\begin{aligned}
& =2 \pi R H+\pi r l \\
& =2 \times \frac{22}{7} \times 2 \times 2.1+\frac{22}{7} \times 2 \times 2.8
\end{aligned}
$$

\therefore TSA of the canvas $=44 \mathrm{~m}^{2}$
Total cost of the canvas at the rate of Rs. 500 per $m^{2}=R s .(500 \times 44)$

$$
\therefore \text { Total cost of the canvas }=\text { Rs. } 22000
$$

4. A container is shaped like a right circular cylinder having radius of the base 6 cm and height 15 cm is full of ice-cream. The ice-cream is to be filled into cones of height 12 cm and radius 3 cm , having a hemispherical shape of same radius on the top as in the figure. Find the number of such cones which can be filled with ice-cream.

Cylindrical container: $R=6 \mathrm{~cm}, H=15 \mathrm{~cm}$
Cone: $r=3 \mathrm{~cm}, h=12 \mathrm{~cm}$
$V_{1}=$ Volume of container $=\pi R^{2} H$
$V_{1}=\pi \times 6^{2} \times 15=540 \pi \mathrm{~cm}^{3}$
$V_{2}=$ Volume of cone + Volume of hemisphere $=\frac{1}{3} \pi r^{2} h+\frac{2}{3} \pi r^{3}$

$$
\begin{gathered}
=\frac{1}{3} \pi r^{2}(h+2 r) \\
=\frac{1}{3} \times \pi \times 3^{2}(12+2 \times 3) \\
V_{2}=54 \pi c m^{3}
\end{gathered}
$$

Number of ice cream cones $=\frac{V_{1}}{V_{2}}=\frac{540 \pi}{54 \pi}$

\therefore Number of ice cream cones $=10$

Five marks questions

1. A cone is of the radius of its base 12 cm and height 20 cm . If the top of this cone is cut to form a small cone of radius of base 3 cm , then the remaining part of the solid cone becomes a frustum. Calculate the volume of the frustum.

Original cone: $r_{1}=12 \mathrm{~cm}, h_{1}=20 \mathrm{~cm}$
Removed cone: $r_{2}=3 \mathrm{~cm}, h_{2}=$?
$\frac{h_{2}}{h_{1}}=\frac{r_{2}}{r_{1}} \quad \frac{h_{2}}{20}=\frac{3}{12}$
$h_{1}=5 \mathrm{~cm}$
$h=20-5=15 \mathrm{~cm}$
$\mathrm{V}=\frac{1}{3} \pi \mathrm{~h}\left(\mathrm{r}_{1}{ }^{2}+\mathrm{r}_{2}{ }^{2}+\mathrm{r}_{1} \mathrm{r}_{2}\right)$
$=\frac{1}{3} \times \frac{22}{7} \times 15\left(12^{2}+3^{2}+12 \times 3\right)$

\therefore Volume of the frustum $=2970 \mathrm{~cm}^{3}$
2. A solid consisting of a right cone standing on a hemisphere is placed upright in a right circular cylinder full of water and touches the bottom as shown in the figure. Find the volume of water left in the cylinder, if the radius of the cylinder is 60 cm and its height is 180 cm , the radius of the hemisphere is 60 cm and height of the cone is 120 cm , assuming that the hemisphere and the cone have common base.

$$
\text { Cylinder: } r_{c y}=60 \mathrm{~cm}, h_{c y}=180 \mathrm{~cm} \quad \text { Cone: } r_{c o}=60 \mathrm{~cm}, h_{c o}=120 \mathrm{~cm}
$$

Hemisphere: $r_{h s}=60 \mathrm{~cm}$
The volume of the water left out in the cylinder $=V$
$V_{\text {water }}=V_{\text {cylinder }}-V_{\text {cone }}-V_{\text {hemisphere }}$
$=\pi r_{c y}{ }^{2} h_{c y}-\frac{1}{3} \pi r_{c o}{ }^{2} h_{c o}-\frac{2}{3} \pi r_{h s}{ }^{3}$
$=\pi \times 60^{2} \times 180-\frac{1}{3} \times \pi \times 60^{2} \times 120-\frac{2}{3} \times \pi \times 60^{3}$
$=\pi \times 60^{2}[180-40-40]$
$=\frac{22}{7} \times 60 \times 60 \times 100=\frac{22 \times 360000}{7} \mathrm{~cm}^{3}$
$V=\frac{22 \times 360000}{7 \times(100)^{3}} m^{3}$

\therefore The volume of the water leftout in the cylinder $=1.1314 m^{3}$

