FY 424 Date of Exam : 03.02.2022

IMPROVEMENT / SUPPLIMENTARY EXAMINATION, JANUARY - 2022

Part – III PHYSICS Maximum : 60 Scores ANSWER KEY (Unofficial)

Qn No	Qn Sub No	Split Scores			Total Score
1		ii) Electrodynamics			1
2		iii) $\vec{v} = \vec{\omega} X$	r		1
3		iv) Independent of A	Area of Contact		1
4		$P = \frac{1}{3} nm \bar{v}^2$			1
5		Gravitational force / Electromagnetic force / Strong nuclear force/ Weak nuclear force (any two)		1	
					_
		Time	second	<u>s</u>	
6		Electric Current	<u>ampere</u>	A	2
		Solid angle	steradian	Sr	
		Amount of Substance (Quantity of matter)	mole	mol	
7	i) ii)	True True		1 Score 1 Score	2
8	a) b)	Power1 Scoremagnitude1/2 ScoreDirection1/2 Score		2	
9		Distance d = 7 x $2\pi r$ = 14 x 3.14 x 0.12 = 5.28m 1 Score Speed v = $\frac{d}{t}$ = $\frac{5.28}{100}$ = 0.0528m/s 1 Score		2	
10	i) ii) iii) iv)	Negative Positive Zero Positive		1/2 Score 1/2 Score 1/2 Score 1/2 Score	2
11		Rate of Change of KE $\frac{d K}{dt} = d \frac{(\frac{1}{2}mv^2)}{dt} = mv \frac{d}{dt}$ $\frac{d K}{dt} = F dx$ Integrating, $\int_{K_i}^{K_f} dK = \int_{x_1}^{x_2} F dx$ $K_f - K_i = W$	$\frac{dv}{dt} = mva = Fv = F$	<u>dx</u> dt	2

	b)	or x t 2 Scores	
18	a)	The rate of change of linear momentum is equal to applied external force1 ScoreF α F α Δt F α Δt f = kmak=1F = ma1/2 score	3
19		$\vec{l} = \vec{r} \times \vec{p}$ $\frac{d\vec{l}}{dt} = \frac{d\vec{r} \times \vec{p}}{dt} = \frac{d\vec{r}}{dt} \times \vec{p} + \vec{r} \times \frac{d\vec{p}}{dt} \qquad 1 \text{ score}$ $= \vec{v} \times \vec{p} + \vec{r} \times \vec{F} \qquad 1 \text{ score}$ $= 0 + \vec{\tau} = \vec{\tau} \qquad 1 \text{ score}$	3
20	a)	Let $F=km^av^br^c$ $[M^1L^1T^{-2}]=M^a[L^1T^{-1}]^bL^c$ $[M^1L^1T^{-2}]=M^aL^bT^{-b}L^c$ $[M^1L^1T^{-2}]=M^aL^{b+c}T^{-b}$ Applying principle of homogeneity of dimensions a=1 $b+c=1$ $-b=-2$ $b=2$ $c=1-2=-1putting these values F=km^1v^2r^{-1} F=\frac{kmv^2}{r}$	3
21		X = $\frac{m_1 x_1 + m_2 x_2}{M}$ = $\frac{1 m x 0 + 35.5 m x 1.27}{36.5 m}$ = 1.23 A ⁰ away from H atom	3
22		$P = \frac{1}{3} \text{ nm } \bar{v}^{2}$ $= \frac{1}{3} \frac{N}{V} \text{ m } \bar{v}^{2}$ $PV = \frac{1}{3} \text{ Nm } \bar{v}^{2}$ $Nk_{B}T = \frac{1}{3} \text{ Nm } \bar{v}^{2} , \qquad \frac{1}{2} \text{ m } \bar{v}^{2} = \frac{3}{2} k_{B}T , \overline{KE} = \frac{3}{2}k_{B}T$	3

23		On the surface $g = \frac{GM}{R^2} = \frac{G\frac{4}{3}\pi R^3 \rho}{R^2} = \frac{4}{3}\pi G R \rho$	1 Score	
		At depth d, $g' = \frac{4}{3}\pi G(R-d)\rho$	1 Score	
		$\frac{g'}{g} = \frac{R-d}{R} = 1-\frac{d}{R}$		3
		$g' = g \left(1 - \frac{d}{R} \right)$	1 Score	
			K	
24		N=Normal force F=Frictional force	2 Score	2
		N sin θ and f cos θ	1 Score	3
25	a)	Parabola	1 score	
	b)	$v^2 = v_0^2 + 2as$ $0^2 = (usin\Theta)^2 + 2x - g xH$	1 Score	
		$0 = u^2 \sin^2 \Theta - 2gH$		4
		$2gH = u^2 sin^2 \Theta$	1 Score	
		$H = \frac{u \sin \Theta}{2g}$	1 Score	
26	a)	$\frac{2V_0 \times \sin(\Theta)}{1-\frac{2}{2}}$	1 Score	
		$\frac{g}{2 \times 28 \times \sin(30^{\circ})}$	1 50016	
		$T = \frac{2.86 \text{ s}}{9.8} = 2.86 \text{ s}$	1 Score	
	b)	$R = \frac{V_0^2 \times \sin(2\Theta)}{g}$	1 Score	4
		$= \frac{28^2 \times \sin(2x30^0)}{9.8} = 69.28m$	1 Score	

27	a)	For every action there is equal and opposite reaction	1 Score	
	b)	For first ball, v_1 =- u_1 Then change in momentum(impulse)= m_1v_1 - m_1u_1 = -2 m_1u_1 = - 0.6 kgms ⁻¹	2 Score	4
28		Principle of conservation of energy states that energy can neither be creat distroyed At point A K.E = 0 P.E = mgh Total Energy=mgh At point B, K.E = $\frac{1}{2}$ mv ² $2gx = V^{2}-0^{2}$ $V^{2} = 2gx$ K.E= $\frac{1}{2}$ mv ² = $\frac{1}{2}$ mX $2gx = mgx$ P.E = m.g.(h-x) Total Energy = K.E+P.E = mgx+mg(h-x)= mgh At point C. P.E = 0 $2gh = v^{2}-0^{2} = v^{2}$ K.E = $\frac{1}{2}$ m.v ² = mX $2gh = mgh$ Total Energy = K.E+P.E = mgh+0= mgh Total Energy = K.E+P.E = mgh+0= mgh Thus, at all the points the energy is same.	ed nor be	4
29	a)	P=Fv 1	Score	
	b)	iii) kilowatt hour 1	Score	4
	c)	m=5000kg, a=3/20 ms ⁻² from $v^2=u^2+2as$, s=1320m then find work W then power P=W/t=8.25 kilowatt 2	Score	

PREPARED BY : HIGHER SECONDARY PHYSICS TEACHERS ASSOCIATION KANNUR (HSPTA KANNUR)

32	a)	Hydraulic Lift	1 Score	
	b)	m=3000kg, F=mg= 3000 x 9.8=29400N & A=425cm ² pressure on the smaller piston =f/a =F/A= 691764.7N/m ²	3 Score	4
33	a) b) c)	Melting Point True m=0.3kg, Q= 10 ⁵ J here L=Q/m= 3.34×10 ⁵ J kg ⁻¹	1 Score 1 Score 2 Score	4
34	a) b)	$T = 2\pi \sqrt{\frac{l}{g}}$ $T^{2} = 4\pi^{2} \frac{l}{g}$	2 Scores 1 Score	4
		$I = \frac{T^2 g}{4\pi^2} = \frac{2^2 x 9.8}{4x 3.14^2} = 0.994 \text{m} = 1\text{m}$	1 Score	
35	a)	$y = a \sin(kx - \omega t + \varphi)$	(1 Score)	
	b)	for a point with fixed phase $(kx - \omega t + \varphi) = \text{Constant}$ $k \frac{dx}{dt} - \omega + 0 = 0$ $kv - \omega = 0$ $kv = \omega$ $v = \frac{\omega}{k}$	(1 Score) (1 Score) (1 Score)	4
36	a)	Homogeneity	(1 Score)	5
	b)	or Any other correct pair	ue and Work (1 Score)	
		$\left[\frac{1}{2}mv^{2}\right] = M (LT^{-1})^{2} = ML^{2}T^{-2}$	(1 Score)	
		$[mgh] = M LT^{-2} L = ML^2T^{-2}$	(1 Score)	
		So the equation is dimensionally correct		
		(1Score)		

PREPARED BY : HIGHER SECONDARY PHYSICS TEACHERS ASSOCIATION KANNUR (HSPTA KANNUR)

37a)
$$v = u + at$$
(1 Score) v_{v_0} v_{v

 \square

PREPARED BY : HIGHER SECONDARY PHYSICS TEACHERS ASSOCIATION KANNUR (HSPTA KANNUR)

	c)	$I_z = I_x + I_y$ $\frac{MR^2}{2} = I + I = 2I$ $I = \frac{MR^2}{4}$	1/2 Score 1/2 Score 1 Score	
40	a) b)	$g = \frac{GM}{R^2}$ $g^1 = \frac{gR^2}{(R+h)^2}$ $mg^1 = \frac{mgR^2}{(R+h)^2}$ $W^1 = \frac{WR^2}{(R+h)^2} = \frac{63xR^2}{(R+\frac{R}{2})^2} = \frac{63}{(R+\frac{R}{2})^2}$	1 Score 1 Score 1 Score $3 \frac{3 x R^2}{3 R^2} = 28 \text{ N} 2 \text{ Score}$	5

PREPARED BY : HIGHER SECONDARY PHYSICS ASSOCIATION KANNUR (HSPTA KANNUR)