

CONTENTS:

Unit No.	Name of the Unit	Page No.
1	ARITHMETIC PROGRESSIONS	3-5
2	TRIANGLES	6-12
3	PAIR OF LINEAR EQUATIONS IN TWO VARIABLES	13-15
4	CIRCLES	16-17
5	AREAS RELATED TO CIRCLES	18-20
6	CONSTRUCTIONS	21-22
7	COORDINATE GEOMETRY	23-27
10	QUADRATIC EQUATIONS	28-31
11	INTRODUCTION TO TRIGONOMETRY	32-35
12	SOME APPLICATIONS OF TRIGONOMETRY	36-40
13	STATISTICS	41-44
15	SURFACE AREAS AND VOLUMES	45-49

(As per the reduction of **20%** of the Syllabus, **Unit-8,9 and 14** are not considered for the year 2021-22.)

Unit-1: ARITHMETIC PROGRESSION

Multiple Choice Questions

	th th				
1. Th			(C) $a_n = a \cdot (n+1)d$	common difference 'd', is (D) $a_r = a + (n+1)d$	
		ession, if the first ter		non difference is 'd', then the	
Sum			$S_n = 2[a + (n-1)d]$		
	(C) $S_n = \frac{n}{2}[a + (n + n)]$	(-1)d] (D)	$\mathbf{S}_{\mathbf{n}} = \frac{n}{2} [2a + (n-1)]$	<i>d</i>]	
3. If			egression, then the conduct (C) $a_2 - a_3$		
4. Th	e common difference (A) -4	e of the arithmetic p (B) 3	progression, 3, 7, 11, 1 (C) 4	15, is (D) 5	
5. An	(A) 3, 5, 7, 10,		owing is (C) -2,-1, 0, 3,	(D) 4, 7, 10, 13,	
6. If t	the n th term of an arit (A) 15	hmetic progression (B) 25	is 3n-2, then its 9 th ter (C) 29	m is (D) 11	
7. If t	he terms 4, <i>x</i> , 10 are (A) 6	in arithmetic progr (B) 7	ession then the value of (C) 8	of 'x' is (D) 9	
8. Th	e 25 th term of an arit (A) 25	hmetic progression, (B) 123	3, 8, 13, 18, is (C) 128	(D) 80	
9. Th	ne sum of the first 30 (A) 300	odd natural numbe (B) 600	ers is (C) 150	(D) 900	
10. T	he sum of 5+10+15+ (A) 50	-20+ (B) 75	to 10 terms is (C) 100	(D) 275	
One I	Mark Questions				
1. Wr	rite the formula to fin	nd the sum of first '	<i>n</i> ' terms of an arithme	tic progression with the first term	
<i>'a</i> ' an	nd the last term a_{n} .				
	$S_n = \frac{n}{2}(a + a_n)$				
	2. Write the formula to find the sum of first 'n' terms of an arithmetic progression whose the first term is 'a' and the common difference is 'd'. $S_n = \frac{n}{2} [2a + (n-1)d]$				

3. If the common difference of an arithmetic progression is 3, then find the value of $a_7 - a_2$.

$$a_7 - a_2 = a + 6d - (a + d)$$

= $a + 6d - a - d = 5d = 5(3) = 15$
 $\therefore a_7 - a_2 = 15$

Two Marks Questions	
1. If the first and the last term of an A.P are 4 and 40 respectively. Find the sum of first 20 terms. $a=4$, $l=40$, $n=20$ $S_n=\frac{n}{2}(a+1)$ $S_{20}=\frac{20}{2}(4+40) = 10x44=440$ $\therefore S_{20} = 440$	
3. Find the sum of first 20 terms of the arithmetic series $2+7+12+$ using the formula a = 2, $d=5$, $n=20S = \frac{n}{2}[2a+(n-1)d]$	torm) of the A D $(4, 7, 10, 12)$ (4)
$S_n = \frac{n}{2} [2a + (n-1)d]$ $S_{20} = \frac{20}{2} [2(2) + (20-1)(5)] = 10[4+95]$ $= 10[99] = 990$ ∴ S ₂₀ = 990	$a=64 d=10-13=-3 \text{ , } n=10$ $a_n=a+(n-1)d$ $a_{10}=64+(10-1)(-3)$ $= 64-27=37$ $\therefore a_{10} = 37$
5. Examine, whether 92 is a term of the A.P., 2, 3 a=2 $d=5-2=3Let a_n = 92a_n = a + (n-1)d92 = 2 + (n-1)3 = 2 + 3n - 33n = 93$ $n = 31Since n is an whole number, 92 is a term$	
Three Marks questions	
	2. In an A.P., the 3 rd term is 3 and the 5 th term is -11. Find its 50 th term. $a_3=3, a_5=-11 a_{50}=?$
Let the angles be $a - 3d$, $a - d$, $a + d$, $a + 3d$. By the angle sum property of quadrilateral $(a - 3d) + (a - d) + (a + d) + (a + 3d) = 360^{\circ}$	a+2d=3 $a+4d=-11 (subtraction)$ $-2d=14 => d=-7$
Substituting the value of "a" in a-3d =15 $90 - 3d = 15 \implies d = 25$ The measure of remaining angles 65°, 115°	Substituting the value of "d" in a+2d= 3 a+2(-7)=3 => a=17 $a_n=a + (n - 1)d$ $a_{50}=17+(50-1)(-7)$
and 165 ⁰	$a_{50} = -326$

Four or Five Marks Questions

1. In an A.P, the sum of 3^{rd} and 6^{th} term is 28 and the sum of 4^{th} and 8^{th} term is 34. Find the 2. A sum of Rs. 1600 is to be used to give ten cash prizes to the students of a school for their A.P. overall academic performances. If each prize is Rs 20 less than its preceding prize, find the value According to the data of each of the prizes. $a_{3+} a_6 = 28$ Here, n = 10, d = 20. a + 2d + a + 5d = 28Let the amounts of the prizes be 2a+7d=28 -----(1) $a, a - 20, a - 40, \dots, a - 180$ $a_{4+} a_8 = 34$ $a + a - 20 + a - 40 + \dots + a - 180 = 1600$ a + 3d + a + 7d = 34a = a, l = a - 180, $S_n = 1600$, n = 102a+10d=34 -----(2) $S_n = \frac{n}{2} [a+l]$ solving (1) and (2) $S_{10} = \frac{10}{2} [a + a - 180]$ 2a + 7d = 282a + 10d = 34(subtraction) 1600 = 5(2a - 180)-3d = -6 => d=2 $2a + 180 = 320 \implies a = 250$ Substituting the value of "d" in a + 5d = 17Value of each prize is 250,230,210, -----70 a = 7A.P. is 7, 9, 11, 13, . . 3. The 4th term of an A.P is 14 and 8th term is 8 4. The sum of three terms of an A.P is 18 and the less than twice the 5th term. Find the sum of sum of the squares of extremes is 104. Find the first 25 terms of the A.P. A.P and the sum of first 40 terms. $a_4 = 14, a_8 = 2a_5 - 8, S_{25} = ?$ Let the three terms be $a - d_1 a_2 a_3 + d_4$ a + 3d = 14 - - - - - (1)(a-d) + (a) + (a+d) = 18a + 7d = 2(a + 4d) - 83a = 18a + d = 8 - - - - - (2)a = 6 $(a-d)^2 + (a+d)^2 = 104$ a+3d=14 <u>a+d=8</u> 2d=6 $a^{2}+d^{2}-2ad+a^{2}+d^{2}+2ad = 104$ solving (1) and (2) $2a^2 + 2d^2 = 104$ By substituting the value of "d" in a + d = 8 $a^2 + d^2 = 54$ we get $6^2 + d^2 = 52$ a = 5 $d=\pm 4$ $S_n = \frac{n}{2} [2a + (n-1)d]$ Let d = 4, then the A.P is 2, 6, 10, ... $S_{25} = \frac{25}{2} [2x5 + (25-1)3]$ Sum of 40 terms is $S_n = \frac{n}{2} [2a + (n-1)d]$ $=\frac{25}{2}[10+72]$ $S_{40} = \frac{40}{2} [2x6 + (40 - 1)4]$ $\therefore S_{25} = 1025$ $:. S_{40} = 3360$

	Unit-2: TRIA	NGLE	2S	
Multiple Choice Questions				
1. If two triangles are congrue	ent, then the ratio of their	ir areas is		
(A) 1:1	(B) 1	:2	(C) 2:1	(D) 2:3
2. In two similar triangles, if areas is	f the corresponding side	s are in the ra	tio 4:9, then the	ratio of their
(A) 81:16	(B) 16:81	(C) 9:4	(D) 2:3	
3. In a $\triangle ABC$, if $ B = 90^{\circ}$ the	$en AB^2 =$			
(A) $AB^2 + BC^2$	$(\mathbf{B})\mathbf{A}\mathbf{C}^2-\mathbf{H}$	BC^2 (C)	$\sqrt{AC^2 - BC^2} ($	D) $AC^2 + BC^2$
4. In a right angled triangle, it	f lengths of the perpendi	icular sides ar	e 3cm and 4cm, t	hen the length
of the hypotenuse is (A) 5cm	(B) 9	Ocm	(C) 16cm	(D) 7cm
5. A pole of height 10m casts	-	on the groun	d. At the same tir	ne the length of
the shadow cast by a building (A) 20				D) 20
(A) 20m	(B) 10m	(C) (C)	25m (D) 30m
6. In the given figure, DE]	BC, then $\frac{AD}{DB} =$		B D	
(A) $\frac{BD}{AD}$	(B) $\frac{BC}{DE}$			
(C) $\frac{CE}{AE}$	$(\mathbf{D})\frac{AE}{EC}$		C E	A
7. In the adjoining figure, in	ΔABC, DE BC, if AD =	= 6cm, BD =	10cm and	В
AE=3cm then CE is				
(A) 5	(B) 3		ے م	
(C) 6	(D) 1	10		E 3 A
8. In the figure, in ΔPQR ,	$2 = 90^{\circ}$, QT [⊥] PR then Q	$2T^2 =$		P
(A) PT.PR	(B) QR.TR			
(C) PR.TR	(D) PT.RT		R∠	
9. In the adjoining figure, sin	nilarity criterion used to	say that,	Â	∕ ^F
the triangles are	e similar is	2	55° 5 cm	45%
(A) S.S.S.	(B) S	S.A.S. B^{Z}		80° 15 cm
(C) A.A.A.	(D) A	A.S.A.	С	
10. In triangle ABC $\angle B = 90^{\circ}$	AC = 4cm. AB = 3cm.	measure of B	C is.	
(A) 5cm	(B) 7		3cm	4cm
(C) $\sqrt{7}$ cm	(D) 1		В	

One Mark questions						
1. Write the statement of Pythagoras theorem.						
In a right triangle, the square of the hypotenuse is equal to the sum of the squares of the						
other two sides.						
2. Write the statement of Basic proportio	side of a triangle to intersect the other two sides in					
distinct points, the other two sides are o	0					
3. Each side of a square is 12cm. Find its						
Diagonal of a square = $\sqrt{2}$ (side	of a square)					
Diagonal of a square = $12\sqrt{2}$	- /					
Two Marks questions						
1. $\triangle ABC \sim \triangle DEF$ and their areas be 64c.						
and 121 cm^2 . If EF=15.4cm then find 120 cm^2	BC. Prove that $AC^2 = 2AB^2$.					
$\frac{ar\left(\Delta ABC\right)}{ar(\Delta DEF)} = \frac{BC^2}{EF^2}$	In $\triangle ABC$, $ B = 90^{\circ}$					
	$\therefore \underline{A} = \underline{C} \text{ and } AB = BC \qquad [Given]$					
$\frac{64}{121} = \frac{BC^2}{15.4^2}$	From Pythagoras Theorem, we have,					
	$AC^2 = AB^2 + BC^2$ h					
$\frac{8^2}{11^2} = \frac{BC^2}{15.4^2}$	$AC^2 = AB^2 + AB^2$					
$\frac{8}{11} = \frac{BC}{15.4}$	$AC^2 = 2AB^2$					
	∴ Hence the proof.					
$BC = \frac{123.2}{11}$						
$\therefore BC = 11.2cm.$						
3. In the adjoining figure, in $\triangle ABC$, $ \underline{B} $	= 90 ⁰ 4. Given $\triangle ABC \sim \triangle PQR$, such that $ \underline{A} = 40^{\circ}$ and					
and BD ^{\perp} AC. Show that BC ² =AC.CD In $\triangle BDC$ and $\triangle ABC$	$ \underline{Q} = 60^{\circ}$. Find the measure of $ \underline{C} $.					
$ \underline{BDC} = \underline{ABC} $ [BD ¹ AC]	$ \underline{B} = \underline{Q} = 60^{\circ} [\Delta ABC \sim \Delta PQR] \qquad P \qquad \qquad$					
$ \underline{BCD} = \underline{ACB}$ [Common angle]	In \triangle ABC, [angle sum property]					
$\therefore \ \Delta BDC \sim \Delta ABC \qquad [By AA-criterion]$	$ \underline{A} + \underline{B} + \underline{C} = 180^{\circ}$					
$\frac{BD}{AB} = \frac{DC}{BC} = \frac{BC}{AC}$	$40^{\circ} + 60^{\circ} + \underline{C} = 180^{\circ}$					
$\begin{array}{ccc} AB & BC & AC \\ BC^2 = AC \times DC \end{array} \qquad $	$ \underline{C} = 180^{\circ} - 100^{\circ} = 80^{\circ}$					
	$\therefore \underline{C} = 80^{\circ}$					
Hence the proof.						

Four or Five marks questions:-

1. State and prove the Basic proportionality (Thales') theorem.

If a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct points, the other two sides are divided in the same ratio.

Data : In \triangle ABC DE \parallel BC.

To Prove : $\frac{AD}{DB} = \frac{AE}{EC}$

Construction : Draw DM \perp AC and EN \perp AB. Join BE and CD.

Proof:

 $\frac{ar(\Delta ADE)}{ar(\Delta BDE)} = \frac{\frac{1}{2} \times AD \times EN}{\frac{1}{2} \times DB \times EN} \quad (\because \text{ Area of } \Delta = \frac{1}{2} \times \text{ base } \times \text{ height })$ $\frac{ar(\Delta ADE)}{ar(\Delta BDE)} = \frac{AD}{DB} \qquad \cdots \cdots > (1)$ $\frac{ar(\Delta ADE)}{ar(\Delta CED)} = \frac{\frac{1}{2} \times AE \times DM}{\frac{1}{2} \times EC \times DM} \quad (\because \text{ Area of } \Delta = \frac{1}{2} \times \text{ base } \times \text{ height })$ $\frac{ar(\Delta ADE)}{ar(\Delta CED)} = \frac{AE}{EC} \qquad \cdots \cdots > (2)$ But ΔBDE and ΔCED are standing on the same base DE and between $DE \parallel BC$. $ar(\Delta BDE) = ar(\Delta CED) \qquad \cdots > (3)$ $\therefore \text{ from equations } (1), (2) \text{ and } (3)$ $\frac{AD}{DB} = \frac{AE}{EC}$

Hence the proof.

2. State and prove the Pythagoras theorem.

" In a right angled triangle , the square on the hypotenuse is equal to the sum of the squares on other two sides ".

Data : $\triangle ABC$ is a right triangle and $\angle B = 90^{\circ}$ **To Prove** : $AC^2 = AB^2 + BC^2$

Construction : Draw BD ⊥ AC

```
Proof: In \triangleADB and \triangleABC
```

 $\angle D = \angle B = 90^{\circ}$ (: Data and Construction) $\angle A = \angle A$ (∵Common angle) $\Delta ADB \sim \Delta ABC$ (:: AAA Similarity Criterion) $\therefore \frac{AD}{AB} = \frac{AB}{AC}$ (: Proportional sides) $AC. AD = AB^2 ----> (1)$ Similarly In \triangle BDC and \triangle ABC $\angle D = \angle B = 90^{\circ}$ (: Data and Construction) $\angle C = \angle C$ (∵ Common angle) $\Delta BDC \sim \Delta ABC$ (:AAA Similarity Criterion) $\therefore \frac{DC}{BC} = \frac{BC}{AC}$ (∵ Proportional sides) $AC. DC = BC^2 ----> (2)$ AC.AD + AC.DC = $AB^2 + BC^2$ [: By adding (1) and (2)] $AC (AD + DC) = AB^2 + BC^2$ $AC \times AC = AB^2 + BC^2$ (: from fig. AD + DC = AC) $AC^2 = AB^2 + BC^2$ Hence the proof.

P A Data : $\triangle ABC \sim \triangle PQR$ $\Rightarrow \frac{AB}{PO} = \frac{BC}{OR} = \frac{AC}{PR}$ To Prove : $\frac{ar(\Delta ABC)}{ar(\Delta POR)} = \left(\frac{AB}{PO}\right)^2 = \left(\frac{BC}{OR}\right)^2 = \left(\frac{AC}{PR}\right)^2$ **Construction** : Draw AM \perp BC and PN \perp QR. **Proof**: $\frac{ar(\Delta ABC)}{ar(\Delta PQR)} = \frac{\frac{1}{2} \times BC \times AM}{\frac{1}{2} \times QR \times PN}$ ("Area of $\Delta = \frac{1}{2} \times base \times height$) $\frac{ar(\Delta ABC)}{ar(\Delta POR)} = \frac{BC \times AM}{QR \times PN} \dots > (1)$ In $\triangle ABM$ and $\triangle PQN$ (:: $\triangle ABC \sim \triangle POR$) $\angle B = \angle 0$ $\angle M = \angle N = 90^{\circ}$ ("Construction) $\therefore \Delta ABM \sim \Delta PON$ (:AA Similarity criterion) $\therefore \frac{AM}{PN} = \frac{AB}{PO} \quad \dots \rightarrow (2)$ But $\frac{AB}{PO} = \frac{BC}{OR} = \frac{AC}{PR} \longrightarrow (3)$ ("Data) $\frac{ar(\Delta ABC)}{ar(\Delta POR)} = \frac{AB}{PQ} \times \frac{AB}{PQ} \quad (::substituting eqs.(2) and (3) in (1))$ $\frac{ar(\Delta ABC)}{ar(\Delta POR)} = \left(\frac{AB}{PQ}\right)^2$ Now from eq.(3) $\frac{ar(\Delta ABC)}{ar(\Delta POR)} = \left(\frac{AB}{PQ}\right)^2 = \left(\frac{BC}{QR}\right)^2 = \left(\frac{AC}{PR}\right)^2$ Hence the proof.

3. Prove that "The ratio of the areas of two similar triangles is equal to the ratio of their corresponding sides".

4. Prove that "If in two triangles, corresponding angles are equal, then their corresponding sides are in the same ratio (proportion) and hence the two triangles are similar".

Unit-3:PAIR OF LINEAR EQUATIONS IN TWO VARIABLES

	EQUATIONS IN TWO VARIABLES
Multiple Choice Questions	
_	$c_{1} = 0, a_{2}x + b_{2}y + c_{2} = 0 \text{ is said to be inconsistent if}$ $\frac{c_{1}}{c_{2}} \qquad (C)\frac{a_{1}}{a_{2}} = \frac{b_{1}}{b_{2}} = \frac{c_{1}}{c_{2}} \qquad (D)\frac{a_{1}}{a_{2}} = \frac{c_{2}}{c_{1}}$
intersect at a point, then the correct rela	ar equations $a_1x + b_1y + c_1 = 0$ and $a_2x + b_2y + c_2 = 0$ tion among the following is $\frac{a_1}{a_2} = (C)\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$ (D) $\frac{a_1}{a_2} = \frac{b_2}{b_1}$
3. The lines representing the pair of linear e(A) intersecting lines(C) parallel lines	equations $2x + 3y - 9 = 0$ and $4x + 6y - 18 = 0$ are (B) perpendicular lines (D) coincident lines
4. The Pair of linear equations $x + 2y =$ (A) No solution (C) Exactly one solution	6 and 3x - 6y = 18 have (B) Infinitely many solutions (D) Two solutions
One Mark Questions	
1. The graph represents the pair of linear e Write the solution for this pair of eq Ans : $x = 2$ and $y = 1$	
real numbers.	$a_{2}x + b_{2}y + c_{2} = 0$, where $a_{1}, b_{1}, c_{1}, a_{2}, b_{2}$ and c_{2} are all
3. In the pair of linear equations $a_1x+b_1y+a_2x+b_1y+a_2x+b_2x+b_2x+b_2x+b_2x+b_2x+b_2x+b_2x+b$	$-c_1=0$ and $a_2x+b_2y+c_2=0$, if $\frac{a_1}{a_2}=\frac{b_1}{b_2}=\frac{c_1}{c_2}$, then write the
number of solutions these equations have.	Ans: Infinitely many solutions.
Two Marks Questions	
1. Solve the following pair of linear equations by any of the algebraic method: x + y = 8 and $2x - y = 7x + y = 8\frac{2x - y = 7}{3x = 15} (addition)x = 5Substituting the value of x in x + y = 85 + y = 8y = 3\therefore x = 5 and y = 3$	2. Solve by elimination method: $x + y = 5$ and 2x + 3y = 12 x + y = 5 (1) 2x + 3y = 12 (2) Multiplying the equation (1) by 2 we get 2x + 2y = 10 (3) Solving equation (2) and (3) 2x+3y=12 $\frac{2x+2y=10}{y=2}$ (subtraction) Substitute the value of y in $x + y = 5$, we get $x = 3$ $\therefore x = 3$ and $y = 2$

Three or Four Marks Questions.	
1. The cost of 5 oranges and 3 apples is Rs.35 and the cost of 2 oranges and 4 apples is Rs. 28. Find the cost of an orange and an apple.	2. Solve: $141x + 93y = 189$ and 93x + 141y = 45. 141x + 93y = 189 (1)
Let the cost of an orange and an apple be x and y respectively. => $5x + 3y = 35$ and 2x + 4y = 28	93x + 141y = 45 (2) By adding (1) and (2) we get 141x+93y=189
(5x + 3y = 35) x 4 => 20x + 12y = 140 (2x + 4y = 28) x 3 => 6x + 12y = 84 Multiply the equation (1) by 4 and equation (2)	93x+141y=45234x+234y=234 x+y = 1 (3)x+y=1By subtracting (1) by (2) we get
by 3 we get, $ \begin{array}{r} 20x+12y=140\\ \underline{6x+12y=84}\\ 14x=56\end{array} $ (subtraction)	$ \begin{array}{rcl} 141x + 93y = 189 \\ \underline{93x + 141y = 45} \\ 48x - 48y = 144 \\ x - y = 3 \end{array} x - y = 3 - \dots (4) $
x=4	Solving (3) and (4) x+y=1
Substituting the value of x in $5x + 3y = 35$ 5x + 3y = 35 20 + 3y = 35	$\frac{x-y=3}{2x=4}$ $x=2$
3y = 15 $y = 5$	By substituting the value of x in (3) or (4) we get y = -1 $\therefore x = 2$ and $y = -1$
∴ The cost of an orange is Rs.4 and That of an apple is Rs.5.	
3. The sum of two numbers is 50 and their difference is 22, find the numbers.Let the two numbers be x and y.	4. If twice the age of the son is added to age of the father the sum is 56. But if twice the age of the father is added to the age of the son, then the sum is 82. Find the ages of the father and the
According to the data	son.
x + y = 50 (1) x - y = 22 (2) Solving (1) and (2)	Let the age of son be 'x' years and the age of father be 'y' years 2x + y = 56 (1)
Solving (1) and (2) $x+y=50$ $\frac{x-y=22}{2x=72}$ (addition)	x + 2y = 82 (2) Multiply the equation (2) by 2 we get 2x + 4y = 164 (3)
x=36 By Substituting the value of x in (1) we get x + y = 50	Solving (1) and (3) $\frac{2x+4y=164}{3y=108}$
x + y = 50 36 + y = 50 x = 14	y=36 By substituting the value of y in (1) we get x=10
y = 14	\therefore The age of the son and the age of father ar
\therefore The two numbers are 36 and 14.	10 years and 36 years respectively.

		UI	NIT-4 : C	CIRCLE	2S		
Μ	Iultiple Choice Q	Juestions					
1	In the figure, TP If $\angle POQ = 110^{\circ}$	-	•	n to a circle wi	th centre O.	\square	4
	A. 70°	B . 80 ^o	C. 60°	D. 140°			P
2	The tangents dra	wn at the ends of	of a diameter	of a circle are			
	A. perpendicular	to each other	B. parallel	to each other	C. equal	D. Not equ	al
3	A straight line w	hich intersects a	a circle at two	distinct points	is		
	A. tangent	B. chord	C. secant	D. diameter			
4	If the angle betw		-		the angle betw	ween the radi	is
	A. 90 ⁰	B. 100°	C. 140⁰	D. 180 ⁰			
5	Distance between	n two parallel ta	0	cle of radius 3	.5cm is		
	A. 3.5cm	B. 7cm	C. 10cm	D. 14cm.			
6	8 8 8			-	V/	_^^	
	centre O. If CD =	= 5 cm and AP =	= 3 cm, then le	ngth of the tan	gent PC is	(V
	A. 8 cm	B. 5 cm	C. 3 cm	D. 2 cm		D	
7	In the figure, Ch	ord of the circle	e with centre '	O' is			1
	A. XY	B. OP	C. MN	D. AB		A _X O)
						Y N	1
8	A tangent of len the distance betw				' to a circle o	of radius 6 cm	ı. Then
	A. 12 cm	B. 5 cm	C. 1	0 cm	D. 14 cm		
9	Maximum numb	•		e from an exter	-		
	A. 2	B. 3	C. 4		D. 5		
0	One Mark Questions						
1	What is the meas		e between radi	us and tangent	at the point of	of contact?	Ans: 90°
2	Define the Secant of a Circle.						
	A line that intersects a circle at two points is called a Secant.						
3	Define the tanger						
1	A line that touch			s called a Tang	ent.		
4	Define Point of c The common poi			e is called the I	Point of conta	act.	

Tł	nree Marks Questions			
1	Prove that "the length of tangents drawn from an external point to a circle are equal."			
		f the circle, 'P' is ar P and BP are the ta		
	To Prove : $AP = BP$			
	Construction : Join OA, OB	and OP.	P <	
	Proof :			
	In $\triangle OQP$ and $\triangle ORP$		В	
	$\angle OAP = \angle OBP = 90^{\circ}$	[Theorem 4.1]		
	OP = OP	[Common side]		
	OA = OB	[Radii of same cir	rcle]	
	$\Delta OAP \cong \Delta OBP$	[RHS Postulate]		
	AP=BP	[CPCT]		
	Hence proved.			
2	Prove that " the tangent at any contact."	y point of a circle is	perpendicular to the radius through the point of	
	Given : XY is the tangent	at P to the circle wi	ith centre	
	To Prove : OP _ _ XY		(<u>o</u>)	
	Construction : Mark Any po it cuts the circ	-	OQ and	
	Proof : OR < OQ		X P Q	
	OR = OP	(Radii of the same	e circle)	
	\therefore OP < OQ			
	This holds good for all the p			
	\therefore OP is the least distance	e		
	=> OP _ _ XY			

UNIT-5 : AREAS RELATED TO CIRCLES

М	Multiple Choice Questions					
	Multiple Choice Questions					
1	Area of Quadrant of a circle with radius 'r' is r'					
	A. $\frac{\pi r^2}{2}$	B. $\frac{\pi r^2}{4}$	C. <i>πr</i>	D. $\frac{\pi r}{2}$		
2	If the radius of a semicin	cle is 7cm, the lengt	th of its arc is			
	A. 11 <i>cm</i>	B.44 <i>cm</i>	C. 22 <i>cm</i>	D. 14 <i>cm</i>		
3	Length of the arc of a se	ctor with radius 9 cr	m and the angle 120°	is		
	A. 2π cm	B. 3 <i>π cm</i>	C. 6π <i>cm</i>	D. 9 <i>π cm</i>		
4	If the angle of a sector is	s 'P' (in degrees) an	nd radius is 'R' then it	s area is		
	A. $\frac{P}{180} \ge 2\pi R$	B. $\frac{P}{180} x \pi R^2$	$C. \frac{P}{360} \ge 2\pi R$	$D. \frac{P}{720} x 2\pi R^2$		
5	If the ratio of circumfere	nce of two circles is	4:5 then the ratio of	their areas is		
	A. 4:5	B. 16:25	C. 64:125	D. 5:4		
On	e Mark Questions					
1	Write the formula to find	the area of the shad	led region in the giver	n figure.		
	$\frac{\theta}{360^0} \ge \pi r^2$			A B		
2	Define the segment of a circle.					
	A segment is a region covered by a chord and a corresponding arc.					
3	What is meant by a sector of the circle?					
	The area bounded by two radii and the corresponding arc of a circle is called the Sector.					
4	If the diameter of a semi	circle is 14cm, ther	n find its perimeter [us	se $\pi = \frac{22}{7}$]		
-	Perimeter of the semi	circle = $\pi r + d$				
		$=\frac{22}{7} \times \frac{14}{2} +$	+ 14			
	∴ Perimeter of the se	, 2				
5	If the area of a circle and circle.	the perimeter are m	umerically equal, then	find the radius of that		
	$\pi r^2 = 2\pi r$					
	$\therefore r = 2 units$					
L						

Tw	wo Marks Questions (Use $\pi = \frac{22}{7}$ unless given)				
1	·	2]	In a circle of radius 21 cm and arc subtends angle 60° at the centre of the circle, find the area of sector formed in the circle. Area of the sector $=\frac{\theta}{360^{\circ}} X \pi r^{2}$ $=\frac{60^{\circ}}{360^{\circ}} x \frac{22}{7} x 21 x 21$ \therefore Area of the sector $= 231$ sq.cm		
3	In the figure ABCD is a square of side 14 cm such that each circle touch externally two of the shaded region. Radius of each quadrant = $\frac{14}{2} = 7$ cm Area of the shaded region = Area of the square Area of the shaded region = $14^2 - 4 \times \frac{\pi}{7}$ = $196 - 4 \times \frac{22}{7}$ = $196 - 154$ \therefore Area of the shaded region = 42 cm^2	the re- $-$ Are $\frac{r^2}{4}$	ea of 4 Quadrants. Find the Area of the $Area of the B$		
4	A drain cover is made from a square metal plate of side 40 cm having 441 holes of diameter 1 cm each drilled in it. Find the area of the remaining square plate. Area of each hole = πr^2 = $\frac{22}{7} \times \left(\frac{1}{2}\right)^2$ = $\frac{11}{14} cm^2$ Area of 441 holes = 441 x $\frac{11}{14}$ = 346.5 cm ² Area of Square metal plate = 40^2 =1600 cm ² Area of remaining square plate = $1600 - 346.5$ = 1253.5 cm ²		In the figure, a circle is circumscribed in a square ABCD. If each side of the square is 14cm find the area of shaded region Radius of the circle; $r = \frac{14}{2}$ r = 7cm Ar(shaded region) = Ar(Square) - Ar(Circle) $= (side)^2 - \pi r^2$ $= 14^2 - \frac{22}{7} \times 7 \times 7$ = 196 - 154 \therefore Area of the shaded region = 42 cm ²		

Three Marks Questions (Use $\pi = \frac{22}{7}$ unless given)				
	Find the area of a quadrant of a circle, where the circumference of circle is 44cm. $2\pi r = \text{Circumference}$ $2\pi r = 44 \text{ cm}$ $2 \ge \frac{22}{7} \ge r = 44$ $r = \frac{44 \ge 7}{22 \ge 2} \implies r = 7 \text{ cm}$ Area of quadrant $= \frac{1}{4} \ge \pi r^2$ $= \frac{1}{4} \ge \frac{22}{7} \ge 7 \ge 7$ $= \frac{77}{2}$ \therefore Area of quadrant $= 38.5 \text{ cm}^2$	2	Area of a sector of a circle of radius 14 cm is 154 cm ² . Find the length of the corresponding arc of the sector. Given, $r = 14 \ cm$ Area of sector $= 154 \ cm^2$ $\frac{\theta}{360^o} \ge \pi r^2 = 154$ $\frac{\theta}{360^o} \ge \frac{22}{7} \ge 14 \ge 154$ $\frac{\theta}{360^o} \ge 22 \ge 2 \ge 14 = 154$ $\theta = \frac{154 \ge 360}{22 \ge 2 \ge 14} \implies \theta = 90^0$ Length of an arc $= \frac{\theta}{360^o} \ge 2\pi r$ $= \frac{90^o}{360^o} \ge 2 \ge \frac{22}{7} \ge 14$ \therefore Length of the arc $= 22 \ cm$ The radii drawn from the end points of a	
	Orbite is a square inserticed in a quadrant OPBQ. If OA = 20 cm. (use $\pi = 3.14$) Ar(Square) =20 ² = 400cm ² Radius of the quadrant; r= OB $r = OB = \sqrt{OA^2 + AB^2}$ $= \sqrt{20^2 + 20^2} \Rightarrow r = 20\sqrt{2} cm$ Ar(Quadrant) = $\frac{\pi r^2}{4}$ $= \frac{3.14 \times (20\sqrt{2})^2}{4}$ $= \frac{3.14 \times 400 \times 4}{4}$ Ar(Quadrant) = 628 cm ² Ar(Shaded region) = Ar(Quadrant) - Ar(Square) = 628 - 400 \therefore Area of the shaded region = 228 cm ²		The fadir drawn from the end points of a chord of a circle subtend an angle of 120^{0} at the centre. If the radius of the circle is 12 cm Find the area of the corresponding segment of the circle. (use $\pi = 3.14$ and $\sqrt{3} = 1.73$). Radius $r = 12 \text{ cm}$, $\theta = 120^{\circ} \Rightarrow \frac{\theta}{2} = 60^{\circ}$ $Ar(Segment) = r^{2} \left(\frac{\pi\theta}{360^{\circ}} - \sin\frac{\theta}{2}\cos\frac{\theta}{2}\right)$ $= (12)^{2} \left(\frac{3.14 \times 120^{\circ}}{360^{\circ}} - \sin60^{\circ} \times \cos60^{\circ}\right)$ $= 144 \left(\frac{3.14}{3} - \frac{\sqrt{3}}{2} \times \frac{1}{2}\right)$ $= 144 \left(\frac{3.14}{3} - \frac{1.73}{4}\right)$ $= 144 \left(\frac{12.56 - 5.19}{12}\right)$ = 12(7.37) \therefore Area of the segment = 88.44 cm^{2}	

UNIT-6: CONSTRUCTIONS

Four Marks Questions

1

UNIT-7 : COORDINATE GEOMETRY

Μ	Multiple Choice Questions					
1	The co-ordinates of the mid-point of the line segment joining the points (2,0) and (6,0) is					
	A. (2,4)	B. (2,6)	C. (4,0	D. (0,4)		
2	The distance of point (4, -	3) from the origin				
	A. 4 units	B. 5 units	С. 9 и	nits D. 16 units		
3	The perpendicular distanc	e of the point P (2, 3)) from th	ne x-axis is		
	A. 1 unit	B. 2 units	C. 3 u	nits D. 5 units		
4	The Coordinates of the or	igin is				
	A. (1,1)	B. (0,0)_	C. (0,1	l) D. (1,0)		
5	The coordinates of a point	t P on the x-axis are o	of the fo	rm		
	A. $(x, 0)$	B. (0, <i>y</i>)	С. (у,	0) D. (0, x)		
6	Area of the triangle with v	vertices P(0, 6), Q(0,2	2) and R	(2, 0) is		
	A. 4 square units	B. 0 C. 8 so	quare un	its D. 6 square units		
7	If $M(6, 3)$ is the midpoin	t of line joining P(-2	2, 5) and	Q(8, y) then $y =$		
	A. 4	B. 3	C. 2	D. 1		
8	Distance of the point $P(x)$	(x, y) from the origin is	S			
	A. $\sqrt{(x-y)^2}$	B) $\sqrt{x^2 - y^2}$	$C)\sqrt{x^2}$	$\frac{1}{2} + y^2$ D. $\sqrt{(x+y)^2}$		
0	ne Mark Questions					
1	What is the value of the y	-coordinate of a poin	nt on <i>x</i> -a	xis? Ans: 0		
2	Write the coordinates of the OR	he origin.				
	Write the coordinates of the	he point of intersection	on of x - a	axis and y-axis. Ans: (0,0)		
3	Write the coordinates of the	he midpoint of a line	. 5	Find the co-ordinates of the midpoint of		
	segment joining the point	ts $P(x_1, y_1)$ and $Q(x_2, y_1)$	v_2). 5	the line segment joining the points $(0, 8)$		
	Ans: $P(x, y) = \left(\frac{x_1 + y_2}{2}\right)$	$\frac{x_2}{2}$, $\frac{y_1 + y_2}{2}$		and $(4, 0)$. $(x_1+x_2 y_1+y_2)$		
4	Find the distance of the	point (3, 4) from		$P(x, y) = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$		
	the origin. Distance from the origin	$d = \sqrt{x^2 + y^2}$		$P(x, y) = \left(\frac{0+4}{2}, \frac{8+0}{2}\right)$		
	$d = \sqrt{3^2 + 4^2} =$	$> d = \sqrt{9 + 16}$				
	=	$=> d = \sqrt{25}$		$P(x,y) = \left(\frac{4}{2}, \frac{8}{2}\right)$		
		d=5		P(x, y) = (2, 4)		

Tv	Two Marks Questions				
1	Find the distance between the points (3,2) and (-5,6). $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ $= \sqrt{(-5 - 3)^2 + (6 - 2)^2}$ $= \sqrt{(-8)^2 + (4)^2}$ $= \sqrt{(64 + 36)^2}$ $= \sqrt{(100)^2}$ $\therefore d = 10$ units		If the distance between the points (4, p) and $(1, 0)$ is 5 units, find the value of 'p' $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ $5 = \sqrt{(1 - 4)^2 + (0 - p)^2}$ [Squaring on both sides] $25 = (-3)^2 + p^2$ $25 = 9 + p^2$ $25 - 9 = p^2$ $16 = p^2$ $\therefore p = \pm 4$		
3	Find the area of a triangle with vertices <i>I</i>	D(0.	2). $E(0, 6)$ and $F(-4, -2)$		
5	Area of the Triangle = $\frac{1}{2}[x_1(y_2 - y_1)]$				
	$= \frac{1}{2} \left[0(6 - (-2)) - 0(-2 - 2) + (-4)(2 - 6) \right]$				
	$=\frac{1}{2}[0+0+$	(-4)]			
	$=\frac{1}{2}(16)$				
	\therefore Area of the Triangle = 8 sq. units				
4	Find the coordinates of the midpoint of the line segment joining the point (2, 3) and (4, 7).		5 Find the radius of the circle whose center is $(3,2)$ and if the circle passes through $(-5,6)$.		
	Midpoint $P(x, y) = \left(\frac{x_{1+}x_2}{2}, \frac{y_{1+}y_2}{2}\right)$ $= \left(\frac{2+4}{2}, \frac{3+7}{2}\right)$ $= \left(\frac{6}{2}, \frac{10}{2}\right)$ $\therefore Midpoint P(x, y) = (3, 5)$	-	Radius is the distance between center and any point on the circle. $\therefore \text{ Radius of the circle } = d$ $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ $= \sqrt{(-5 - 3)^2 + (6 - 2)^2}$ $= \sqrt{(-8)^2 + (4)^2}$		
			$=\sqrt{80}$ \therefore Radius of circle $= 4\sqrt{5}$ units		

Three Marks Questions

1 Find the co-ordinates of the point which divides the line segment joining the point (1,6) and (4,3) in the ratio 1:2.

$$P(x,y) = \left[\frac{m_1 x_2 + m_2 x_1}{m_1 + m_2}, \frac{m_1 y_2 + m_2 y_1}{m_1 + m_2}\right]$$

$$= \left[\frac{(1)(4) + 2(1)}{1 + 2}, \frac{(1)(3) + (2)(6)}{1 + 2}\right]$$

$$= \left[\frac{4 + 2}{3}, \frac{3 + 12}{3}\right]$$

$$= \left[\frac{6}{3}, \frac{15}{3}\right]$$

$$\therefore P(x,y) = (2,5)$$
2 If $D(1, 2), E(-5, 6)$ and $F(a, -2)$ are collinear, then find the value of 'a.'
If three points are collinear then. Area of the Triangle = 0

$$= > \frac{1}{2} [x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)] = 0$$

$$[1(6 - (-2)) - 5(-2 - 2) + a(2 - 6)] = 0 \times 2$$

$$[1(6 + 2)) - 5(-4) + a(-4)] = 0$$

$$[8 + 20 - 4a] = 0$$

$$28 = 4a$$

$$\frac{28}{4} = a$$

$$\therefore a = 7$$
3 Find the area of the triangle whose vertices are $(1, 2), (3, 7)$ and $(5, 3)$.
Area of triangle $= \frac{1}{2} [x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)]$

$$= \frac{1}{2} [1(7 - 3) + 3(3 - 2) + 5(2 - 7)]$$

$$= \frac{1}{2} [4 + 3 - 25]$$

$$= \frac{1}{2} [-18] = -9$$
But Area cannot be negative

$$\therefore$$
 Area of given triangle is 9 square units

$$\begin{array}{rcl} 4 & \text{In what ratio does the point } (-4,6) & \text{divide the line segment joining the points} \\ (-6,10) and (3,-8)? \\ \therefore P(x,y) = \left(\frac{m_1 x_2 + m_2 x_1}{m_1 + m_2}, \frac{m_1 y_2 + m_2 y_1}{m_1 + m_2}\right) \\ (-4,6) &= \left(\frac{3m_1 - 6m_2}{m_1 + m_2}, \frac{-8m_1 + 10m_2}{m_1 + m_2}\right) \\ => -4 = & \frac{3m_1 - 6m_2}{m_1 + m_2} & \text{and } 6 = & \frac{-8m_1 + 10m_2}{m_1 + m_2} \\ \text{Consider, } -4 = & \frac{3m_1 - 6m_2}{m_1 + m_2} \\ -4m_1 - 4m_2 = 3m_1 - 6m_2 \\ 2m_2 = 7m_1 \\ => & \frac{2}{7} \\ \therefore m_1: m_2 = 2:7 \end{array}$$

5 Find the value of 'p' if the point A(0, 2) is equidistant from (3, p) and (p, 3). Let B(3, p) and C(p, 3) \\ \text{Given AB = AC} \\ d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \\ \sqrt{(0 - 3)^2 + (2 - p)^2} = \sqrt{(p - 0)^2 + (3 - 2)^2} \\ (0 - 3)^2 + (2 - p)^2 = (p - 0)^2 + (3 - 2)^2 \\ 9 + 4 + p^2 - 4p = p^2 + 1 \\ 13 - 4p = 1 \\ -4p = -12 \end{array}

 $\therefore p = 3$

Four Marks Questions

Find the area of the triangle formed by joining the mid-points of the triangle whose vertices are 1 K(2, 1), L(4, 3) and M(2, 5). Midpoint = $\left(\frac{x_{1+}x_2}{2}, \frac{y_{1+}y_2}{2}\right)$ K(2, 1) K(2, 1), L(4, 3) Midpoint of KL is $A = \left(\frac{2+4}{2}, \frac{1+3}{2}\right) = \left(\frac{6}{2}, \frac{4}{2}\right) = A(3, 2).$ K(2, 1), M(2, 5)Midpoint of KM is $B = \left(\frac{2+2}{2}, \frac{1+5}{2}\right) = \left(\frac{4}{2}, \frac{6}{2}\right) = B(2, 3).$ L(4, 3). M(2, 5) Midpoint of LM is $C = \left(\frac{4+2}{2}, \frac{3+5}{2}\right) = \left(\frac{6}{2}, \frac{8}{2}\right) = C(3, 4).$ A(3, 2), (B(2, 3) and (3, 4)Area of $\Delta = \frac{1}{2} [x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)]$ Area of $\triangle ABC = \frac{1}{2}[3(3-4) + 2(4-2) + 3(2-3)]$ $= \frac{1}{2}[3(-1) + 2(2) + 3(-1)]$ $=\frac{1}{2}[-3+4-3]$ = -1But area cannot be negative, : Area of Triangle ABC = 1 square unit. 2 Show that the points K(4, 5), L(7, 6), M(6, 3) and N(3, 2) are the vertices of a rhombus. $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ K(4, 5), L(7, 6) KL = $\sqrt{(7-4)^2 + (6-5)^2} = \sqrt{(3)^2 + (1)^2} = \sqrt{9+1} = \sqrt{10}$ units. L(7, 6), M(6, 3) LM = $\sqrt{(6-7)^2 + (3-6)^2} = \sqrt{(-1)^2 + (-3)^2} = \sqrt{1+9} = \sqrt{10}$ units. M(6, 3), N(3, 2)MN = $\sqrt{(3-6)^2 + (2-3)^2} = \sqrt{(-3)^2 + (-1)^2} = \sqrt{9+1} = \sqrt{10}$ units. N(3, 2), K(4, 5)NK = $\sqrt{(3-4)^2 + (2-5)^2} = \sqrt{(-1)^2 + (-3)^2} = \sqrt{1+9} = \sqrt{10}$ units. KL = LM = MN = NKHere all sides are equal. : K, L, M and N are the vertices of a Rhombus.

Unit-10 : QUADRATIC EQUATIONS

Multiple Choice Questions

1 The value of the discriminant of a quadratic equation is 3. Then the nature of its roots is A. Real and Distinct B. Real and equal C. There is no any root D. Imaginary numbers 2 The standard form of quadratic equation is A. $ax^2 - bx + c = 0$ B. $ax^2 + bx + c = 0$ C. $ax^2 - bx - c = 0$ D. $ax^2 + bx - c = 0$ The quadratic equation whose roots are -1 and 2 is 3 A. $x^2 - x - 2 = 0$ B. $x^2 - x + 2 = 0$ D. $x^2 + x + 2 = 0$ C. $x^2 + x - 2 = 0$ The standard form of the quadratic equation x(x + 1) = 30 is 4 B. $x^2 + x - 30 = 0$ A. $x^2 - x = 30$ D. $x^2 - x = 30$ C. $x^2 - x - 30 = 0$ "Sum of the squares of two consecutive odd numbers is 130." Mathematical form of this 5 statement is A. $x^{2} + (x + 1)^{2} = 130$ B. $x^{2} + (2x)^{2} = 130$ C. $x^2 + (x+2)^2 = 130$ D. $(x + 2x)^2 = 130$ If the roots of $ax^2 + bx + c = 0$ are equal, then the correct relation among the following is 6 $A.\frac{b}{2a} = \frac{2c}{b}$ **B**. $b^2 + 4ac = 0$ **C**. $\frac{b}{2a} = \frac{b}{2c}$ D. a = b**One Mark Questions** Write the standard form of a quadratic equation. Ans: $ax^2 + bx + c = 0$, where $a \neq 0$ 1 2 Find the discriminant of the quadratic 3 Find the roots of the quadratic equation $x^2 - 25 = 0$ equation $x^2 + 2x + 1 = 0$ $x^2 = 25$ $b^2 - 4ac = 2^2 - 4(1)(1)$ $x = \sqrt{25}$ = 4 - 4 $\therefore b^2 - 4ac = 0$ $\therefore x = +5$ Write the formula to find the roots of the Write the discriminant of the quadratic 4 5 quadratic equation $ax^2 + bx + c = 0$ equation $ax^2 + bx + c = 0$ Ans: $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ Ans: $b^2 - 4ac$

T	Two Marks Questions			
1	Solve the quadratic equation	2	Solve the quadratic equation	
	$x^2 + 7x + 12 = 0$ by Factorization method		$x^2 + x - 6 = 0$ by Factorization method	
	$x^2 + 3x + 4x + 12 = 0$		$x^2 + 3x - 2x - 6 = 0$	
	x(x+3) + 4(x+3) = 0		x(x+3) - 2(x+3) = 0	
	(x+3)(x+4) = 0		(x+3)(x-2) = 0	
	x + 3 = 0 or x + 4 = 0		x + 3 = 0 or x - 2 = 0	
	x = -3 or x = -4		x = -3 or x = 2	
3	Solve the quadratic equation	4	Solve the quadratic equation	
	$2x^2 - 15x + 18 = 0$ by Factorization method		$3x^2 - x - 14 = 0$ by Factorization method	
	$2x^2 - 12x - 3x + 18 = 0$		$3x^2 + 6x - 7x - 14 = 0$	
	2x(x-6) - 3(x-6) = 0		3x(x+2) - 7(x+2) = 0	
	(x-6)(2x-3) = 0		(x+2)(3x-7) = 0	
	x - 6 = 0 or 2x - 3 = 0		x + 2 = 0 or 3x - 7 = 0	
	$x = 6 \text{ or } x = \frac{3}{2}$		$x = -2$ or $x = \frac{7}{3}$	
	$x = 0.07 x = \frac{1}{2}$		$x = -2 \text{ or } x = \frac{1}{3}$	
5	Solve $2x^2 - 5x + 3 = 0$ by using the	6	Solve $x^2 + 2x + 4 = 0$ by using the	
	quadratic formula.	X	quadratic formula.	
	a = 2, b = -5, c = 3)″	$a = 1, \qquad b = 2, \qquad c = 4$	
	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$		$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	
	$x = \frac{-(-5) \pm \sqrt{(-5)^2 - 4(2)(3)}}{2(2)}$		$x = \frac{-(2) \pm \sqrt{(2)^2 - 4(1)(4)}}{2(1)}$	
	$x = \frac{5 \pm \sqrt{25 - 24}}{4}$		$x = \frac{-2 \pm \sqrt{4 - 16}}{2}$	

$$x = \frac{5 \pm 1}{4}$$

$$x = \frac{5 \pm 1}{4}$$

$$x = \frac{5 \pm 1}{4} \text{ or } \frac{5 - 1}{4}$$

$$x = \frac{3}{2} \text{ or } x = 1$$

$$x = \frac{2 \pm \sqrt{4 - 16}}{2}$$

$$x = \frac{-2 \pm \sqrt{4 - 16}}{2}$$

$$x = \frac{-2 \pm \sqrt{-12}}{2}$$

$$x = \frac{-2 \pm \sqrt{4(-3)}}{2}$$

$$x = \frac{-2 \pm \sqrt{4(-3)}}{2}$$

$$x = \frac{2(-1 \pm \sqrt{-3})}{2}$$

$$x = (-1 + \sqrt{-3}) \text{ or } x = (-1 - \sqrt{-3})$$

7	Find the nature of the roots of the equation $4x^2 - 12x + 9 = 0$	8	Find the nature of the roots of the equation $x^2 + 2x - 15 = 0$
	a = 4, $b = -12$, $c = 9$		a = 1, b = 2, c = -15
	$b^2 - 4ac = (-12)^2 - 4(4)(9)$		$b^2 - 4ac = (2)^2 - 4(1)(-15)$
	= 144 - 144		= 4 + 60
	$b^2 - 4ac = 0$		= 64
	∴ Roots are Real and Equal		Here $b^2 - 4ac > 0$
			\therefore Roots are Real and Distinct
9	Find the nature of the roots of the equation $x^2 - x + 12 = 0$	10	Find the value of 'k' if the quadratic equation $x^2 - kx + 4 = 0$ has equal roots.
	a = 1, b = -1, c = 12		$a=1, \qquad b=-k, \qquad c=4$
	$b^2 - 4ac = (-1)^2 - 4(1)(12)$		Given; Roots are Equal $\frac{1}{2}$
	= 1 - 48		$\therefore b^2 - 4ac = 0$
	= -47		$(-k)^2 - 4(1)(4) = 0$
	Here $b^2 - 4ac < 0$		$k^2 - 16 = 0$
	\therefore The equation has no real roots.		$k^2 = 16$
		4)	$k = \pm \sqrt{16}$
			$: k = \pm 4$
Т	hree Marks Questions		
	hree Marks Questions A girl is twice as old as her sister. Four	2	The altitude of a right triangle is 7 cm less
1	years hence, the product of their ages (in years) will be 160. Find their present ages.	2	than its base. If the hypotenuse is 13 cm. find the other two sides.
	Let the present age of sister be 'x' years and girls present age be ' $2x$ ' years		Let the base is 'x' cm and altitude is $(x - 7)$ cm and hypotenuse is 13 cm
	Product of their ages 4 years hence =		By Pythagoras theorem.
	(x+4)(2x+4)		$13^2 = (x - 7)^2 + x^2$
	$\therefore (x+4)(2x+4) = 160$		$169 = x^2 + 49 - 14x + x^2_{\mathbf{A}}$
	$2x^2 + 12x - 144 = 0$		$2x^2 - 14x - 12 = 0$ 13
	$x^2 + 6x - 72 = 0$		$x^2 - 7x - 60 = 0$
	$x^2 + 12x - 6x - 72 = 0$		$x^2 - 12x + 5x - 60 = 0$ B x
	x(x+12) - 6(x+12) = 0		x(x - 12) + 5(x - 12) = 0
	x = -12 or x = 6		x - 12 = 0 or $x + 5 = 0$
	Age cannot be negative $\Rightarrow x = 6$		x = 12 or $x = -5$
	∴ Girl's present age is 12 years and		Base is 12 cm and Altitude is 5 cm
	present age of her sister is 6 years		

3 The difference of squares of two positive numbers is 180. The square of small number is 8 times the big number. Find the numbers. Let the bigger number be x and smaller be y Given $x^2 - y^2 = 180$ and $y^2 = 8x$ $\therefore x^2 - 8x = 180$ $x^2 - 8x - 180 = 0$ $x^2 - 18x + 10x - 180 = 0$ x(x - 18) + 10(x - 18) = 0 (x - 18)(x + 10) = 0 => x = 18 or x = -10 $y^2 = 8(18) => y^2 = 144$ $\therefore y = 12$	positive integers is 13. Find the numbers. Let the numbers be x and $(x + 1)$ $x^{2} + (x + 1)^{2} = 13$ $x^{2} + x^{2} + 1 + 2x = 13$ $2x^{2} + 2x - 12 = 0$ $x^{2} + x - 6 = 0$ $x^{2} + 3x - 2x - 6 = 0$ x(x + 3) - 2(x + 3) = 0 (x + 3) = 0 or $(x - 2) = 0x = -3$ or $x = 2The other number = x + 1 = 3$
∴ The numbers are 18 and 12	∴The numbers are 2 and 3
Four Marks Questions	
5 A person on tour has Rs 4200 for his expenses. If he extends his tour for 3 days, he has to cut down his daily expenses by Rs 70. Find the original duration of the tour. original duration of the tour be 'x' days. Given, $\frac{4200}{x} - \frac{4200}{x+3} = 70$ $4200(\frac{1}{x} - \frac{1}{x+3}) = 70$ $\frac{(x+3)-x}{x(x+3)} = \frac{70}{4200}$ x(x+3) = 180 $x^2 + 3x - 180 = 0$ $x^2 + 15x - 12x - 180 = 0$ (x + 15)(x - 12) = 0 x + 15 = 0 or x - 12 = 0 x = -15 or x = 12 number of days can't be negative => x = 12 \therefore Original duration of the tour is 12 days.	18km/hr, takes 1 hour more to go 24 km upstream than to return downstream to the same spot. Find the speed of the stream

Unit-11 : INTRODUCTION TO TRIGONOMETRY

Multiple Choice Questions

Μ	Multiple Choice Questions					
1	If $\sin \theta = \frac{12}{13}$, then the value of $\csc \theta$ is					
	A. $\frac{5}{12}$	B. $\frac{5}{13}$	C. $\frac{13}{12}$	D. $\frac{12}{13}$		
2	The value of $tan 45^{\circ}$ is					
	A. $\sqrt{3}$	B. 0	C. 1	D. $\frac{1}{\sqrt{3}}$		
3	If $2\cos\theta = 1$ and θ is a	n acute angle then the	value of θ is	3		
	A. 0°	B. 30°	C. 45	5° D. 60 °		
4	If $cos\theta = \frac{1}{2}$, then the value of $rac{1}{2}$	alue of $tan\theta$ is				
	A. $\frac{1}{\sqrt{3}}$	B. $\sqrt{3}$	C. 1	D. 0		
5	$\frac{\sin A}{\cos A}$ is equal to					
	A. sec <i>A</i>	B. cosec A	C. t	an A D. cot A		
6	$(1 + cos\theta) (1 - cos\theta)$	=				
	A. $sin^2\theta$	B. $tan^2\theta$	С. со	$\operatorname{Dsec}^2 A$ D. $\operatorname{sec}^2 A$		
7	The value of $(\cos 48^{\circ} -$	- sin 42º) is				
	A. 0	$B_{\cdot} \frac{1}{4}$	C. 1	D. $\frac{1}{2}$		
O	ne Mark Questions					
1	Find the value of $sin^2 25$	$^{0} + sin^{2}65^{0}$.	2	If $sinA = \frac{1}{2}$ where A is an acute		
	$sin^2 25^0 + sin^2 65^0 =$	$sin^2 25^0 + sin^2 (90^0 -$	- 25 ⁰)	angle then find the value of A .		
		= sin ² 25 ⁰ + cos ² 25 ⁰).	$sinA = \frac{1}{2}$		
	-	= 1		$\frac{2}{\sin A} = \sin 60^{\circ}$		
				$=> A = 60^{\circ}$		
3	Find the value of $(1 +$	$tan^2\theta$). $cos^2\theta$.	4	If $\cos A = \sin B$, then find the		
	$(1 + tan^2\theta). \cos^2\theta = \sec^2\theta \ge \frac{1}{\sec^2\theta}$			value $A + B$.		
	$(1 + \iota u \iota \theta) \cdot \iota \theta = S$	$\frac{\partial}{\partial sec^2\theta}$		$sin(90^o - A) = sinB$		
	= 1			$90^0 - A = B$		
				$=>$ $A + B = 90^{\circ}$		
L			1 1			

Tv	Two Marks Questions					
1	Evaluate: $sin18^{\circ} - cos72^{\circ} - cos18^{\circ} + sin72^{\circ}$.					
	$sin18^{\circ} - cos72^{\circ} - cos18^{\circ} + sin72^{\circ} = sin(90^{\circ} - 72^{\circ}) - cos72^{\circ} - cos(90^{\circ} - 72^{\circ}) + sin72^{\circ}$					
	$= \cos 72^{\circ} - \cos 72^{\circ} - \sin 72^{\circ} + \sin 72^{\circ}$					
	= 0					
2	If $\tan 2A = \cot (A - 18^{\circ})$, where 2A 3	B If $A=60^{\circ}$, $B=30^{\circ}$ then show that				
	is an acute angle. Find the value of A.	cos(A + B) = cosA.cosB - sinA.sinB				
	$cot(90^{\circ} - 2A) = cot(A - 18^{\circ})$	cos(A + B) = cosA.cosB - sinA.sinB				
	$90^{\circ} - 2A = A - 18^{\circ}$	$cos(60^{\circ} + 30^{\circ}) = cos60^{\circ} \cdot cos30^{\circ} - sin 60^{\circ} \cdot sin 30^{\circ}$				
	$90^o + 18^o = A + 2A$	$\cos 90^{\circ} = \frac{1}{2} \times \frac{\sqrt{3}}{2} - \frac{\sqrt{3}}{2} \times \frac{1}{2}$				
	$3A = 108^{o}$	0 = 0				
	$A = 36^{o}$	0 = 0				
4		5 If A, B, and C are interior angles of a triangle				
	(tanA.sinA) + cosA = secA	ABC, then show that, $sin\left(\frac{A+B}{2}\right) = cos\frac{A}{2}$				
	$LHS = \left(\frac{\sin A}{\cos A} \times \sin A\right) + \cos A$	We know, Sum of the interior angles of a Triangle -1809				
	$=\frac{\sin^2 A}{\cos A} + \cos A$	Sum of the interior angles of a Triangle = 180°				
	$= \frac{1}{\cos A} + \cos A$ $= \frac{\sin^2 A + \cos^2 A}{\cos A} = \frac{1}{\cos A}$ $= \sec A$	$=> A + B + C = 180^{\circ}$				
		$B + C = 180^{\circ} - A$ $B + C = 180^{\circ} - A$				
		$\frac{B+C}{2} = \frac{180^\circ - A}{2}$				
		Taking <i>sin</i> on both sides				
		$\sin\left(\frac{B+C}{2}\right) = \sin\left(90^\circ - \frac{A}{2}\right)$				
		$\therefore \sin\left(\frac{B+C}{2}\right) = \cos\left(\frac{A}{2}\right)$				
6	Prove that $tan10^\circ$. $tan15^\circ$. $tan75^\circ$. $tan80^\circ = 1$					
	$LHS = tan10^{\circ}.tan15^{\circ}.tan75^{\circ}.tan80^{\circ}$					
	$= tan(90^{\circ} - 80^{\circ}) \times tan(90^{\circ} - 75^{\circ}) \times tan(90^{\circ} - 75^{\circ$	x tan75°x tan80°				
	$= \cot 80^{\circ} \times \cot 75^{\circ} \times \frac{1}{\cot 75^{\circ}} \times \frac{1}{\cot 80^{\circ}}$)°				
	= 1					

Three Marks Questions 2 Show that, $\frac{\sin\theta}{1-\cos\theta} = \csc\theta + \cot\theta$ Show that, $\frac{1+\cot^2 A}{1+\tan^2 A} = \cot^2 A$. L.H.S = $\frac{\sin \theta}{1 - \cos \theta}$ LHS = $\frac{1+\cot^2 A}{1+\tan^2 A}$ $= \frac{\sin\theta}{1 - \cos\theta} x \frac{1 + \cos\theta}{1 + \cos\theta}$ $=\frac{cosec^2A}{sec^2A}$ $= \frac{\sin\theta (1+\cos\theta)}{1-\cos^2\theta}$ $=\frac{\frac{1}{\sin^2 A}}{\frac{1}{\cos^2 A}}$ $=\frac{\sin\theta \ (1+\cos\theta)}{\sin^2\theta}$ $=\frac{(1+\cos\theta)}{\sin\theta}$ $=\frac{1}{\sin^2 A} \times \frac{\cos^2 A}{1}$ $=\frac{1}{\sin\theta}+\frac{\cos\theta}{\sin\theta}$ $=\frac{\cos^2 A}{\sin^2 A}$ $= cot^2 A$ $= cosec\theta + cot\theta$ = RHS= RHSIf $\sin\theta = \frac{1}{2}$, 3 $\frac{\cos\theta - 2\cos^3\theta}{2\sin^3\theta + \sin\theta} = \cot\theta$ 4 then show that Prove that $3\cos\theta - 4\cos 3\theta = 0.$ L.H.S = $\frac{\cos \theta - 2 \cos^3 \theta}{2 \sin^3 \theta - \sin \theta}$ Given, $\sin\theta = \frac{1}{2}$ $sin\theta = sin 30^{\circ}$ $=\frac{\cos\theta\left(1-2\cos^2\theta\right)}{\sin\theta\left(2\sin^2\theta-1\right)}$ $\Rightarrow \theta = 30^{\circ}$ $LHS = 3cos\theta - 4cos^3\theta$ $=\frac{\cos\theta\left(1-\cos^2\theta-\cos^2\theta\right)}{\sin\theta(\sin^2\theta+\sin^2\theta-1)}$ $= 3cos 30^{0} - 4cos^{3} 30^{0}$ $=\frac{\cos\theta\,(\,\sin^2\theta-\cos^2\theta\,)}{\sin\theta(\,\sin^2\theta-\cos^2\theta\,)}$ $= 3\left(\frac{\sqrt{3}}{2}\right) - 4\left(\frac{\sqrt{3}}{2}\right)^3$ $=3\left(\frac{\sqrt{3}}{2}\right)-4\left(\frac{3\sqrt{3}}{2}\right)$ $=\frac{\sin\theta}{\cos\theta}$ $=3\left(\frac{\sqrt{3}}{2}\right)-3\left(\frac{\sqrt{3}}{2}\right)$ $= cot\theta$ = 0= R.H.S= RHS

$$5 \quad \text{Prove that } \sqrt{\frac{1+\sin A}{1-\sin A}} = \sec A + \tan A$$

$$(A = \sqrt{\frac{1+\sin A}{1-\sin A}} = \frac{\sec A + \tan A}{1-\sin A}$$

$$(A = \sqrt{\frac{1+\sin A}{1-\sin A}} = \sqrt{\frac{1+\sin A}{1-\sin A}} = \sqrt{\frac{1+\sin A}{1-\sin A}} = \sqrt{\frac{1+\sin A}{1-\sin A}} = \sqrt{\frac{(1+\sin A)(1+\sin A)}{(1-\sin A)(1-\sin A)}}$$

$$(A = \sqrt{\frac{(1+\sin A)^2}{(1-\sin^2 A)}} = \sqrt{\frac{(1+\sin A)^2}{1-\sin^2 A}} = \sqrt{\frac{(1+\sin A)^2}{\cos^2 A}} = \sqrt{\frac{(1+\sin A)^2}{\cos^2 A}} = \frac{1+1+2\cos \theta}{(1+\cos \theta)\sin \theta}$$

$$(A = \sqrt{\frac{(1+\sin A)^2}{\cos^2 A}} = \frac{1+\sin A}{\cos A}$$

$$(A = \frac{1}{\cos A} + \frac{\sin A}{\cos A}$$

$$(A = \frac{1}{\cos A} + \frac{\sin A}{\cos A}$$

$$(A = \frac{1}{\cos A} + \frac{\sin A}{\cos A}$$

$$(A = \frac{2}{\sin \theta}$$

$$(A = \frac{2}{$$

Unit-12 : SOME APPLICATIONS OF TRIGONOMETRY

Two Marks Questions

Three Marks Questions The angle of elevation of a cloud is 30° from a point 60 m above a lake and from the 1 same point, the angle of depression of the reflection of cloud in the lake is 60° . Find the height of the cloud. Let AB be the surface of lake. P be the point of observation. AP=60 m Let C be the position of cloud. C' be its reflection 30 in the lake. CB=C'B 60 m 60 n Let CM = h, then C'B = (h + 60)In \triangle CMP, tan $30^{\circ} = \frac{h}{DM}$ B $PM = \sqrt{3}h - - - - (1)$ h+60 In \triangle PMC' tan $60^{\circ} = \frac{C'M}{PM}$ $\sqrt{3} = \frac{h+60+60}{PM}$ $PM = \frac{h+120}{\sqrt{3}} - \dots - (2)$ From (1) and (2) $\sqrt{3}h = \frac{h+120}{\sqrt{3}} = h = 60 m$ CB=CM+MB = 60+60 = 120 mHeight of the cloud from the surface of the lake is 120 m. 2 The top of a tower is observed from two points on the same straight line on the ground. The distances of these points from the base of the tower is *a* and *b* meters. If the angles of elevation are complementary prove that the height of the tower is \sqrt{ab} meter. Let CD be the building of height 60 m and AB be the tower 60' $|FCA = |CAE = 30^{\circ}$ $|FCB = |CBD = 60^{\circ}$ 60 - h In $\triangle ACE$, $tan 30^\circ = \frac{CE}{4E}$ 30' $\frac{1}{\sqrt{3}} = \frac{60-h}{AE}$ 60 m $AE = (60 - h)\sqrt{3}$ $AE = BD = (60 - h)\sqrt{3}$ In $\triangle BCD$, $tan 60^\circ = \frac{60}{BD}$ 60 $\sqrt{3} = \frac{60}{(60-h)\sqrt{3}} = (60-h)3 = 60$ 60 - h = 20h = 60 - 20 \therefore height of the tower = 40 m

³ The angle of elevation of the top of a tower from two points on the ground at distances 'a' and 'b' meters from the base of a tower and in the same straight line with it are complementary. Prove that height of the tower is
$$\sqrt{ab}$$
 meter.
Height of the tower be 'x' m
 $tan\theta = \frac{x}{b} - - - -(i)$
 $tan(90^{\circ} - \theta) = \frac{x}{a}$
 $cot\theta = \frac{x}{a} - - - - -(ii)$
Multiplying (i) and (ii)
 $tan\theta x \cot\theta = \frac{x}{b} x \frac{x}{a}$
 $1 = \frac{x^2}{ab}$
 $x^2 = ab$
 $=> x = \sqrt{ab}$
.
Height of the tower is \sqrt{ab} meter.
4 The deck of a ship is 10m high from the level of water. A man standing on it observes the top of a hill with an angle of elevation 60° and from the same point, he observes the base of the same hill at an angle of depression 30°. Then, find the distance of the ship from the hill.
In ΔADE , $tan 30^{\circ} = \frac{AB}{BC}$
 $\frac{1}{\sqrt{3}} = \frac{10}{x}$
 $\Rightarrow x = 10\sqrt{3}$ ----(i)
Distance of the ship from the hill = $10\sqrt{3} x \sqrt{3}$
 $h = 30 m$
 \Rightarrow Height of the hill = $30 + 10 = 40$ m.

Four Marks Questions

From a window 15 m high above the ground in a street, the angles of elevation and depression of the top and foot of another house on the opposite side of the street are 30° and 45° respectively. Show that the height of the opposite house is 23.66m. (take $\sqrt{3}=1.73$) D AB – ground, C- position of window BD – house in the opposite side of the street $|DCE = 30^{\circ}, |ECB = |CBA = 45^{\circ}$ (x-15) AC = BE = 15 m, Let BD = x m, $\therefore DE = (x - 15) \text{ m}$ 30 In \triangle CDE, $tan30^\circ = \frac{x-15}{CE}$ C $\frac{1}{\sqrt{3}} = \frac{x-15}{CE} = \sqrt{3}(x-15)$ 15 m 15m In $\triangle ACB$, $tan 45^\circ = \frac{AC}{AB}$ $1 = \frac{15}{\sqrt{3}(x-15)}$ (since AB = CE) $\sqrt{3}(x - 15) = 15$ $(x - 15) = \frac{15}{\sqrt{3}}$ x - 15 = 8.66x = 23.66 mAn aero plane when flying at a height of 4000 m from the ground passes vertically above 2 another aero plane at an instant when the angles of the elevation of the two planes from the same point on the ground are 60° and 45° respectively. Find the vertical distance between the aero planes at that instance. Let P and Q be the positions of two aero planes, when Q is vertically below P and OP=4000 m A be the point of observation on the ground In $\triangle AOP$ in ΔAOQ and 4000 m $tan60^\circ = \frac{OP}{OA}$ $tan45^\circ = \frac{OQ}{OA}$ $\sqrt{3} = \frac{4000}{04}$ $1 = \frac{OQ}{QA}$ $OA = \frac{4000}{\sqrt{3}}$ OQ = OAVertical distance PQ = OP - OQ $=>\frac{4000\sqrt{3}-4000}{\sqrt{3}}$ $PQ = 4000 - \frac{4000}{\sqrt{3}}$

 $=>\frac{4000(\sqrt{3}-1)}{\sqrt{3}}$ $\therefore The vertical distance = 1690.53 m$

	Unit 13: STATISTICS							
N	Multiple Choice Questions							
1	The mean value of 10, 15, 5, 20 and 50 is							
	(A) 10 (B) 5 (C) 15 (D) 20							
2	The median of 7, 3, 6, 14, 13, 11, 19 is							
	(A) 7 (B) 13 (C) 11 (D) 19							
3	The mode of 6, 7, 2, 4, 2, 8, 5, 2, 2, 7 is							
	(A) 7 (B) 6 (C) 4 (D) 2							
4	The measure of central tendency that gives the middle most value of the data is							
	A. midpoint B. mean C. median D. mode							
5	Mode of the given set of scores is							
	A) Middle most valueB) Least frequent valueC) Most frequent valueD) None of these							
0	one Mark Questions							
1.	Write the empirical relationship between the three measures of central tendency.							
	3Median = Mode + 2Mean							
2.1	2.Find the median of 24, 31, 17, 29, 36, 39							
	17, 24, 29, 31, 36, 39							
	$Median = \frac{29+31}{2}$							
	$\therefore Median = 30$							
3.	3. Find the class mark of the class interval 40-50							
	$Class mark = \frac{lower \ limit + upper \ limit}{2}$							
	$Class mark = \frac{40+50}{2}$							
	\therefore Class mark = 45							

Three Marks Questions											
1) Find mean for the following frequency distribution.					2) Find the l distribution.		n of the	followi	ng frequ	iency	
Class	0- 10-	20-	30- 40-			[
Interval	10 20	30	40 50		Class	0.10			• • • • •	10 70	
Frequency35953				interval	0-10	10-20	20-30	30-40	40-50		
Class	Frequen	ncy x	fx		Frequency	4	7	13	9	3	
Interval			,								
0-10	3	5	15								
10-20	5	15			Class Inter	rval	Frequency		Cumulative		
20-30	9	25	225			i vui	riequency		Frequency		
30-40	5	35	5 175		0-10		4			4	
40-50	3	45			10-20		7			4+7=11	
	$\Sigma f = 2$	5	$\Sigma f x$		20-30 13		3	11+13=24			
			= 625		30-40		9		24+9=33		
$Mean = \frac{\Sigma f x}{\Sigma f} = \frac{625}{25}$					40-50		3 33+3=3		+3=36		
meu	Σf	25			nn = 36,	n = 18	f =	13	cf = 11		
∴ Mean = 25						2), l =		<i>cj</i> – 11,		
						n = 10	, ι –	20			
				\geq	$Median = l + \left[\frac{\frac{n}{2} - cf}{f}\right] \times h$						
					$Median = 20 + \left[\frac{18 - 11}{13}\right] \times 10$						
					Median = 20 + 5.38						
					∴ <i>Median</i> = 25.38						
3) Find the	mode of th	e follo	wing								
			0			_		_	_		
frequency distribution. $f_1 = 11, f_0 = 9, f_2 = 6, l = 60, h = 10$											
Class interval Frequency $M_{ode} = I + \begin{bmatrix} f_{1-f_0} \end{bmatrix} \times h$											
<u>30-40</u> 4				$Mode = l + \left[\frac{f_{1-f_0}}{2f_1 - f_0 - f_2}\right] \times h$							
40-50 7							[1	1_9 1			
50-60 9					$Mode = 60 + \left[\frac{11-9}{2(11)-9-6}\right] \times 10$						
60-70 11											
70-80		6			Mode = 60 + 2.86						
80-90 2					$\therefore Mode = 62.86$						

Three Marks Questions

4) The marks scored by 30 Students of class X, in the Mathematics are given below. Draw a less than type ogive.

Marks	0-20	20-40	40-60	60-80	80-100
Number of students	5	3	11	2	9

Marks	Number of students
Less than 20	5
Less than 40	5+3=8
Less than 60	8+11=19
Less than 80	19+2=21
Less than 100	21+9=30

5) During the medical check-up of 35 students of a class, their weights were recorded as follows. Draw a less than type ogive for the given data.

Weights (ir	n kg)	Number of
		students
Less than	40	3
Less than	45	5
Less than	50	9
Less than	55	14
Less than	60	28
Less than	65	32
Less than	70	35

Height(in cm)	90-100	100-110	110-120	120-130	130-140	140-150	
Number of children	5	10	7 24		11	3	
		Number of]	7	X-031/1 (Cm2]0 Cals (Cm2 10	649	
Height(in c	cm)	children	-		ંતરો	dren.	
More than or equa	l to 90	60			\mathbf{X}		
More than or equa	l to 100	60 - 5 = 55		5	X		
More than or equa	l to 110	55 - 10 = 45		2 30	X		
More than or equa	l to 120	45 - 7 = 38		× \$ 20			
More than or equa	l to 130	38 - 24 = 14	4	2 10		N.	
More than or equa	l to 140	14 - 11 = 3			<u>aa wa kaa</u>	X	

7) Details of daily income of 50 workers in a food industry are given below. Draw a more than type ogive for the following data.

Daily Income (in Rs.)	Number of
	workers
More than or equal to 80	50
More than or equal to 100	38
More than or equal to 120	24
More than or equal to 140	16
More than or equal to 160	10
More than or equal to 180	0

110 120 130

AO

100

EIGHT form

90

Unit 15: SURFACE AREA AND VOLUME

Multiple Choice Questions

	lee Questions		
1. The volume of a	hemisphere of radius 'r'	is	
(A) πr^2	$(B)\frac{4}{3}\pi r^3$	(C) $4\pi r^3$	$(\mathbf{D})\frac{2}{3}\pi r^3$
	*	6	l together along their bases, then,
	e area of the new solid t		
(A) $3\pi r^2$	(B) $4\pi r^2$	(C) $5\pi r^2$	(D) $6\pi r^2$
	cone are of same heights 1^3 then, the volume of the		bases. If the volume of the
(A) 924 <i>cm</i> ³		(C) 462 cm^3	(D) 38 <i>cm</i> ³
4. While conversion	of a solid from one shap	be to another, the volum	ne of the new shape will
(A) increases	(B) decreases	(C) remain unaltere	(D) doubled
	of a sphere of radius 7 <i>cn</i>		I. Contraction of the second sec
(A) $308 \ cm^2$	(B) $154 \ cm^2$	(C) 616 <i>cm</i> ²	(D) $462 \ cm^2$
6. If the slant height	of a frustum of a cone is	4 cm and radii of its tw	vo circular ends are 5cm and
-	urved surface area is		
(A) 88 cm ²	(B) 22 <i>cm</i> ²	(C) 48 cm ²	(D) 26 <i>cm</i> ²
7. Three cubes of ed	ge 4 cm are joined end to	o end, then the volume	of the cuboid so formed is
(A) $162 \ cm^3$	-	(C) $182 \ cm^3$	(D) 192 cm^3
8. The radius of the	base of a cone is 9cm an	d slant height is 15cm,	then its height is
(A) 6cm	(B) 3cm	(C) 5cm	(D) 12cm
One Mark Qu	iestions		
1. A frustum of a co	one is of radii of circular		ght ' <i>h</i> '. Then write the formula
to find its volu	me.	Ans:	$\mathbf{V} = \frac{1}{3}\pi\mathbf{h}(\mathbf{r_1}^2 + \mathbf{r_2}^2 + \mathbf{r_1}\mathbf{r_2})$
2. Find the ratio of t Area of sphere	2	-	hemisphere having equal radii.
Area of solid hemisphere	$rac{1}{e} = rac{1}{3\pi r^2}$ $rac{1}{A_2} =$	$=\frac{4}{3}$ $\therefore A_1:A_2 =$	4:3
3. If the area of base volume.	e of a right circular cylind	der is $38.5cm^2$ and its	height is 6cm, then find its
	$h^{-2} = 38.5 cm^2, h = 6 cm$	V = ?	
	inder = $\pi r^2 h = 38.5 \times$		
	cylinder = $231 cm^3$		
,	·		

Two Marks Questions

1. Two cubes of edge 8cm each are kept together 2. If the total surface area of a cube is joining their faces to form a cuboid. Find the total $150cm^2$, find its volume. surface area of the cuboid. $T.S.A Of a cube = 6a^2$ Given: l = 8 + 8 = 16cm, b = 8cm, h = 8cm, $150 = 6a^2$ T.S.A Of cuboid =?a = 5cm $T.S.A.of \ a \ cuboid = 2[lb + bh + hl]$ *Volume of a cube* = $a^3 = 5^3$ = 2[(16)(8) + (8)(8) + (8)(16)] \therefore Volume of a cube = 125 cm³ \therefore T.S.A. of a cuboid = 640 cm² 4. If the total surface area of a hemispherical 3. A metal container is in the shape of a frustum of bowl is $462cm^2$, then find its radius. a cone of height 21 cm and radii of its circular ends are 8 cm and 20 cm. Find its capacity. *TSA of hemisphere* = $2\pi r^2 = 462$ $r_1 = 20cm, r_2 = 8cm, h = 21cm$ $2 \times \frac{22}{7} \times r^2 = 462$ *Capacity* = V = $\frac{1}{3}\pi h(r_1^2 + r_2^2 + r_1r_2)$ $r^2 = \frac{462 \times 7}{2 \times 22}$ $= \frac{1}{3} \times \frac{22}{7} \times 21(20^2 + 8^2 + 20 \times 8)$ $\therefore Volume = 13728 cm^3$ \therefore Radius of the bowl = 7cm **Three Marks Questions** 1. The diameter of a solid metallic sphere is 6cm. 2. A big solid metal sphere of diameter 48cm It is melted and drawn into a wire having diameter is melted and casted into small solid spheres of of the uniform cross-section is 0.2cm. Find the radius 3cm. Find the number of small solid spheres so formed. length of the wire. radius of big solid sphere R = 24 cm radius of the sphere R = 3cm, radius of small solid sphere r = 3cmradius of the wire (cylinder)r = 0.1cmNumber of small solid spheres =? length of the wire (cylinder)h = ?Number of small spheres = $\frac{V(big sphere)}{V(a small sphere)}$ *Volume of cylinder = Volume of sphere* $=\frac{\frac{4}{3}\pi R^{3}}{\frac{4}{2}\pi r^{3}}=\frac{R^{3}}{r^{3}}$ $\pi r^2 h = \frac{4}{3}\pi R^3$ $\pi(0.1)^2 h = \frac{4}{3}\pi(3)^3$ $=\frac{24^3}{2^3}$ $0.01\pi h = 36\pi$ \therefore The number of small solid sphere = 512 \therefore *h* = 3600*cm* = 36*m*

Four Marks Questions

1. A toy is in the form of a cone of radius 3.5 cm mounted on a hemisphere of same radius. The total height of the toy is 15.5 cm. Find the total surface area of the toy.

Cone: h = 15.5 - 3.5 = 12cm, r = 3.5cm*Hemisphere*: R = 3.5cmSlant height: $l = \sqrt{h^2 + r^2}$ 15.5 cm $=\sqrt{(12)^2+(3.5)^2}$ 3.5 cm $\therefore l = 12.5cm$ TSA of a toy = CSA of cone + CSA of hemisphere $=\pi r l + 2\pi R^{2}$ $=\frac{22}{7} \times 3.5 \times 12.5 + 2 \times \frac{22}{7} \times 3.5 \times 3.5$ \therefore TSA of the toy = 214.5 cm² 2. A Toy is made in the shape of a cylinder with one hemisphere stuck to one end and a cone to the other end. The length of the cylindrical part of the toy is 20cm and its diameter is 10 cm. If the height of the cone is 12 cm. Find the surface area of the toy. *Hemisphere*: $r_{hs} = 5cm$ Cylinder: $r_{cylinder} = 5cm$, $h_{cylinder} = 20cm$ 12 cm 10 cm *Cone*: $r_{cone} = 5cm$, $h_{cone} = 12cm$ 20 cm Slant height: $l_{cone} = \sqrt{r_{cone}^2 + h_{cone}^2}$ $=\sqrt{5^2+12^2}$ $l_{cone} = 13cm$ TSA of the toy = CSA of hemisphere + CSA of cylinder + CSA of cone $= 2\pi r_{hs}^{2} + 2\pi r_{cvlinder}^{2} + \pi r_{cone} l_{cone}$ $= 2 \times \frac{22}{7} \times 5^2 + 2 \times \frac{22}{7} \times 5^2 + \frac{22}{7} \times 5 \times 13$ \therefore TSA of the toy = 518.57cm²

3. A tent is in the shape of a cylinder surmounted by a conical top of same diameter. If the height and diameter of cylindrical parts are 2.1 m and 4 m respectively and the slant height of conical part is 2.8 m. Find the area of the canvas used for making the tent. Also find the cost of canvas of the tent at the rate of Rs. 500 per m^2 .

Cylinder: H = 2.1m, D = 4m, R = 2m

Cone:
$$l = 2.8m, r = 2m$$

TSA of the canvas = CSA of cylinder + CSA of cone

 $= 2\pi RH + \pi rl$

$$= 2 \times \frac{22}{7} \times 2 \times 2.1 + \frac{22}{7} \times 2 \times 2.8$$

 \therefore TSA of the canvas = $44m^2$

Total cost of the canvas at the rate of Rs. 500 per $m^2 = Rs. (500 \times 44)$

 \therefore Total cost of the canvas = Rs. 22000

4. A container is shaped like a right circular cylinder having radius of the base 6 cm and height 15 cm is full of ice-cream. The ice-cream is to be filled into cones of height 12 cm and radius 3 cm, having a hemispherical shape of same radius on the top as in the figure. Find the number of such cones which can be filled with ice-cream.

Five marks questions

1. A cone is of the radius of its base 12 cm and height 20 cm. If the top of this cone is cut to form a small cone of radius of base 3 cm, then the remaining part of the solid cone becomes a frustum. Calculate the volume of the frustum.

2. A solid consisting of a right cone standing on a hemisphere is placed upright in a right circular cylinder full of water and touches the bottom as shown in the figure. Find the volume of water left in the cylinder, if the radius of the cylinder is 60cm and its height is 180cm, the radius of the hemisphere is 60cm and height of the cone is 120cm, assuming that the hemisphere and the cone have common base.

Cylinder:
$$r_{cy} = 60cm$$
, $h_{cy} = 180cm$
Hemisphere: $r_{hs} = 60cm$, $h_{co} = 120cm$

The volume of the water left out in the cylinder = V $V_{water} = V_{cylinder} - V_{cone} - V_{hemisphere}$ $= \pi r_{cy}^{2} h_{cy} - \frac{1}{3} \pi r_{co}^{2} h_{co} - \frac{2}{3} \pi r_{hs}^{3}$ 120 cm $= \pi \times 60^2 \times 180 - \frac{1}{3} \times \pi \times 60^2 \times 120 - \frac{2}{3} \times \pi \times 60^3$ $= \pi \times 60^{2} [180 - 40 - 40]$ в Α 60 cm $=\frac{22}{7} \times 60 \times 60 \times 100 = \frac{22 \times 360000}{7} cm^3$ $V = \frac{22 \times 360000}{7 \times (100)^3} m^3$

 \therefore The volume of the water leftout in the cylinder = 1.1314m³