Chemistry Unit 1

Periodic Table and subshell Electronic Configuration

1. Increasing order of sub shell energy ?

Ans: 1s<2s<2p<3s<3p<4s<3d

2. find the block, group and period of the following atomic number?

Atomic No:	Electronic Configuration	Block	Group	Period
11	$1s^2 2s^2 2p^6 3s^1$	S	1	3
12	$1s^2 2s^2 2p^6 3s^2$	S	2	3
19	$1s^2 2s^2 2p^6 3s^2 3p^6 4s^1$	S	1	4
20	$1s^2 2s^2 2p^6 3s^2 3p^6 4s^2$	S	2	4
21	$1s^2 2s^2 2p^6 3s^2 3p^6 3d^1 4s^2$	d	3 (1+2)	4
24	$1s^2 2s^2 2s^6 3s^2 3p^6 3d^5 4s^1$	d	6	4
29	$1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^1$	d	11	4
30	$1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2$	d	12	4
13	$1s^2 2s^2 2p^6 3s^2 3p^1$	P	13	3
17	$1s^2 2s^2 2p^6 3s^2 3p^5$	P	17(5+12)	3
18	1s ² 2s ² 2p ⁶ 3s ² 3 p ⁶	P	11	3

Shells Sub shells

1	2	3	4	S	P	d	f
K(s)	L(s,p)	M(s,p,d)	N(s,p,d,f)	2	6	10	14
2	8	18	32				

Characteristics

	8 1011100001011 011018j	state	Different oxidation state
Low electro negativity	High ionisation energy	Different oxidation	Different oxidation state
	Metal, non metal and Metalloid	Coloured compounds	catalyst
Metallic nature	Solid, liquid and gases	Metallic nature	Radio active
s block	P block	d block	f block

Unite 2 Gas laws and mole concept

- 1. mole = 6.022 * 10 23 particals = avagadro number 22.4 litre (STP) , STP = 273 K, 1 atm
 - force exerted per unit area is called preasure.
 - Temperature is the averge unite of the molecules in a substance

Charles low	Boyle's low	Avagadro low
the volume is	temperature volume is	At constant temperature and pressure the volume of

temperature v_= constant T	to pressure Pv = constant	a gas is directly proportional to the number of molecules
eg: size of air bubble rising from the bottom of an aquarium in creases	eg: inflated balloon kept in sunlight will burst	eg: a ballon is being inflated

• Find the number of molecules:

a) 360 g glucose(molecular mass = 180) ans: number of moles = given mass GMM

$$= 360$$
 $180 = 2 * NA$

b) 90 g water (molecular mass = 18) number of moles = <u>given mass</u> GAM

$$\frac{90}{18} = 5 * NA$$

• Find the number of atom:

a) 42 g nitrogen (N = 14) number of moles = given mass GAM = $\underline{42}$ 14 = $\underline{3*NA}$

b) 80g oxygen number of moles = <u>given mass</u> GAM = <u>80</u> 16 = 5 * NA

<u>Chapter 3</u> <u>Reactivity series and electro Chemistry</u>

ion)
ion)

Observation	Before the experiment	After the experiment
Colour of Zinc rod	Grey	Covered with copper
Colour of CuSO ₄ solution	Blue	Colourless

Substitution reaction 1

$$Zn+CuSO_4$$
 \longrightarrow $Zn sO_4 +Cu.$

oxidation

$$Zn \longrightarrow Zn^2 + 2e^-$$
Reduction

oxidation and reduction takes place at the same time. So it is a Redox Reaction.

Substitution reaction 2

 $Cu^2 + 2e^-$ — Cu

$$Ag NO_3 + Cu \longrightarrow Cu (NO_3)_2 + 2Ag$$

oxidation

Cu \longrightarrow Cu² + 2e⁻ oxidation and reduction takes place at the same time. So it is a Redox Reaction

Reduction $2Ag^+ + 2e^- \longrightarrow 2Ag$

Galvanic cell a) zn – Cu cell

Anode (oxidation) reaction

$$Zn \longrightarrow Zn^{2+} + 2e^{-}$$
.

cathode (reduction) reaction

$$\frac{Cu^{2^{+}}+2e^{-} \longrightarrow Cu}{Zn + Cu \longrightarrow Zn^{2^{+}} + Cu - redox}$$

b). Ag - Cu cell

$$Cu+ 2Ag^+ \longrightarrow Cu^{2+} +2Ag - redox$$

<u>Unit 4</u> Production of Metals

1. characteristic of ores

- abundance
- easily and cheaply separatable
- High metal content

2. stages of metallurgy

- concetration of ore
- Extraction of metals
- Refining of metals

1. concetration of ore

levigation	Froth flotation	Magnetic separation	leaching
Lighter impurities and heavier ore particle eg: gold, oxide	Heavier impurities and lighter ore particle eg: sulphide	magnetic nature	Dissolve in sodium hydroxide solution eg: bauxite (aluminium)

2. Extraction of Metals:

a) Conversion in to oxide

Calcination

Heating in the absence of temperature eg: carbonates and hydroxide

Roasting

Heating the presence of temperature eg: sulphide

3. Refining of metals

<u> </u>		
liquation	Distillation	Electrolytic refining
Low melting metals eg: Tin, lead (ലെഡിനെ ടിന്നിലിട്ടു)	Metals with low boiling point ഉദാ: Cadmium, Zinc,Mercury (കാ സി മെ)	Positive – Impure Metal Negative – Pure Metal Electrolytic – salt solution of pure metal

	Copper plating on iron bangle.	Refining of Copper.	
Anode	Copper rode	Impure copper	
Cathode	Iron bangle	Pure Copper	
Electrolyte	Copper sulphate solution	Copper sulphate + H ₂ SO ₄	
Reaction(oxidatio n)	Cu — Cu ²⁺ + 2e ⁻	Cu — Cu ²⁺ + 2e ⁻	Both of them are Cu
Cathode Reaction (Reduction)	Cu ²⁺ + 2e ⁻	Cu ²⁺ + 2e ⁻ → Cu	are Cu

<u>Iron</u>

Fools gold - Iron pyrites (brazent yellow colour)

- Ore of Aluminium – Bauxite ore of iron - Hametitc

Row material fed into the blast furnare	Coke,lime stone,haematite
The compounds used for reducing haematite	Carbon Monoxide (Co)
Gangue	SiO ₂ (Silica)
Flux	CaO
Slag	CaSiO ₃

Equation of formation of Slag :- $CaO + SiO_2$ → CaSiO₃ Permanent Magnet - Alnico (high resistance)

Unit 5 Compound of Non Metals

- Ammonia (NH₃) Haber Process
 Sulphuric Acid(H2SO4) Contact proces (Catalyst – Vanadium pentoxide (V₂O₅)
- 2. Why ammonia gas passed through quick lime (Cao) To remove moisture
- 3. Why gas jar kept into inverted position? Density of ammonia is less than air.

Liquid - Ammonia	Liquo r - Ammonia
Liquified by pressure	Ammonia + water

Chemical Equlibrium

Industrial production of Ammonia (NH3) - Haber Process N_2 +3 H_2 \longrightarrow 2N H_3

Methods of increase the production of Ammonia?

- 1. Increase Pressure
- 2. Increases the concentration of reactant or Decrease the concentration of product
- 3. Decrease the temperature

- Rate of forward reaction increase, production of Ammonia increases
- Rate of forward reaction increases. Production of Ammonia increases
- Rate of forward reaction increases.
 Production of Ammonia increases

What is the function of catalyst in a reversible reaction (Production of Ammonia) System reaches equilibrium at a faster rate

Catalyst used in preparation of sulphuric acid.- Vanadium pent oxide (V₂O₅)

Chapter 6 Nomenclature of organic compounds and isomerism

1. C₃H₆, C₄H₁₀, C₄H₈, C₃H₄, C₃H₈, C₄H₆, C₅H₁₀, C₅H₈, C₅H₁₂

Alkanes	Alkene	Alkyne
C_4H_{10}	C_3H_6	C ₃ H ₄

C_3H_8	C ₄ H ₈	C ₄ H ₆
C_5H_{12}	C_5H_{10}	C_5H_8

2. Write the general formula of Alkanes?

Ans : CnH_2n+2 . (n = Number of carbon atom)

3. General formula of alkene?

Ans:CnH2n

4. General formula of Alkynes?

Ans : $CnH_2n - 2$.

5. Number of carbon atoms and word root

C ₁ Meth	C ₅ pent	C ₉ non
C ₂ eth	C ₆ hex	C ₁₀ dec
C ₃ prop	C ₇ hept	
C ₄ but	C ₈ oct	

6. write the IUPACname of the following.

Ans: 3 - methyl hexane

Ans: 2 - methyl butane

8. CH₂=CH-CH₂-CH₃ Ans: but - 1 -ene

9. CH₃-C=C-CH₃ Ans: but - 2- ene

Functional group	Name of functional group	compound
ОН	hydroxyl	alcohol
СООН	carboxylic	acid
C1,Br,I,F	halo	Halogen group
O-R	Alkoxy group	ether

Functional group of alcohol - OH Functional group of eher - O- R

Unit 7
Chemical reactions of organic compounds

reactants	products	Name of reactions
CH ₄ + Cl ₂	CH ₃ – Cl + HCl	substitution
$CH_2 = CH_2 + Hcl$	CH ₃ – CH ₂ -Cl	addition
$nCH_2 = CH_2$	$\{CH_2 - CH_2\}$ n	polymerisation

$C_2H_6 + O_2$	$CO_2 + H_2O$	combustion
$CH_3 - CH_2 - CH_2 - CH_3$	$CH_3 - CH = CH_2$	Thermal cracking
heat	CH ₄	

monomer	polymer	uses
nCH ₂ = CH ₂ ethene	-{ CH₂ - CH₂}-n polythene	Bag, toys
nCH ₂ = CH l Cl vinyl chloride	CH ₂ – CH l Cl n poly vinyl chloride	Bag, sandal
$nCF_2 = CF_2$ tetrafluoro ehene	${CF_2 - CF_2}$ n teflon	Non stick
isoprene	Poly isoprene(natural rubber)	sandals

Wood spirit	it Grape spirit	
methanol	ethanol	
CH₃OH	CH ₃ CH ₂ OH(C ₂ H ₅ OH)	

8 - 10% ethanol	wash	
95.6% ethanol	Rectified spirit	
99.5 % ethanol	Absolute alcohol	
alcohol + petrol	Power alcohol	

How ethanol is prepared? ethanol is manufactured by fermenting dilute molasses by adding yeast.

Uses:

Ammonia (NH ₃)	Sulphuric acid H ₂ SO ₄	methanol CH₃OH	ethanol C ₂ H ₅ OH
Chemical fertilizer	Chemical fertilizer	Varnish, formalin - reactant	Beverage,fuel
refrigerant	paint	Paint - solvent	paint