FIRST REVISION TEST [2021-22]			
STD : X EM	Model Q. N	No : 1	Date:
SUBJECT : MATHS			Marks: 100
1.Answer all the 14	PART – I questions.	I	14 x1 = 7
2. Choose the most suitable answer from the given four alternatives and write the option code with the corresponding answer.			
1. If <i>n</i> (<i>A</i> × <i>B</i>) = 6 and <i>A</i> = {1 (A) 1	, 3} then <i>n(B</i>) is (B) 2	(C) 3	(D) 6
2. If the ordered pairs (A) (2, -2)) are equal the (C) (2,3)	n (<i>a, b</i>) is (D) (3, -2)
3. Let n(A) = m and n(B) = n then the total number of non-empty relations that can be defined from A to B is			
$(A)m^n$	(B) <i>n^m</i>	(C) $2^{mn} - 1$	
 Using Euclid's division lemma, if the cube of any positive integer is divided by 9 then the possible remainders are 			
	(B) 1, 4, 8	(C) 0, 1, 3	(D) 1, 3, 5
(A) 1	(B) 2	ctors in the prin (C) 3	ne factorization of 1729 is (D) 4
6. Given $F_1 = 1$, $F_2 = 3$ and $F_n = F_{n-1} + F_{n-2}$ then F_5 is			
	(B)5		(D)11
7. If 6 times of 6th term of an A.P. is equal to 7 times the 7th term, then the 13th			
term of the A.P. is (A) o	(B) 6	(C) 7	(D) 13
8. The next term of the sequence $\frac{3}{16}, \frac{1}{8}, \frac{1}{12}, \frac{1}{18}, \dots, is$			
(A) $\frac{1}{24}$	(B) $\frac{1}{27}$	(C) $\frac{2}{3}$	(D) $\frac{1}{81}$
9. A system of three linear equations in three variables is inconsistent if their			
planes (A) intersect only at a point (B) intersect in a line			
(c) coincides with each other			

PART – II

 $10 x^2 = 20$

II Answer any 10 questions. Question No. 28 is compulsory.

15. If $A = \{1,3,5\}$ and $B = \{2,3\}$, then (i) find AxB and BxA

16. If $B \times A = \{(-2,3), (-2,4), (0,3), (0,4), (3,3), (3,4)\}$ find A and B.

17. A Relation R is given by the set $\{(x, y) | y = x+3, x \in \{0,1,2,3,4,5\}\}$. Find its domain and range.

18. Show that the square of an odd integer is of the form 4q + 1, for some integer q.

19. Find
$$a_8$$
 and a_{15} whose nth term is $a_n = \begin{cases} \frac{n^2 - 1}{n+3} ; n \text{ is even, } n \in N \\ \frac{n^2}{2n+1} ; n \text{ is odd }, n \in N \end{cases}$

20. Check whether the sequence are in A.P. or not? $3\sqrt{2}$, $5\sqrt{2}$, $7\sqrt{2}$, $9\sqrt{2}$,

21. If nine terms ninth term is equal to the fifteen times fifteenth term, show that six times twenty fourth term is zero.

22. If 3 + k, 18 - k, 5k + 1 are in A.P. then find k.

23. Solve
$$2x - 3y = 6$$
, $x + y = 1$

24. Find the LCM of the given expressions p^2-3p+2 , p^2-4

25.. Simplify: $\frac{x^3}{x-y} + \frac{y^3}{y-x}$

26. Find the square root of the following rational expressions: $\frac{400x^4y^{12}z^{16}}{100x^8y^4z^4}$

27. Determine the nature of the roots for the following quadratic equations $15x^2+11x+2=0$

28. Find the values of 'k' for which the quadratic equation $kx^2 - (8k+4)x + 81 = 0$ has real and equal roots?

Answer Visit: https://www.kanimaths.com/2022/01/blog-post_25.html

PART – III

10 x5 = 50

III Answer 10 questions. Question No. 42 is compulsory.

29. Let A={ $x \in N / 1 \le x \le 4$ }, B ={ $x \in W | 0 \le x \le 2$ } and C={ $x \in N | x \le 3$ }. Then verify that A x (B U C) = (A x B) U (A x C)

30. Let $A = \{1,2,3,7\}$ and $B = \{3,0, -1,7\}$, which of the following are relation from A to B?

(i)
$$R_1 = \{(2,1), (7,1)\}$$
 (i) $R_2 = \{(-1,1)\}$ (iii) $R_3 = \{(2,-1), (7,7), (1,3)\}$

(iv) R4={(7,-1), (0,3), (3,3), (0,7)}

31. Represent each of the given relations by (a) an arrow diagram, (b) a graph and

(c) a set in roster form, wherever possible. $\{(x, y) | x=2y, x \in \{2,3,4,5\}, y \in \{1,2,3,4\}$

32. Use Euclid's Division Algorithm to find the Highest Common Factor (HCF) of 84,90 and 120.

33. '*a*' and '*b*' are two positive integers such that $a^b \times b^a = 800$. Find a and b.

34. Find the greatest number consisting of 6 digits which is exactly divisible by 24, 15, 36?

- 35. The sum of 3 consecutive terms that are in A.P.is 27 and their product is 288. Find the 3 terms.
- **36.** If $(m+1)^{\text{th}}$ term of an A.P. is twice the $(n+1)^{\text{th}}$ term, then prove that $(3m+1)^{\text{th}}$ term is twice the $(m+n+1)^{\text{th}}$ term.

37. Solve the following system of linear equations in three variables.

$$x + y + z = 5;$$
 $2x - y + z = 9;$ $x - 2y + 3z = 10$

38. Simplify $\frac{1}{x^2 - 5x + 6} + \frac{1}{x^2 - 3x + 2} - \frac{1}{x^2 - 8x + 15}$

39. If $A = \frac{2x+1}{2x-1}$, $B = \frac{2x-1}{2x+1}$, find $\frac{1}{A-B} - \frac{2B}{A^2 - B^2}$. Visit: <u>https://youtu.be/JbYuFp0n9K8</u>

40. Find the square root of the following polynomials by division method $37x^2 - 28x^3 + 4x^4 + 42x + 9$

41. A bus covers a distance of 90 km at a uniform speed. Had the speed been 15km/hour more it would have taken 30 minutes less for the journey. Find the original speed of the bus.

42. If α , β are the roots of the equation $2x^2 - x - 1 = 0$, then form the equation

whose roots are $\frac{1}{\alpha}$, $\frac{1}{\beta}$

PART – IV

2 x8 = 16

IV. Answer any one questions.

43. a) Discuss the nature of solutions of the following quadratic equations . $x^2+2x+5=0$ (or)

b) Graph the following quadratic equations and state their nature of solutions. $x^2 - 4x + 4 = 0$

44. a) Draw the graph of $y=x^2-4x+3$ and use it to solve $x^2-6x+9=0$. (or)

b) Draw the graph of $y = x^2 - 5x - 6$ and hence solve $x^2 - 5x - 14 = 0$.

Answer Visit: https://www.kanimaths.com/2022/01/blog-post_25.html

P.THIRUKUMARESAKANI M.A.,M.Sc.,B.Ed., GGHSS, KONGANAPURAM, SALEM Dt CELL: 9003450850, Email:kanisivasankari@gmail.com Visit Website : www.kanimaths.com & www.gopi.digital

Visit You-tube Channel: Kani Maths https://tinyurl.com/KaniMaths

Telegram: <u>https://t.me/+ymMhSiTWeiphZjl1</u> & Whatsup: <u>https://chat.whatsapp.com/DTgNR6YtJHV4q4Oe6fmrA9</u>