Date of Exam : 03.02.2022
IMPROVEMENT / SUPPLIMENTARY EXAMINATION, JANUARY - 2022
Part - III
PHYSICS
Maximum : 60 Scores
ANSWER KEY
(Unofficial)

12		Every body in this universe attracts every other body with a force which is directly proportional to the product of their masses and inversely proportional to the square of the distance between them. $\mathrm{F}=\frac{G m_{1} m_{2}}{r^{2}}$	2
13		If a wire is stretched then the restoring force per unit area is called tensile stress (1 Score) Longitudinal Strain is the ratio of change in length to original length Or, Longitudinal Strain $=\frac{\Delta l}{l}$ (1 Score)	2
14			2
15			2
16		$\begin{aligned} \text { Workdone } \mathrm{W}=\int_{V_{1}}^{V_{2}} P d V & =\int_{V_{1}}^{V_{2}} \frac{\mu R T d V}{V}=\mu \mathrm{RT} \int_{V_{1}}^{V_{2}} \frac{d V}{V} \\ = & \mu \mathrm{RT} \ln \frac{V_{2}}{V_{1}} \end{aligned}$	2
17	a)	It is ratio of total displacement of the particle to the time taken. 1 Score	3

	b)	 or	
18	a)	The rate of change of linear momentum is equal to applied external force	3
19		$\begin{aligned} \vec{l} & =\vec{r} \times \vec{p} \\ \frac{d \vec{l}}{d t} & =\frac{d \vec{r} \times \vec{p}}{d t}=\frac{d \vec{r}}{d t} \times \vec{p}+\vec{r} \times \frac{d \vec{p}}{d t} \\ & =\vec{v} X \vec{p}+\vec{r} X \vec{F} \\ & =0+\vec{\tau}=\vec{\tau} \end{aligned}$ 1 score	3
20	a)	Let $\mathrm{F}=\mathrm{km}^{\mathrm{a}} \mathrm{v}^{\mathrm{b}} \mathrm{r}^{\mathrm{c}}$ $\left[M^{1} L^{1} T^{-2}\right]=M^{a}\left[L^{1} T^{-1}\right]^{b} L^{c}$ $\left[M^{1} L^{1} \mathrm{~T}^{-2}\right]=\mathrm{M}^{\mathrm{a}} \mathrm{L}^{\mathrm{b}} \mathrm{T}^{-\mathrm{b}} \mathrm{L}^{\mathrm{c}}$ $\left[M^{1} L^{1} \mathrm{~T}^{-2}\right]=\mathrm{M}^{a} \mathrm{~L}^{\mathrm{b+c}} \mathrm{~T}^{-\mathrm{b}}$ Applying principle of homogeneity of dimensions $\begin{array}{llll} a=1 & b+c=1 & -b=-2 & b=2 \end{array} c=1-2=-1$ putting these values $\quad \mathrm{F}=\mathrm{km}^{1} \mathrm{v}^{2} \mathrm{r}^{-1} \quad \mathrm{~F}=\frac{k m v^{2}}{r}$	3
21		$\mathrm{X}=\frac{m_{1} x_{1}+m_{2} x_{2}}{M}=\frac{1 m x 0+35.5 m \times 1.27}{36.5 \mathrm{~m}}=1.23 \mathrm{~A}^{0}$ away from H atom	3
22		$\begin{aligned} \mathrm{P} & =\frac{1}{3} \mathrm{~nm} \overline{v^{2}} \\ & =\frac{1}{3} \frac{N}{V} \mathrm{~m} \overline{v^{2}} \\ \mathrm{PV} & =\frac{1}{3} \mathrm{Nm} \overline{v^{2}} \\ \mathrm{Nk}_{\mathrm{B}} \mathrm{~T} & =\frac{1}{3} \mathrm{Nm} \overline{v^{2}}, \quad \frac{1}{2} \mathrm{~m} \overline{v^{2}}=\frac{3}{2} \mathrm{k}_{\mathrm{B}} \mathrm{~T}, \quad \overline{K E}=\frac{3}{2} k_{B} T \end{aligned}$	3

23		On the surface $\mathrm{g}=\frac{G M}{R^{2}}=\frac{G \frac{4}{3} \pi R^{3} \rho}{R^{2}}=\frac{4}{3} \pi G R \rho \quad 1$ Score At depth $\mathrm{d}, \quad \mathrm{g},=\frac{4}{3} \pi G(R-d) \rho$ 1 Score $\begin{aligned} & \frac{g^{\prime}}{g}=\frac{R-d}{R}=1-\frac{d}{R} \\ & g^{\prime}=g\left(1-\frac{d}{R}\right) \end{aligned}$ 1 Score	3
24		$\mathrm{N}=$ Normal force $\mathrm{F}=$ Frictional force $\mathrm{N} \sin \theta$ and $\mathrm{f} \cos \theta$	3
25	a) b)	Parabola	4
26	a) b)	$\begin{array}{rlrl} \mathrm{T} & =\frac{2 V_{0} \times \sin (\theta)}{g} & & 1 \text { Score } \\ \mathrm{T} & =\frac{2 \times 28 \times \sin \left(30^{\circ}\right)}{9.8}=2.86 \mathrm{~s} & & 1 \text { Score } \\ \mathrm{R} & =\frac{V_{0}^{2} \times \sin (2 \theta)}{g} & & 1 \text { Score } \\ & =\frac{28^{2} \times \sin \left(2 \times 30^{\circ}\right)}{9.8}=69.28 \mathrm{~m} & 1 \text { Score } \end{array}$	4

27	a) b)	For every action there is equal and opposite reaction 1 Score For first ball, $\mathrm{v}_{1}=-\mathrm{u}_{1}$ Then change in momentum(impulse) $=m_{1} v_{1}-m_{1} u_{1}=-2 m_{1} u_{1}=-0.6$ kgms $^{-1} \quad 2$ Score	4
28		Principle of conservation of energy states that energy can neither be created nor be distroyed At point A $\text { K.E = } 0$ P.E = mgh Total Energy=mgh At point B, $\begin{aligned} & \mathrm{K} . \mathrm{E}=\frac{1}{2} \mathrm{mv}^{2} \\ & 2 \mathrm{gx}=\mathrm{V}^{2}-0^{2} \\ & \mathrm{~V}^{2}=2 \mathrm{gx} \\ & \text { K.E }=\frac{1}{2} \mathrm{mv}^{2}=\frac{1}{2} \mathrm{mX} \mathrm{2gx}=\mathrm{mgx} \\ & \text { P.E }=\mathrm{m} . g .(\mathrm{h}-\mathrm{x}) \end{aligned}$ Total Energy $=$ K.E + P.E $=m g x+m g(h-x)=m g h$ At point C, P.E $=0$ $2 \mathrm{gh}=\mathrm{v}^{2}-0^{2}=\mathrm{v}^{2}$ $\mathrm{K} \cdot \mathrm{E}=\frac{1}{2} \mathrm{~m} \cdot \mathrm{v}^{2}=\mathrm{mX} 2 \mathrm{gh}=\mathrm{mgh}$ Total Energy $=$ K.E + P.E $=\mathrm{mgh}+0=\mathrm{mgh}$ Thus, at all the points the energy is same.	4
29	a) b) c)	$\mathrm{P}=\mathrm{Fv}$ 1 Score iii) kilowatt hour 1 Score $\mathrm{m}=5000 \mathrm{~kg}, \mathrm{a}=3 / 20 \mathrm{~ms}^{-2}$ from $\mathrm{v}^{2}=\mathrm{u}^{2}+2 \mathrm{as}, \mathrm{s}=1320 \mathrm{~m}$ then find work W then power $\mathrm{P}=\mathrm{W} / \mathrm{t}=8.25$ kilowatt 2 Score	4

37	a) b)	$\begin{align*} & \begin{array}{l} \mathrm{v}=\mathrm{u}+\mathrm{at} \\ \text { In the graph, } \\ \mathrm{AC}=\mathrm{t}, \quad \mathrm{CD}=\mathrm{v}_{0}, \mathrm{BD}=\mathrm{v} \\ \mathrm{BC}=\mathrm{BD}-\mathrm{CD}=\mathrm{v}-\mathrm{v}_{0}=\mathrm{at} \\ \mathrm{x}=\mathrm{Area} \mathrm{OABD} \\ =\text { Area } \quad \mathrm{OACD}+\quad \mathrm{ABC}=\mathrm{CD} \times \mathrm{AC}+\frac{1}{2} A C x B C \end{array} \tag{1Score}\\ & =\mathrm{v}_{0} \mathrm{t}+\frac{1}{2} t \text { txat }=\mathrm{v}_{0} \mathrm{t}+\frac{1}{2} a t^{2} \end{align*}$	5
38	a)	Centripetal force \leq Frictinal force $\begin{aligned} \frac{m v^{2}}{R} & \leq \mu \mathrm{mg} \\ \mathrm{v}^{2} & \leq \mu \mathrm{Rg} \\ \mathrm{v} & \leq \sqrt{\mu R g} \quad, \quad \mathrm{v}_{\max }=\sqrt{\mu R g} \\ \mathrm{v}_{\max } & =\sqrt{\mu R g} \\ & =\sqrt{0.1 \times 20 \times 9.8} \\ & =4.48 \mathrm{~m} / \mathrm{s} \end{aligned}$ 1 Score Since the speed of the car is more than this safe speed it will slip while taking the turn 1/2 Score	5
39	a) b)	(1 Score) The perpendicular axis theorem states that the moment of inertia of a planar lamina about an axis perpendicular to the plane of the lamina is equal to the sum of the moments of inertia of the lamina about the two axes at right angles to each other, in its own plane intersecting each other at the point where the perpendicular axis passes through it. $\mathrm{I}_{\mathrm{z}}=\mathrm{I}_{\mathrm{x}}+\mathrm{I}_{\mathrm{y}}$ (2 Score)	5

	c)	I_{z} $=\mathrm{I}_{\mathrm{x}}+\mathrm{I}_{\mathrm{y}}$ $1 / 2$ Score $\frac{M R^{2}}{2}$ $=\mathrm{I}+\mathrm{I}=2 \mathrm{I}$ I $=\frac{M R^{2}}{4}$ $1 / 2$ Score 1 Score	
40	a) b)	$\begin{array}{ll} \mathrm{g}=\frac{G M}{R^{2}} & 1 \text { Score } \\ \mathrm{g}^{\mathrm{l}}=\frac{g R^{2}}{(R+h)^{2}} & 1 \text { Score } \\ \mathrm{mg}^{1}=\frac{m g R^{2}}{(R+h)^{2}} & 1 \text { Score } \\ \mathrm{W}^{1}=\frac{W R^{2}}{(R+h)^{2}}=\frac{63 x R^{2}}{\left(R+\frac{R}{2}\right)^{2}}=\frac{63 x R^{2}}{\left(\frac{3}{2} R\right)^{2}}=28 \mathrm{~N} & 2 \text { Score } \end{array}$	5

PREPARED BY : HIGHER SECONDARXYP.ASSICSASSOCIATION KANNUR (HSPTA KANNUR)

