New Pattern

PRE MODEL SSLC EXAMINATION:2022(Answer Key) GHSS SOUTH EZHIPPURAM
Time:90 minutes

PART.1.A

Attend any 4 questions from 1-6 [Score 1]

1. It is marked as $750 \mathrm{~W} \& 230 \mathrm{~V}$ in an electric device. What does ' 750 W ' indicate?

Ans. Power of the device.
2. It is given a few sources of Energy.

Biogas, solar cell, LPG, wind mill.
Find out the odd one from them. How does it differ from others?
Ans. LPG. All others are green energy/ All others are renewable sources of energy.
3. It is written as B 24 in an LPG cylinder. Write down the expiry date of the cylinder.

Ans. June 2024/ 30 ${ }^{\text {th }}$ June 2024
4. Which of the following never be the magnification of image formed by a concave mirror.
a. +1
b. -1
c. -0.6
d. -1.2

Ans. +1 [Because concave mirror cannot form erect image having same length as that of the object.]

5. A \& B are two transparent media. A ray of light is incident at the angle of 40° and reflected back to the same medium.
a. Of the two media, which one has greater refractive index.
b. Which of the following is likely to be the critical angle of this pair of media?
($38^{\circ} / 40^{\circ} / 42^{\circ}$)
Ans. a. Medium A [Because total internal reflection occurs only when light travels from denser medium to rarer medium]
b. 38°. [Because total internal reflection takes place only when angle of incidence is greater than critical angle]
6. Which of the following is NOT a suitable method for reducing transmission loss?
i. transmit power at high voltage ii. transmit power at low voltage.
iii. transmit power with low intensity of current.
iv. transmit power using thick transmission wires.

Ans. ii. transmit power at low voltage.
PART.1.B
Attend all questions (three questions) from 7 to 9 [Score 1]
7. Give two advantages of LED lamp.

Ans.i. High efficiency (Energy loss is minimum)
ii. It doesn't make pollution.
8. The surface of the two plane mirrors are arranged at 45° each other. How many images can be seen if an object is placed between the mirrors at the bisector?
Ans. $\mathrm{n}=360 / \theta-1=360 / 45-1=8-1=7$
9. Which of the following statement is NOT true in resect of hydrogen as a fuel?
i. Hydrogen is a fuel having highest calorific value.
ii. Combustion of hydrogen makes no pollution.
b. Combustion of hydrogen causes pollution.

Ans. b. Combustion of hydrogen causes pollution.

PART.2.A
Attend the question 10
10. It is given two circuits in which a nichrome wire and copper wire of the same length and thickness are connected.
a. Which wire will have high resistance?
b. Which circuit draws more current?
c. If the circuits are operated for 10 s , in which circuit will be generated more heat ?
[Score 2]

circuit. 1

circuit. 2

Ans. a.Nichrome wire.
b. Circuit. 2 [Because of low resistance]
c. Circuit. 2
[Because it draws more current. OR Heat is inversely proportional to resistance when V is constant]
PART.2.B
Attend any one question from 11\&12 [Score 2]
11. When an object is placed before a concave lens at a distance of 20 cm , image is formed at a distance of 10 cm from the lens. Find the focal length of the lens.
Ans. $u=-20 \mathrm{~cm} \quad \mathrm{v}=-10 \mathrm{~cm} \quad$ [Concave lens always forms image on the same side and hence ' v ' is negative]
focal length $\mathrm{f}=\mathrm{uv} /(\mathrm{u}-\mathrm{v})=-20 \mathrm{x}-10 /[-20-(-10)]=200 /-10=-20 \mathrm{~cm}$
12. It is given a few statements. Fill the columns of the given table using these statements.
i. It is the process of splitting heavy nucleus into light nuclei.
ii. It is the process of combining lighter nuclei into heavy nucleus.
iii. It is principle of atom bomb.
iv. It is the source of energy in the sun.

Nuclear fission	Nuclear fusion
It is the process of splitting heavy nucleus into light nuclei.	It is the process of combining lighter nuclei into heavy nucleus.
It is principle of atom bomb.	It is the source of energy in the sun.

PART.3.A
 Attend ANY THREE question from 13 to 16 [Score 3]

13. See the circuit. When current passes through a coil it behaves as a magnet. a. Identify the poles of the ends A \& B.
b. Suggest two methods to increase the strength of this electromagnet.
c. Give two differences between electromagnet and permanent magnet.

Ans. a.A: South Pole. B: North pole
[When looking through the end B , the current is flowing in anticlockwise direction]
b. i. Increase current. ii. Use a soft iron core.

c. i. Strength of permanent magnet cannot be altered. But strength of electromagnet can be changed by varying current.
ii. Poles of permanent magnet cannot be interchanged. But poles of electromagnet can be interchanged by reversing direction of current.
14. Two resistors are connected in the circuit.
a. Calculate the current in the circuit?
b. What is the potential difference between the ends of 6Ω resistor?
c. If the resistors were connected in parallel, what would be the effective resistance?
Ans. a.Resistance $\mathrm{R}=\mathrm{R}_{1}+\mathrm{R}_{2}=3+6=9 \Omega$

Voltage $\mathrm{V}=18 \mathrm{~V}$
18V
Current, $\mathrm{I}=\mathrm{V} / \mathrm{R}=18 / 9=2 \mathrm{~A}$
b. Potential difference across 6Ω resistor $=\mathrm{IR}_{2}=2 \mathrm{x} 6=12 \mathrm{~V}$
c. $\mathrm{R}_{\text {parallel }}=\mathrm{R}_{1} \cdot \mathrm{R}_{2} /\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)=3 \times 6 /(3+6)=18 / 9=2 \Omega$
15. AB is a current carrying conductor placed on a plane of paper as shown. P is a point on the plane below the conductor.
a. The direction of magnetic field at P is \qquad ..
(normally into the plane/normally outward from the plane)
b. State the rule used to detect direction of magnetic field.

Ans. a. normally outward from the plane.
b. Right hand Thumb Rule: Imagine to hold the current carrying conductor with right hand such that thump points towards the direction of current. The direction in which the other fingers encircle the conductor gives the direction of magnetic field.
OR Right Hand Screw Rule: If a right hand screw is rotated in such a way that its tip advances along the direction of current in the conductor, then direction of rotation of screw gives the direction of magnetic field.
16. See the figure.
a. Identify the device.
b. Name the component marked as ABCD.
c.Write down the energy conversion takes place in this device.
d. When the switch of the device is turned on, ABCD will be rotated in \qquad direction.
(clockwise/anticlockwise)
Ans.a. DC motor.
b. Armature.
c. Electrical energy is converted to mechanical Energy.

d. clockwise.

PART.3.B

Attend the question 17 [Score 3]
17. Incandescent lamp is a low cost light source.
a. What is used for making filament of incandescent lamp?
b. Give two major characteristics of this material.
c. The bulb of the lamp is filled with inert gas. Why?

Ans.a. tungsten.
b. i. releases white light when gets heated. ii. High melting point iii. High resistivity.
c. For preventing evaporation and oxidation of tungsten filament.

PART.4.A
 Attend ANY TWO questions 18 - 20 [4 Score]

18. An eye defect has been rectified with a lens.
a. Identify the defect.
b. Which of the following statement is correct in respect of a person suffering from this defect.
i. near pint is greater than 25 cm
ii. Near point is less than 25 cm

iii. Far point is not at infinity.
c. What may be the causes of this defect?

Ans.a. Myopia (short sightedness)
b. iii. Far point is not at infinity.
c.i.Eye ball is longer than normal length.
ii.Power of eye lens is higher (smallness of focal length)
19. An object is placed before a concave mirror at a distance of 20 cm from it. If focal length of the mirror is 30 cm ,
a. Find the distance to the image.
b. What is the magnification of the image.
c. At what distance the object is to be placed from the mirror for getting an image having the same size as that of the object?
Ans.a. u = -20 cm f $=-30 \mathrm{~cm}$
We have $1 / \mathrm{f}=1 / \mathrm{v}+1 / \mathrm{u}$
OR $v=u f /(u-f)=(-20 x-30) /[-20-(-30)] /=600 / 10=60 \mathrm{~cm}$ magnification, $m=-\mathrm{v} / \mathrm{u}=-60 /-20=3$
c. 60 cm . [Because object is to be placed at C. That is, at a distance of 2 f]
20. All constituent colours undergo scattering when sun light passes through atmosphere.
a. What is the relation between wavelength and rate of scattering?
b. Which is the colour that undergoes maximum scattering?
c. Briefly explain why horizon appears to have red colour at morning and evening?.

Ans.a. Rate of scattering increases when wavelength increases.
b. violet.
c. At morning and evening, light has to travel a greater distance through atmosphere to reach the observer (or earth). During this long journey, colours having smaller wavelengths violet,indigo,blue and green would be lost due to scattering. The predominant colours remain in the light are red and orange. So the sun and the sky appear in red colour during sunset and sunrise.

PART.4.B

Attend any one question 21\&22 [4 Score]

21. a. The ratio of speed of light in vacuum and speed in a medium is called \qquad
b. Refractive index of glass is 1.5 and speed of light in vacuum is $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$. Find speed of light in glass.
c. $\mathrm{n}=\operatorname{sini} /$ sinr is the mathematical expression for a law. Name the law.
d. What do 'i' and 'r' represent?

Ans.a. Absolute refractive index/ refractive index.
b. We have $\mathrm{n}=\mathrm{c} / \mathrm{v}$

OR $\mathrm{v}=\mathrm{c} / \mathrm{n}=3 \times 10^{8} / 1.5=2 \times 10^{8} \mathrm{~m} / \mathrm{s}$.
c. Snell's Law.
d. 'i' : angle of incidence 'r': Angle of refraction.
22. It is given four circuits. The coils and lamps are identical.
a. Find out the circuit which gives light with least intensity.
b. Find out the two circuits which give light of same intensity.
c. Name the phenomenon responsible for the difference in the intensity of life.
d. Give one use of inductor.

Ans.a. Circuit. 3
b. Circuit.1\& Circuit. 2
c. self induction.

d. Used to reduce current without energy loss.

PART.5.A

Attend any one question from 23\&24 [Score 5]

23. An object is placed before a lens of focal length 25 cm .
a. When light passes through a lens, it undergoes \qquad (reflection/refraction)
b.Draw the ray diagram of image formation.
c. Write down the position and three features of the image.
d. Calculate the power of the given lens?

Ans.a. Refraction.

b.
c. On the same side where object is placed.
d. focal length $\mathrm{f}=25 \mathrm{~cm}=25 / 100 \mathrm{~m}$

Power $\mathrm{P}=1 / \mathrm{f}=1 /(25 / 100)=100 / 25=4 \mathrm{D}$

24. There are two types of transformers.
a. What kind of transformer is shown in the figure?
b. What is the working principle of transformer?
c. If current from a DC generator is given to the primary of this transformer, will the lamp in the secondary glow? Justify.
d. In a transformer, thick wire is used in the coil, where \qquad
(current is high/voltage is high/power is high)

e. In a transformer, there are 200 turns in the primary and 2000 turns
in the secondary. What voltage is to be applied at the primary for getting 400 V AC at the secondary?
Ans.a. Step down transformer. b. mutual induction.
c. Yes. There will be mutual induction as the current from DC generator is variable current (magnitude changes continuously)
d. current is high.
e. We have Vs/Vp = Ns/Np

$$
400 / \mathrm{Vp}=2000 / 200
$$

Or $\mathrm{Vp}=400 \times 200 / 2000=40 \mathrm{~V}$

