ME GATE-05

MCQ 1.1 Stokes theorem connects
GATE ME 2005 (A) a line integral and a surface integral
ONE MARK
(B) a surface integral and a volume integral
(C) a line integral and a volume integral
(D) gradient of a function and its surface integral

SOL 1.1 Option (A) is correct.
We know that the Stokes theorem is

$$
\oint_{C} \boldsymbol{F} \cdot d r=\iint_{S}(\nabla \times \boldsymbol{F}) \cdot \boldsymbol{n} d S=\iint_{S}(\operatorname{Curl} \boldsymbol{F}) \cdot d S
$$

Here we can see that the lineintegral $\oint_{C} \boldsymbol{F} \cdot d r \&$ surface integral $\iint_{S}(\operatorname{Curl} \boldsymbol{F}) \cdot d s$ is related to the stokes theorem.

MCQ 1.2 A lot has 10% defective items. Ten items are chosen randomly from this lot. The
GATE ME 2005 ONE MARK probability that exactly 2 of the chosen items are defective is
(A) 0.0036
(B) 0.1937
(C) 0.2234
(D) 0.3874

SOL 1.2 Option (B) is correct.
Let, $\quad P=$ defective items
$Q=$ non-defective items
10% items are defective, then probability of defective items

$$
P=0.1
$$

Probability of non-defective item

$$
Q=1-0.1=0.9
$$

The Probability that exactly 2 of the chosen items are defective is

$$
\begin{aligned}
& ={ }^{10} C_{2}(P)^{2}(Q)^{8}=\frac{10!}{8!2!}(0.1)^{2}(0.9)^{8} \\
& =45 \times(0.1)^{2} \times(0.9)^{8}=0.1937
\end{aligned}
$$

MCQ 1.3 $\int_{-a}^{a}\left(\sin ^{6} x+\sin ^{7} x\right) d x$ is equal to
(A) $2 \int_{0}^{a} \sin ^{6} x d x$
(B) $2 \int_{0}^{a} \sin ^{7} x d x$
(C) $2 \int_{0}^{a}\left(\sin ^{6} x+\sin ^{7} x\right) d x$
(D) zero

SOL 1.3 Option (A) is correct.
Let $\quad f(x)=\int_{-a}^{a}\left(\sin ^{6} x+\sin ^{7} x\right) d x$

$$
f(x)=\int_{-a}^{a} \sin ^{6} x d x+\int_{-a}^{a} \sin ^{7} x d x
$$

We know that

$$
\int_{-a}^{a} f(x) d x= \begin{cases}0 & \text { when } f(-x)=-f(x) ; \text { odd function } \\ 2 \int_{0}^{a} f(x) & \text { when } f(-x)=f(x) ; \text { even function }\end{cases}
$$

Now, here $\sin ^{6} x$ is an even function $\& \sin ^{7} x$ is an odd function. Then,

$$
f(x)=2 \int_{0}^{a} \sin ^{6} x d x+0=2 \int_{0}^{a} \sin ^{6} x d x
$$

MCQ 1.4
GATE ME 2005 ONE MARK

A is a 3×4 real matrix and $A x=b$ is an inconsistent system of equations. The highest possible rank of A is
(A) 1
(B) 2
(C) 3

SOL 1.4 Option (C) is correct.
We know, from the Echelon form the rank of any matrix is equal to the Number of non zero rows.
Here order of matrix is 3×4, then, we can say that the Highest possible rank of this matrix is 3 .

MCQ 1.5 Changing the order of the integration in the double integral $I=\int_{0}^{8} \int_{\frac{x}{4}}^{2} f(x, y) d y d x$
GATE ME 2005 ONE MARK leads to $I=\int_{r}^{s} \int_{p}^{q} f(x, y) d x d y$ What is q ?
(A) $4 y$
(B) $16 y^{2}$
(C) x
(D) 8

SOL 1.5 Option (A) is correct.
Given

$$
I=\int_{0}^{8} \int_{\pi / 4}^{2} f(x, y) d y d x
$$

Here we can draw the graph from the limits of the integration, the limit of y is from $y=\frac{x}{4}$ to $y=2$

For x the limit is $\quad x=0$ to $x=8$

Here we use the changing the order of the integration. The limit of x is 0 to 8 but we have to find the limits in the form of y then $x=0$ to $x=4 y \&$ limit of y is 0 to 2
So $\int_{0}^{8} \int_{x / 4}^{2} f(x, y) d y d x=\int_{0}^{2} \int_{0}^{4 y} f(x, y) d x d y=\int_{r}^{s} \int_{p}^{q} f(x, y) d x d y$
Comparing the limits and get
$r=0, s=2, p=0, q=4 y$

MCQ 1.6
GATE ME 2005 ONE MARK

The time variation of the position of a particle in rectilinear motion is given by $x=2 t^{3}+t^{2}+2 t$. If v is the velocity and a is the acceleration of the particle in consistent units, the motion started with
(A) $v=0, a=0$
(B) $v=0, a=2$
(C) $v=2, a=0$

$$
\text { (D) } v=2, a=2
$$

\square (D) $v=2, a=2$

SOL 1.6 Option (D) is correct.
Given ; $\quad x=2 t^{3}+t^{2}+2 t$
We know that,

$$
\begin{equation*}
v=\frac{d x}{d t}=\frac{d}{d t}\left(2 t^{3}+t^{2}+2 t\right)=6 t^{2}+2 t+2 \tag{i}
\end{equation*}
$$

We have to find the velocity \& acceleration of particle, when motion stared, So
At $t=0$,

$$
v=2
$$

Again differentiate equation (i) w.r.t. t

$$
a=\frac{d v}{d t}=\frac{d^{2} x}{d t^{2}}=12 t+2
$$

At $t=0, \quad a=2$
MCQ 1.7 A simple pendulum of length of 5 m , with a bob of mass 1 kg , is in simple harmonic ONE MARK motion. As it passes through its mean position, the bob has a speed of $5 \mathrm{~m} / \mathrm{s}$. The net force on the bob at the mean position is
(A) zero
(B) 2.5 N
(C) 5 N
(D) 25 N

SOL 1.7 Option (A) is correct.
We have to make the diagram of simple pendulum

Here, We can see easily from the figure that tension in the string is balanced by the weight of the bob and net force at the mean position is always zero.

MCQ 1.8
GATE ME 2005 ONE MARK

A uniform, slender cylindrical rod is made of a homogeneous and isotropic material.
The rod rests on a frictionless surface. The rod is heated uniformly. If the radial and longitudinal thermal stresses are represented by σ_{r} and σ_{z}, respectively, then
(A) $\sigma_{r}=0, \sigma_{z}=0$
(1)
(B) $\sigma_{r} \neq 0, \sigma_{z}=0$
(C) $\sigma_{r}=0, \sigma_{z} \neq 0$
(D) $\sigma_{r} \neq 0, \sigma_{z} \neq 0$

SOL 1.8 Option (A) is correct.
We know that due to temperature changes, dimensions of the material change. If these changes in the dimensions are prevented partially or fully, stresses are generated in the material and if the changes in the dimensions are not prevented, there will be no stress set up. (Zero stresses).
Hence cylindrical rod is allowed to expand or contract freely.
So, $\sigma_{r}=0$ and $\sigma_{z}=0$
MCQ 1.9 Two identical cantilever beams are supported as shown, with their free ends in

GATE ME 2005 ONE MARK contact through a rigid roller. After the load P is applied, the free ends will have

(A) equal deflections but not equal slopes
(B) equal slopes but not equal deflections
(C) equal slopes as well as equal deflections
(D) neither equal slopes nor equal deflections

SOL 1.9 Option (A) is correct.
From the figure, we can say that load P applies a force on upper cantilever and the reaction force also applied on upper cantilever by the rigid roller. Due to this, deflections are occur in both the cantilever, which are equal in amount. But
because of different forces applied by the P and rigid roller, the slopes are unequal.

MCQ 1.10
GATE ME 2005 ONE MARK

The number of degrees of freedom of a planar linkage with 8 links and 9 simple revolute joints is
(A) 1
(B) 2
(C) 3
(D) 4

SOL 1.10 Option (C) is correct.
Given $l=8, j=9$
We know that, Degree of freedom,

$$
n=3(l-1)-2 j=3(8-1)-2 \times 9=3
$$

MCQ 1.11 There are four samples $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ and S , with natural frequencies 64, 96, 128 and

GATE ME 2005 ONE MARK 256 Hz , respectively. They are mounted on test setups for conducting vibration experiments. If a loud pure note of frequency 144 Hz is produced by some instrument, which of the samples will show the most perceptible induced vibration?
(A) P
(B) Q
(C) R
(D) S

SOL 1.11 Option (C) is correct.
The speed of sound in air $=332 \mathrm{~m} / \mathrm{s}$
For frequency of instrument of 144 Hz , length of sound wave

$$
\begin{aligned}
& L_{I}=\frac{332}{144}=2.30 \mathrm{~m} \\
& 64 \mathrm{~Hz}
\end{aligned}
$$

For sample P of 64 Hz ,

	$L_{P}=\frac{332}{64}=5.1875 \mathrm{~m}$
Q of 96 Hz	$L_{Q}=\frac{332}{96}=3.458 \mathrm{~m}$
R of 128 Hz	$L_{R}=\frac{332}{128}=2.593 \mathrm{~m}$
S of 250 Hz	$L_{S}=\frac{332}{256}=1.2968 \mathrm{~m}$

Here, the length of sound wave of sample $R\left(L_{R}=2.593 \mathrm{~m}\right)$ is most close to the length of sound wave of Instrument ($L_{I}=2.30 \mathrm{~m}$). Hence, sample R produce most perceptible induced vibration.

MCQ 1.12 Which one of the following is criterion in the design of hydrodynamic journal bearings?
(A) Sommerfeld number
(B) Rating life
(C) Specific dynamic capacity
(D) Rotation factor

SOL 1.12 Option (A) is correct.
The coefficient of friction for a full lubricated journal bearing is a function of three
variables, i.e.

$$
\mu=\phi\left(\frac{Z N}{p}, \frac{d}{c}, \frac{l}{d}\right)
$$

Here, $\frac{Z N}{p}=$ Bearing characteristic Number, $d=$ Diameter of the bearing $l=$ Length of the bearing, $c=$ Diameteral clearance

$$
\text { Sommerfeld Number }=\frac{Z N}{p}\left(\frac{d}{c}\right)^{2}
$$

It is a dimensionless parameter used extensively in the design of journal bearing. i.e. sommerfeld number is also function of $\left(\frac{Z N}{p}, \frac{d}{c}\right)$. Therefore option (A) is correct.

MCQ 1.13 The velocity components in the x and y directions of a two dimensional potential GATE ME 2005
ONE MARK flow are u and v, respectively. Then $\frac{\partial u}{\partial x}$ is equal to
(A) $\frac{\partial v}{\partial x}$
(B) $-\frac{\partial v}{\partial x}$
(C) $\frac{\partial v}{\partial y}$
(D) $-\frac{\partial v}{\partial y}$

SOL 1.13 Option (D) is correct.
We know that potential flow (ideal flow) satisfy the continuity equation.
The continuity equation for two dimensional flow for incompressible fluid is given by,

$$
\begin{aligned}
\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y} & =0 \\
\frac{\partial u}{\partial x} & =-\frac{\partial v}{\partial y}
\end{aligned}
$$

MCQ 1.14 In a case of one dimensional heat conduction in a medium with constant properties,

GATE ME 2005 ONE MARK T is the temperature at position x, at time t. Then $\frac{\partial T}{\partial t}$ is proportional to
(A) $\frac{T}{x}$
(B) $\frac{\partial T}{\partial x}$
(C) $\frac{\partial^{2} T}{\partial x \partial t}$
(D) $\frac{\partial^{2} T}{\partial x^{2}}$

SOL 1.14 Option (D) is correct.
The general heat equation in cartesian co-ordinates,

$$
\frac{\partial^{2} T}{\partial x^{2}}+\frac{\partial^{2} T}{\partial y^{2}}+\frac{\partial^{2} T}{\partial z^{2}}=\frac{1}{\alpha} \frac{\partial T}{\partial t}
$$

For one dimensional heat conduction,

$$
\frac{\partial^{2} T}{\partial x^{2}}=\frac{1}{\alpha} \frac{\partial T}{\partial t}=\frac{\rho c_{p}}{k} \frac{\partial T}{\partial t} \quad \alpha=\frac{k}{\rho c_{p}}=\text { Thermal Diffusitivity }
$$

For constant properties of medium,

$$
\frac{\partial T}{\partial t} \propto \frac{\partial^{2} T}{\partial x^{2}}
$$

MCQ 1.15 The following four figures have been drawn to represent a fictitious thermodynamic GATE ME 2005 cycle, on the $p-\nu$ and T-s planes. ONE MARK

fig. 1

fig. 3

fig. 2

According to the first law of thermodynamics, equal areas are enclosed by
(A) figures 1 and 2
(B) figures 1 and 3
(C) figures 1 and 4
(D) figures 2 and 3

SOL 1.15 Option (A) is correct.
From the first law of thermodynamics for a cyclic process,

$$
\Delta U=0
$$

And

$$
\oint \delta Q=\oint \delta W
$$

The symbol $\oint \delta Q$, which is called the cyclic integral of the heat transfer represents the heat transfer during the cycle and $\oint \delta W$, the cyclic integral of the work, represents the work during the cycle.
We easily see that figure 1 and 2 satisfies the first law of thermodynamics. Both the figure are in same direction (clockwise) and satisfies the relation.

$$
\oint \delta Q=\oint \delta W
$$

MCQ 1.16 A $p-v$ diagram has been obtained from a test on a reciprocating compressor.
(A)

(B)

(C)

(D)

SOL 1.16 Option (D) is correct.

From above figure, we can easily see that option (D) is same.
MCQ 1.17 The following figure was generated from experimental data relating spectral black GATE ME 2005 body emissive power to wavelength at three temperature T_{1}, T_{2} and $T_{3}\left(T_{1}>T_{2}>T_{3}\right)$ ONE MARK

The conclusion is that the measurements are
(A) correct because the maxima in $E_{b \lambda}$ show the correct trend
(B) correct because Planck's law is satisfied
(C) wrong because the Stefan Boltzmann law is not satisfied
(D) wrong because Wien's displacement law is not satisfied

SOL 1.17 Option (D) is correct.

Given: $T_{1}>T_{2}>T_{3}$
From, Wien's displacement law,

$$
\begin{aligned}
\lambda_{\max } T & =0.0029 \mathrm{mK}=\mathrm{Constant} \\
\lambda_{\max } & \propto \frac{1}{T}
\end{aligned}
$$

If T increase, then λ_{m} decrease. But according the figure, when T increases, then λ_{m} also increases. So, the Wien's law is not satisfied.

MCQ 1.18 For a typical sample of ambient air (at $35^{\circ} \mathrm{C}, 75 \%$ relative humidity and standard ONE MARK atmosphere pressure), the amount of moisture in kg per kg of dry air will be approximately
(A) 0.002
(B) 0.027
(C) 0.25
(D) 0.75

SOL 1.18 Option (B) is correct.
From steam table, saturated air pressure corresponding to dry bulb temperature of $35^{\circ} \mathrm{C}$ is $p_{s}=0.05628$ bar.
Relative humidity,

$$
\begin{aligned}
\phi & =\frac{p_{v}}{p_{s}}=0.75 \\
p_{v} & =0.75 \times p_{s} \\
& =0.75 \times 0.05628 \\
& =0.04221 \mathrm{bar}
\end{aligned}
$$

Now the amount of moisture in $\mathrm{kg} / \mathrm{kg}$ of dry air, (Specific Humidity) is

$$
\begin{aligned}
W & =0.622 \times \frac{p_{v}}{p_{b}-p_{v}} \\
& =0.622 \times \frac{0.04221}{1.01-0.04221} \\
& =0.622 \times 0.04362 \\
& =0.0271 \mathrm{~kg} / \mathrm{kg} \text { of dry air }
\end{aligned}
$$

$$
p_{b}=p_{a t m}=1.01 \mathrm{bar}
$$

MCQ 1.19 Water at $42^{\circ} \mathrm{C}$ is sprayed inton stream of air at atmospheric pressure, dry bulb spray humidifier is not saturated. Which of the following statements is true ?
(A) Air gets cooled and humidified
(B)-Air gets heated and humidified
(D) Air gets cooled and dehumidified
(C) Air gets heated and dehumidified

SOL 1.19 Option (B) is correct.
Given : $t_{s p}=42^{\circ} \mathrm{C}, t_{d b}=40^{\circ} \mathrm{C}, t_{w b}=20^{\circ} \mathrm{C}$
Here we see that $t_{s p}>t_{d b}$
Hence air gets heated, Also water is added to it, so it gets humidified.
MCQ 1.20 Match the items of List-I (Equipment) with the items of List-II (Process) and ONE MARK select the correct answer using the given codes.

List-I (Equipment)

P. Hot Chamber Machine
Q. Muller
R. Dielectric Baker
S. Sand Blaster

List-II (Process)

1. Cleaning
2. Core making
3. Die casting
4. Annealing
5. Sand mixing
(A) P-2, Q-1, R-4, S-5
(B) P-4, Q-2, R-3, S-5
(C) P-4, Q-5, R-1, S-2
(D) P-3, Q-5, R-2, S-1

SOL 1.20 Option (D) is correct.

List-I (Equipment)

P. Hot Chamber Machine
Q. Muller
R. Dielectric Baker
S. Sand Blaster

List-II (Process)

3. Die casting
4. Sand mixing
5. Core making
6. Cleaning

So, correct pairs are, P-3, Q-5, R-2, S-1
MCQ 1.21 When the temperature of a solid metal increases,

GATE ME 2005 ONE MARK
(A) strength of the metal decreases but ductility increases
(B) both strength and ductility of the metal decreases
(C) both strength and ductility of the metal increases
(D) strength of the metal increases but ductility decreases

SOL 1.21 Option (A) is correct.
When the temperature of a solid métal increases, its intramolecular bonds are brake and strength of solid metaldecreases. Due to decrease its strength, the elongation of the metal increases, when we apply the load i.e. ductility increases.

MCQ 1.22 The strength of a brazed joint
GATE ME 2005 (A) decreases with increase in gap between the two joining surfaces
ONE MARK
(B) increases with increase in gap between the two joining surfaces
(C) decreases up to certain gap between the two joining surfaces beyond which it increases
(D) increases up to certain gap between the two joining surfaces beyond which it decreases

SOL 1.22 Option (D) is correct.
The strength of the brazed joint depend on (a) joint design and (b) the adhesion at the interfaces between the workpiece and the filler metal.
The strength of the brazed joint increases up to certain gap between the two joining surfaces beyond which it decreases.

MCQ 1.23 A zigzag cavity in a block of high strength alloy is to be finish machined. This can GATE ME 2005 be carried out by using. ONE MARK

(A) electric discharge machining
(B) electric-chemical machining
(C) laser beam machining
(D) abrasive flow machining

SOL 1.23 Option (B) is correct.
In ECM, the principal of electrolysis is used to remove metal from the workpiece. The ECM method has also been developed for machining new hard and tough materials (for rocket and aircraft industry) and also hard refractory materials.

MCQ 1.24 In order to have interference fit, it is essential that the lower limit of the shaft

GATE ME 2005 ONE MARK should be

(A) greater than the upper limit of the hole
(B) lesser than the upper limit of the hole
(C) greater than the lower limit of the hole
(D) lesser than the lower limit of the hole

SOL 1.24 Option (A) is correct.

The interference is the amount by which the actual size of a shaft is larger than the actual finished size of the mating hole in an assembly.
For interference fit, lower limit of shaft should be greater than the upper limit of the hole (from figure).

MCQ 1.25
GATE ME 2005 ONE MARK

When 3-2-1 principle is used to supportand locate a three dimensional work-piece during machining, the number of degrees of freedom that are restricted is
(A) 7
(B) 8
(C) 9
(D) 10

SOL 1.25 Option (C) is correct.
According to 3-2-1 principle, only the minimum locating points should be used to secure location of the work piece in any one plane.
(A) The workpiece is resting on three pins A, B, C which are inserted in the base of fixed body.
The workpiece cannot rotate about the axis $X X$ and $Y Y$ and also it cannot move downward. In this case, the five degrees of freedom have been arrested.
(B) Two more pins D and E are inserted in the fixed body, in a plane perpendicular to the plane containing, the pins A, B and C. Now the workpiece cannot rotate about the Z-axis and also it cannot move towards the left. Hence the addition of pins D and E restrict three more degrees of freedom.
(C) Another pin F in the second vertical face of the fixed body, arrests degree of freedom 9.

The figure below shows a graph which qualitatively relates cutting speed and cost per piece produced.

The three curves 1,2 and 3 respectively represent
(A) machining cost, non-productive cost, tool changing cost
(B) non-productive cost, machining eost, tool changing cost
(C) tool changing cost, machining cost, non-productive cost
(D) tool changing cost, non-productive cost, machining cost

SOL 1.26 Option (A) is correct.
We know,
help
Machining cost $=$ Machining time \times Direct labour cost.
If cutting speed increases then machining time decreases and machining cost also decreases and due to increase in cutting speed tool changing cost increases.
So, $\quad \begin{aligned} & \text { Curve } 1 \rightarrow \text { Machining cost } \\ & \text { Curve } 2 \rightarrow \text { Non-productive cost } \\ & \text { Curve } 3 \rightarrow \text { Tool changing cost }\end{aligned}$
MCQ 1.27 Which among the NC operations given below are continuous path operations ?
GATE ME 2005 Arc Welding (AW)
ONE MARK
Drilling (D)
Laser Cutting of Sheet Metal (LC)
Milling (M)
Punching in Sheet Metal (P)
Spot Welding (SW)
(A) AW, LC and M
(B) AW, D, LC and M
(C) D, LC, P and SW
(D) D, LC, and SW

SOL 1.27 Option (A) is correct.
Arc welding, Laser cutting of sheet and milling operations are the continuous path
operations.
MCQ 1.28 An assembly activity is represented on an Operation Process Chart by the symbol
GATE ME 2005
ONE MARK
(A) \square
(B) A
(C) D
(D) O

SOL 1.28 Option (D) is correct.
In operation process chart an assembly activity is represented by the symbol O
MCQ 1.29 The sales of a product during the last four years were 860, 880, 870 and 890 units. GATE ME 2005 The forecast for the fourth year was 876 units. If the forecast for the fifth year, ONE MARK using simple exponential smoothing, is equal to the forecast using a three period moving average, the value of the exponential smoothing constant α is
(A) $\frac{1}{7}$
(B) $\frac{1}{5}$
(C) $\frac{2}{7}$
(D) $\frac{2}{5}$

SOL 1.29 Option (C) is correct.
Gives :
Sales of product during four years were $860,880,870$ and 890 units.
Forecast for the fourth year $u_{4}=876$
Forecast for the fifth year, using simple exponential smoothing, is equal to the forecast using a three period moving average.
So,

$$
\begin{aligned}
& u_{5}=\frac{1}{3}(880+870+890) \\
& u_{5}=880 \text { unit }
\end{aligned}
$$

By the exponential smoothing method.

$$
\begin{aligned}
u_{5} & =u_{4}+\alpha\left(x_{4}-u_{4}\right) \\
880 & =876+\alpha(890-876) \\
4 & =\alpha(14) \\
\alpha & =\frac{4}{14}=\frac{2}{7}
\end{aligned}
$$

MCQ 1.30 Consider a single server queuing model with Poisson arrivals ($\lambda=4 /$ hour) and

GATE ME 2005

 ONE MARK exponential service ($\mu=4$ /hour). The number in the system is restricted to a maximum of 10 . The probability that a person who comes in leaves without joining the queue is(A) $\frac{1}{11}$
(B) $\frac{1}{10}$
(C) $\frac{1}{9}$
(D) $\frac{1}{2}$

SOL 1.30 Option (A) is correct.
Given: $\quad \lambda=4 /$ hour,$~ \mu=4 /$ hour
The sum of probability $\sum_{n=0}^{n=10} P_{n}=1 \quad n=10$

$$
P_{0}+P_{1}+P_{2} \ldots . .+P_{10}=1
$$

In the term of traffic intensity

$$
\rho=\frac{\lambda}{\mu} \Rightarrow \rho=\frac{4}{4}=1
$$

So,

$$
\begin{array}{rlr}
P_{0}+\rho P_{0}+\rho^{2} P_{0}+\rho^{3} P_{0}+\ldots \ldots \rho^{10} P_{0} & =1 & P_{1}=\rho P_{0}, P_{2}=\rho^{2} P_{0} \text { and so on } \\
P_{0}(1+1+1+\ldots \ldots .) & =1 & \\
P_{0} \times 11 & =1 & \\
P_{0} & =\frac{1}{11} &
\end{array}
$$

Hence,
The probability that a person who comes in leaves without joining the queue is,

$$
\begin{aligned}
P_{11} & =\rho^{11} \cdot P_{0} \\
P_{1} & =1^{11} \times \frac{1}{11} \\
P_{1} & =\frac{1}{11}
\end{aligned}
$$

Which one of the following is an eigen vector of the matrix

GATE ME 2005 TWO MARK

(C) $\left[\begin{array}{r}1 \\ 0 \\ 0 \\ -2\end{array}\right]$
(D) $\left[\begin{array}{r}1 \\ -1 \\ 2 \\ 1\end{array}\right]$

SOL 1.31 Option (A) is correct.

Let,

$$
A=\left[\begin{array}{llll}
5 & 0 & 0 & 0 \\
0 & 5 & 0 & 0 \\
0 & 0 & 2 & 1 \\
0 & 0 & 3 & 1
\end{array}\right]
$$

The characteristic equation for eigen values is given by,

$$
\begin{aligned}
|A-\lambda I| & =0 \\
A & =\left|\begin{array}{rrrr}
5-\lambda & 0 & 0 & 0 \\
0 & 5-\lambda & 0 & 0 \\
0 & 0 & 2-\lambda & 1 \\
0 & 0 & 3 & 1-\lambda
\end{array}\right|=0
\end{aligned}
$$

Solving this, we get

$$
(5-\lambda)(5-\lambda)[(2-\lambda)(1-\lambda)-3]=0
$$

$$
(5-\lambda)^{2}\left[2-3 \lambda+\lambda^{2}-3\right]=0
$$

$$
(5-\lambda)^{2}\left(\lambda^{2}-3 \lambda-1\right)=0
$$

So,

$$
\begin{aligned}
(5-\lambda)^{2}=0 & \Rightarrow \lambda=5,5 \& \lambda^{2}-3 \lambda-1=0 \\
\lambda & =\frac{-(-3) \pm \sqrt{9+4}}{2} \\
\lambda & =\frac{3+\sqrt{13}}{2}, \frac{3-\sqrt{13}}{2}
\end{aligned}
$$

The eigen values are $\lambda=5,5, \frac{3+\sqrt{13}}{2}, \frac{3-\sqrt{13}}{2}$

Let
be the eigen vector for the eigen value $\lambda=5$
Then,

$$
\left[\begin{array}{rrrr}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & -3 & 1 \\
0 & 0 & 3 & -4
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=0
$$

Multiply \& get

$$
\begin{array}{r}
-3 x_{3}+x_{4}=0 \\
3 x_{3}-4 x_{4}=0
\end{array}
$$

This implies that $x_{3}=0, x_{4}=0$
Let $\quad x_{1}=k_{1} \& x_{2}=k_{2}$
So, eigen vector, $\quad X_{1}=\left[\begin{array}{c}k_{1} \\ k_{2} \\ 0 \\ 0\end{array}\right]$
where $k_{1}, k_{2} \varepsilon R$

MCQ 1.32 GATE ME 2005 TWO MARK equations $x+y=2,1.01 x+0.99 y=b$?
(A) zero
(B) 2 units
(C) 50 units
(D) 100 units

SOL 1.32 Option (C) is correct.

Given : $\quad x+y=2$

$$
\begin{equation*}
1.01 x+0.99 y=b, d b=1 \text { unit } \tag{i}
\end{equation*}
$$

We have to find the change in x in the solution of the system. So reduce y From the equation (i) \& (ii).
Multiply equation (i) by $0.99 \&$ subtract from equation (ii)

$$
\begin{aligned}
1.01 x+0.99 y-(0.99 x+0.99 y) & =b-1.98 \\
1.01 x-0.99 x & =b-1.98 \\
0.02 x & =b-1.98
\end{aligned}
$$

Differentiating both the sides, we get

$$
\begin{array}{rlr}
0.02 d x & =d b \\
d x & =\frac{1}{0.02}=50 \text { unit } \quad d b=1
\end{array}
$$

MCQ 1.33 By a change of variable $x(u, v)=u v, y(u, v)=v / u$ is double integral, the integrand $f(x, y)$ changes to $f(u v, v / u) \phi(u, v)$. Then, $\phi(u, v)$ is
(A) $2 v / u$
(B) $2 u v$
(C) v^{2}
(D) 1

SOL 1.33 Option (A) is correct.
Given,

$$
\begin{aligned}
x(u, v) & =u v \\
\frac{d x}{d u} & =v,
\end{aligned}
$$

And $y(u, v)=\frac{v}{u}$

$$
\frac{\partial y}{\partial u}=-\frac{v}{u^{2}} \quad \frac{\partial y}{\partial v}=\frac{1}{u}
$$

We know that,

$$
\begin{aligned}
& \phi(u, v)=\left[\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right] \\
& \phi(u, v)=\left[\begin{array}{cc}
v & u \\
\frac{-v}{u^{2}} & \frac{1}{u}
\end{array}\right]=v \times \frac{1}{u}-u \times\left(-\frac{v}{u^{2}}\right)=\frac{v}{u}+\frac{v}{u}=\frac{2 v}{u}
\end{aligned}
$$

MCQ 1.34
GATE ME 2005 TWO MARK

The right circular cone of largest volume that can be enclosed by a sphere of 1 m radius has a height of
(A) $1 / 3 \mathrm{~m}$
(B) $2 / 3 \mathrm{~m}$
(C) $\frac{2 \sqrt{2}}{3} \mathrm{~m}$
(D) $4 / 3 \mathrm{~m}$

SOL 1.34 Option (D) is correct.

Given : Radius of sphere $r=1$
Let,

$$
\text { Radius of cone }=R
$$

Height of the cone $=H$
Finding the relation between the volume \& Height of the cone
From $\triangle O B D$,

$$
O B^{2}=O D^{2}+B D^{2}
$$

$$
\begin{align*}
1 & =(H-1)^{2}+R^{2}=H^{2}+1-2 H+R^{2} \\
R^{2}+H^{2}-2 H & =0 \\
R^{2} & =2 H-H^{2} \tag{i}
\end{align*}
$$

We know, the volume of the cone,

$$
V=\frac{1}{3} \pi R^{2} H
$$

Substitute the value of R^{2} from equation (i), we get

$$
V=\frac{1}{3} \pi\left(2 H-H^{2}\right) H=\frac{1}{3} \pi\left(2 H^{2}-H^{3}\right)
$$

Differentiate V w.r.t to H

$$
\frac{d V}{d H}=\frac{1}{3} \pi\left[4 H-3 H^{2}\right]
$$

Again differentiate

$$
\frac{d^{2} V}{d H^{2}}=\frac{1}{3} \pi[4-6 H]
$$

For minimum \& maximum value, using the principal of minima \& maxima.
Put $\frac{d V}{d H}=0$

$$
\begin{aligned}
\frac{1}{3} \pi\left[4 H-3 H^{2}\right] & =0 \\
H[4-3 H] & =0 \\
H=0 \& H & =\frac{4}{3}
\end{aligned}
$$

At $H=\frac{4}{3}$,

$$
\frac{d^{2} V}{d H^{2}}=\frac{1}{3} \pi\left[4-6 \times \frac{4}{3}\right]=\frac{1}{3} \pi[4-8]=-\frac{4}{3} \pi<0(\text { Maxima })
$$

And at $H=0$,

$$
\frac{d^{2} V}{d H^{2}}=\frac{1}{3} \pi[4-0]=\frac{4}{3} \pi>0(\text { Minima })
$$

So, for the largest volume of cone, the value of H should be $4 / 3$
MCQ 1.35 If $x^{2} \frac{d y}{d x}+2 x y=\frac{2 \ln (x)}{x}$ and $y(1)=0$, then what is $y(e)$?
GATE ME 2005 TWO MARK
(A) e
(B) 1
(C) $1 / e$
(D) $1 / e^{2}$

SOL 1.35 Option (D) is correct.
Given : $\quad x^{2} \frac{d y}{d x}+2 x y=\frac{2 \ln (x)}{x}$

$$
\frac{d y}{d x}+\frac{2 y}{x}=\frac{2 \ln (x)}{x^{3}}
$$

Compare this equation with the differential equation $\frac{d y}{d x}+P(y)=Q$
Then, $P=\frac{2}{x} \& Q=\frac{2 \ln (x)}{x^{3}}$
The integrating factor is,

$$
\begin{aligned}
& \text { I.F. }=e^{\int P d x}=e^{\int \frac{2}{x} d x} \\
& \quad e^{2 \ln x}=e^{\ln x^{2}}=x^{2}
\end{aligned}
$$

Then complete solution is written as, $\underset{\sim}{\square}$

$$
\begin{align*}
y(\text { I.F. }) & =\int Q(\text { I.F. }) d x+C \\
y\left(x^{2}\right) & =\int \frac{2 \ln x}{x^{3}} \times x^{2} d x+C=2 \int \underset{\text { (II) }}{\ln x} \times \frac{1}{x} d x+C \tag{i}
\end{align*}
$$

Integrating the value $\int \ln x \times \frac{1}{x} d x$ Separately
Let,

$$
\begin{align*}
I & =\int \ln x \times \underset{\text { (I) }}{\frac{1}{x}} d x \tag{ii}\\
I & =\ln x \int \frac{1}{x} d x-\int\left\{\frac{d}{d x}(\ln x) \times \int \frac{1}{x} d x\right\} d x
\end{align*}
$$

$$
\begin{align*}
2 I & =(\ln x)^{2} \\
I & =\frac{(\ln x)^{2}}{2} \tag{iii}
\end{align*}
$$

So,

$$
I=\ln x \ln x-\underbrace{\int \frac{1}{x} \times \ln x d x}_{\mathrm{I}}
$$

Substitute the value from equation (iii) in equation (i),

$$
y\left(x^{2}\right)=\frac{2(\ln x)^{2}}{2}+C
$$

$$
\begin{equation*}
x^{2} y=(\ln x)^{2}+C \tag{iv}
\end{equation*}
$$

Given $y(1)=0$, means at $x=1 \quad \Rightarrow y=0$
then

$$
0=(\ln 1)^{2}+C \Rightarrow C=0
$$

So from equation (iv), we get

$$
x^{2} y=(\ln x)^{2}
$$

Now at $x=e$

$$
y(e)=\frac{(\ln e)^{2}}{e^{2}}=\frac{1}{e^{2}}
$$

MCQ 1.36 The line integral $\int \boldsymbol{V} \cdot d \boldsymbol{r}$ of the vector $\boldsymbol{V} \cdot(\boldsymbol{r})=2 x y z \boldsymbol{i}+x^{2} z \boldsymbol{j}+x^{2} y \boldsymbol{k}$ from the origin TWO MARK to the point $\mathrm{P}(1,1,1)$
(A) is 1
(B) is zero
(C) is -1
(D) cannot be determined without specifying the path

SOL 1.36 Option (A) is correct.
Potential function of $v=x^{2} y z$ at $P(1,1,1)$ is $=1^{2} \times 1 \times 1=1$ and at origin $O(0,0,0)$ is 0 .
Thus the integral of vectorfunction from origin to the point $(1,1,1)$ is

$$
\begin{aligned}
& =\left[x^{2} y z\right]_{P}-\left[x^{2} y z\right]_{O} \\
& =1-0=1
\end{aligned}
$$

MCQ 1.37 Starting from $x_{0}=1$, one step of Newton-Raphson method in solving the equation GATE ME 2005 $x^{3}+3 x-7=0$ gives the next value $\left(x_{1}\right)$ as TWO MARK
(A) $x_{1}=0.5$
(B) $x_{1}=1.406$
(C) $x_{1}=1.5$
(D) $x_{1}=2$

SOL 1.37 Option (C) is correct.

$$
\text { Let, } \quad f(x)=x^{3}+3 x-7
$$

From the Newton Rapson's method

$$
\begin{equation*}
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)} \tag{i}
\end{equation*}
$$

We have to find the value of x_{1}, so put $n=0$ in equation (i),

$$
\begin{aligned}
x_{1} & =x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)} \\
f(x) & =x^{3}+3 x-7 \\
f\left(x_{0}\right) & =1^{3}+3 \times 1-7=1+3-7=-3 \\
f^{\prime}(x) & =3 x^{2}+3 \\
f^{\prime}\left(x_{0}\right) & =3 \times(1)^{2}+3=6
\end{aligned}
$$

Then, $\quad x_{1}=1-\frac{(-3)}{6}=1+\frac{3}{6}=1+\frac{1}{2}=\frac{3}{2}=1.5$
MCQ 1.38 A single die is thrown twice. What is the probability that the sum is neither 8 nor GATE ME 2005 9 ?
TWO MARK
(A) $1 / 9$
(B) $5 / 36$
(C) $1 / 4$
(D) $3 / 4$

SOL 1.38 Option (D) is correct.
We know a die has 6 faces \& 6 numbers so the total number of ways

$$
=6 \times 6=36
$$

And total ways in which sum is either 8 or 9 is 9 , i.e.
$(2,6),(3,6)(3,5)(4,4)(4,5)(5,4)(5,3)(6,2)(6,3)$
Total number of tosses when both the 8 or 9 numbers are not come

$$
=36-9=27
$$

Then probability of not coming sum 8 or 9 is,

$$
=\frac{27}{36}=\frac{3}{4}
$$

MCQ 1.39 Two books of mass 1 kg each are kept on a table, one over the other. The coefficient of friction on every pair of contacting surfaces is 0.3 . The lower book is pulled with a horizontal force F. The minimum value of F for which slip occurs between the two books is
(A) zero
(C) 5.74 N

SOL 1.39 Option (D) is correct.
Given : $m_{1}=m_{2}=1 \mathrm{~kg}, \mu=0.3$
The FBD of the system is shown below :

For first book

FBD of book second

For Book (1)
$\Sigma F_{y}=0 \quad R_{N 1}=m g$
Then, Friction Force $F_{N 1}=\mu R_{N 1}=\mu m g$

From FBD of book second

$$
\begin{array}{lrl}
\Sigma F_{x}=0, & F & =\mu R_{N 1}+\mu R_{N 2} \\
\Sigma F_{y}=0, & R_{N_{2}}=R_{N 1}+m g=m g+m g=2 \mathrm{mg} \tag{ii}
\end{array}
$$

For slip occurs between the books when

$$
\begin{aligned}
& F \geq \mu R_{N 1}+\mu R_{N 2} \geq \mu m g+\mu \times 2 \mathrm{mg} \\
& F \geq \mu(3 \mathrm{mg}) \geq 0.3(3 \times 1 \times 9.8) \geq 8.82
\end{aligned}
$$

It means the value of F is always greater or equal to the 8.82 , for which slip occurs between two books
So,

$$
F=8.83 \mathrm{~N}
$$

MCQ 1.40
GATE ME 2005 TWO MARK

SOL 1.40 Option (C) is correct.

MCQ 1.41 TWO MARK

A shell is fired from a cannon. At the instant the shell is just about to leave the barrel, its velocity relative to the barrel is $3 \mathrm{~m} / \mathrm{s}$, while the barrel is swinging upwards with a constant angular velocity of $2 \mathrm{rad} / \mathrm{s}$. The magnitude of the absolute velocity of the shell is

Given : $\omega=2 \mathrm{rad} / \mathrm{sec}, r=2 \mathrm{~m}$

We know that, the tangential velocity of barrel

$$
\begin{aligned}
V_{t} & =r \omega=2 \times 2=4 \mathrm{~m} / \mathrm{sec} \\
\boldsymbol{V} & =V_{r} \boldsymbol{i}+V_{t} \boldsymbol{j}=3 \boldsymbol{i}+4 \boldsymbol{j}
\end{aligned}
$$

Now the resultant velocity of shell

$$
|\boldsymbol{V}|=\sqrt{(3)^{2}+(4)^{2}}=\sqrt{25}=5 \mathrm{~m} / \mathrm{sec}
$$

(A) $3 \mathrm{~m} / \mathrm{s}$
(C) $5 \mathrm{~m} / \mathrm{s}$

An elevator (lift) consists of the elevator cage and a counter weight, of mass m each. The cage and the counterweight are connected by chain that passes over a pulley. The pulley is coupled to a motor. It is desired that the elevator should have a maximum stopping time of t seconds from a peak speed v. If the inertias of the
pulley and the chain are neglected, the minimum power that the motor must have is

(A) $\frac{1}{2} m V^{2}$
(B) $\frac{m V^{2}}{2 t}$
(C) $\frac{m V^{2}}{t}$
(D) $\frac{2 m V^{2}}{t}$

SOL 1.41 Option (C) is correct.
Given : Mass of cage \& counter weight $=m \mathrm{~kg}$ each
Peak speed $=V$
Initial velocity of both the cage and counter weight.
Final velocity of both objects

$$
\begin{aligned}
& V_{1}=V \mathrm{~m} / \mathrm{sec} \\
& \text { jects }
\end{aligned}
$$

$$
V_{2}=0
$$

Initial kinetic Energy, $\quad E_{1}=\frac{1}{2} m V^{2}+\frac{1}{2} m V^{2}=m V^{2}$
Final kinetic Energy $E_{2}=\frac{1}{2} m(0)^{2}+\frac{1}{2} m(0)^{2}=0$
Now,
Power $=$ Rate of change of K.E.

$$
=\frac{E_{1}-E_{2}}{t}=\frac{m V^{2}}{t}
$$

MCQ 1.42 TWO MARK

A 1 kg mass of clay, moving with a velocity of $10 \mathrm{~m} / \mathrm{s}$, strikes a stationary wheel and sticks to it. The solid wheel has a mass of 20 kg and a radius of 1 m . Assuming that the wheel is set into pure rolling motion, the angular velocity of the wheel immediately after the impact is approximately

(A) zero
(B) $\frac{1}{3} \mathrm{rad} / \mathrm{s}$
(C) $\sqrt{\frac{10}{3}} \mathrm{rad} / \mathrm{s}$
(D) $\frac{10}{3} \mathrm{rad} / \mathrm{s}$

SOL 1.42 Option (B) is correct.
Given : $m_{1}=1 \mathrm{~kg}, V_{1}=10 \mathrm{~m} / \mathrm{sec}, m_{2}=20 \mathrm{~kg}, V_{2}=$ Velocity after striking the wheel $r=1$ meter
On applying the principal of linear momentum on the system

$$
\frac{d P}{d t}=0 \Rightarrow P=\mathrm{constant}
$$

Initial Momentum $=$ Final Momentum

$$
\begin{aligned}
m_{1} \times V_{1} & =\left(m_{1}+m_{2}\right) V_{2} \\
V_{2} & =\frac{m_{1} V_{1}}{\left(m_{1}+m_{2}\right)}=\frac{1 \times 10}{1+20}=\frac{10}{21}
\end{aligned}
$$

Now after the collision the wheel rolling with angular velocity ω.
So,

$$
\begin{aligned}
V_{2} & =r \omega \\
\omega & =\frac{V_{2}}{r}=\frac{10}{21 \times 1}=0.476
\end{aligned}
$$

It is nearly equal to $1 / 3$.
MCQ 1.43 The two shafts $A B$ and $B C$, of equal length and diameters d and $2 d$, are made of TWO MARK the same material. They are joined at B through a shaft coupling, while the ends A and C are built-in (cantilevered). A twisting moment T is applied to the coupling. If T_{A} and T_{C} represent the twisting moments at the ends A and C, respectively, then

(A) $T_{C}=T_{A}$
(B) $T_{C}=8 T_{A}$
(C) $T_{C}=16 T_{A}$
(D) $T_{A}=16 T_{C}$

SOL 1.43 Option (C) is correct.

Here both the shafts $A B \& B C$ are in parallel connection.
So, deflection in both the shafts are equal.

$$
\begin{equation*}
\theta_{A B}=\theta_{B C} \tag{i}
\end{equation*}
$$

From Torsional formula,

$$
\frac{T}{J}=\frac{G \theta}{L} \Rightarrow \theta=\frac{T L}{G J}
$$

From equation (i),

$$
\begin{aligned}
\frac{T_{A} L}{G J_{A B}} & =\frac{T_{C} L}{G J_{B C}} \\
\frac{T_{A} \times L}{G \times \frac{\pi}{32} d^{4}} & =\frac{T_{C} \times L}{G \times \frac{\pi}{32}(2 d)^{4}} \\
\frac{T_{A}}{d^{4}} & =\frac{T_{C}}{16 d^{4}} \\
T_{C} & =16 T_{A}
\end{aligned}
$$

For same material, $G_{A B}=G_{B C}$

MCQ 1.44 GATE ME 2005 TWO MARK

A beam is made up of two identical bars $A B$ and $B C$, by hinging them together at B. The end A is built-in (cantilevered) and the end C is simply-supported. With the load P acting as shown, the bending moment at A is

SOL 1.44 Option (B) is correct.
First of all we have to make a Free body diagram of the given beam.

Where, $R_{A} \& R_{B}$ are the reactions acting at point A and B
The point B is a point of contraflexure or point of inflexion or a virtual hinge. The characteristic of the point of contraflexure is that, about this point moment equal to zero.
For span $B C, \quad M_{B}=0$

$$
\begin{aligned}
R_{C} \times L & =P \times \frac{L}{2} \\
R_{C} & =\frac{P}{2}
\end{aligned}
$$

For the equilibrium of forces on the beam,

$$
\begin{aligned}
R_{A}+R_{C} & =P \\
R_{A} & =P-\frac{P}{2}=\frac{P}{2}
\end{aligned}
$$

Now for the bending moment about point A, take the moment about point A,

$$
\begin{aligned}
M_{A}+R_{C} \times 2 L-P \times\left(L+\frac{L}{2}\right) & =0 \\
M_{A}+\frac{P}{2} \times 2 L-P \times \frac{3 L}{2} & =0 \\
M_{A} & =\frac{P L}{2}
\end{aligned}
$$

MCQ 1.45 A cantilever beam carries the anti-symmetric load shown, where W_{0} is the peak TWO MARK intensity of the distributed load. Qualitatively, the correct bending moment diagram for this beam is

SOL 1.45 Option (C) is correct.
We know that, for a uniformly varying load bending moment will be cubic in nature.
(A) We see that there is no shear force at B, so the slope of BMD at right of B must be zero and similarly on left end A there is no shear force, so slope of BMD also zero.
(B) Now due to triangular shape of load intensity, when we move from right to left, the rate of increase of shear force decreases and maximum at the middle \& therefore it reduces.

MCQ 1.46
GATE ME 2005 TWO MARK

A cantilever beam has the square cross section of $10 \mathrm{~mm} \times 10 \mathrm{~mm}$. It carries a transverse load of 10 N . Consider only the bottom fibres of the beam, the correct representation of the longitudinal variation of the bending stress is

(A)
60
(B)
60 Mpa

(C)

SOL 1.46 Option (A) is correct.

Taking a section $X X$ on the beam.
Moment about this section $X X$

$$
M_{X X}=10 \times x=10 x \mathrm{~N}-\mathrm{m}
$$

For a square section,

$$
I=\frac{b^{4}}{12}=\frac{\left(10 \times 10^{-3}\right)^{4}}{12}=\frac{10^{-8}}{12} \mathrm{~m}^{4}
$$

Using the bending equation,

$$
\frac{M}{I}=\frac{\sigma}{y} \Rightarrow \sigma=\frac{M}{I} y
$$

Substitute the values, we get

$$
\begin{equation*}
\sigma=\frac{10 x}{10^{-8}} \times \frac{10^{-2}}{2}=60 \times 10^{6} x \tag{i}
\end{equation*}
$$

From equation (i), Bending stress at point $A(x=0)$,

$$
\sigma_{A}=60 \times 10^{6} \times 0=0
$$

And at point $C(x=1 \mathrm{~m})$

$$
\sigma_{C}=60 \times 10^{6} \times 1=60 \mathrm{MPa}
$$

As no any forces are acting to the right of the point C.
So bending stress is constant after point C.
$60 \mathrm{Mpa} \quad \mid$

MCQ 1.47
GATE ME 2005 TWO MARK

In a cam-follower mechanism, the follower needs to rise through 20 mm during 60° of cam rotation, the first 30° with a constant acceleration and then with a deceleration of the same magnitude. The initial and final speeds of the follower are zero. The cam rotates at a uniform speed of 300 rpm . The maximum speed of the follower is
(A) $0.60 \mathrm{~m} / \mathrm{s}$
(B) $1.20 \mathrm{~m} / \mathrm{s}$
(C) $1.68 \mathrm{~m} / \mathrm{s}$
(D) $2.40 \mathrm{~m} / \mathrm{s}$

SOL 1.47 Option (B) is correct.
Given $N=300$ r.p.m
Angular velocity of cam,

$$
\omega=\frac{2 \pi N}{60}=10 \pi \mathrm{rad} / \mathrm{sec}
$$

Time taken to move 30° is,

$$
t=\frac{\frac{\pi}{180} \times 30}{10 \pi}=\frac{\frac{1}{6}}{10}=\frac{1}{60} \sec
$$

Now, Cam moves 30° with a constant acceleration \& then with a deceleration, so maximum speed of the follower is at the end of first 30° rotation of the cam and during this 30° rotation the distance covered is 10 mm , with initial velocity $u=0$. From Newton's second law of motion,

$$
\begin{aligned}
S & =u t+\frac{1}{2} a t^{2} \\
0.01 & =0+\frac{1}{2} \times a \times\left(\frac{1}{60}\right)^{2} \\
a & =0.01 \times 2 \times(60)^{2}=72 \mathrm{~m} / \mathrm{sec}^{2}
\end{aligned}
$$

Maximum velocity,

$$
v_{\max }=u+a t=72 \times \frac{1}{60}=1.2 \mathrm{~m} / \mathrm{sec}
$$

MCQ 1.48
GATE ME 2005 TWO MARK

A rotating disc of 1 m diameter has two eccentric masses of 0.5 kg each at radii of 50 mm and 60 mm at angular positions of 0° and 150°, respectively. A balancing mass of 0.1 kg is to be used to balance the rotor. What is the radial position of the
balancing mass ?
(A) 50 mm
(B) 120 mm
(C) 150 mm
(D) 280 mm

SOL 1.48 Option (C) is correct.

Given $m_{1}=m_{2}=0.5 \mathrm{~kg}, r_{1}=0.05 \mathrm{~m}, r_{2}=0.06 \mathrm{~m}$
Balancing mass $m=0.1 \mathrm{~kg}$
Let disc rotates with uniformangular velocity ω and $x \& y$ is the position of balancing mass along $X \& Y$ axis. -
On resolving the forces in the x-direction, we get

$$
\Sigma F_{x}^{\prime}=0
$$

$0.5\left[-0.06 \cos 30^{\circ}+0.05 \cos 0^{\circ}\right] \omega^{2}=0.1 \times x \times \omega^{2}$

$$
\begin{aligned}
0.5 \times(-0.00196) & =0.1 x & F_{c}=m r \omega^{2} \\
x & =-0.0098 \mathrm{~m}=-9.8 \mathrm{~mm} &
\end{aligned}
$$

Similarly in y-direction,

$$
\Sigma F_{y}=0
$$

$0.5\left(0.06 \times \sin 30^{\circ}+0.05 \times \sin 0\right) \omega^{2}=0.1 \times y \times \omega^{2}$

$$
0.5 \times 0.03=0.1 \times y
$$

$$
y=0.15 \mathrm{~m}=150 \mathrm{~mm}
$$

Position of balancing mass is given by,

$$
\begin{aligned}
r & =\sqrt{x^{2}+y^{2}}=\sqrt{(-9.8)^{2}+(150)^{2}} \\
& =150.31 \mathrm{~mm} \simeq 150 \mathrm{~mm}
\end{aligned}
$$

MCQ 1.49 TWO MARK

In a spring-mass system, the mass is 0.1 kg and the stiffness of the spring is $1 \mathrm{kN} / \mathrm{m}$. By introducing a damper, the frequency of oscillation is found to be 90% of the original value. What is the damping coefficient of the damper ?
(A) $1.2 \mathrm{Ns} / \mathrm{m}$
(B) $3.4 \mathrm{Ns} / \mathrm{m}$
(C) $8.7 \mathrm{Ns} / \mathrm{m}$
(D) $12.0 \mathrm{Ns} / \mathrm{m}$

SOL 1.49 Option (C) is correct.
Given $m=0.1 \mathrm{~kg}, k=1 \mathrm{kN} / \mathrm{m}$
Let, ω_{d} be the frequency of damped vibration \& ω_{n} be the natural frequency of
spring mass system.
Hence, $\quad \omega_{d}=90 \%$ of $\omega_{n}=0.9 \omega_{n}$ (Given)
Frequency of damped vibration

$$
\begin{equation*}
\omega_{d}=\sqrt{\left(1-\varepsilon^{2}\right)} \omega_{n} \tag{i}
\end{equation*}
$$

From equation (i) and equation (ii), we get

$$
\sqrt{\left(1-\varepsilon^{2}\right)} \omega_{n}=0.9 \omega_{n}
$$

On squaring both the sides, we get

$$
\begin{aligned}
1-\varepsilon^{2} & =(0.9)^{2}=0.81 \\
\varepsilon^{2} & =1-0.81=0.19 \\
\varepsilon & =\sqrt{0.19}=0.436
\end{aligned}
$$

And Damping ratio is given by,

$$
\begin{aligned}
\varepsilon & =\frac{c}{c_{c}}=\frac{c}{2 \sqrt{k m}} \\
c & =2 \sqrt{k m} \times \varepsilon \\
& =2 \sqrt{1000 \times 0.1} \times 0.436=8.72 \mathrm{Ns} / \mathrm{m} \simeq 8.7 \mathrm{Ns} / \mathrm{m}
\end{aligned}
$$

MCQ 1.50
GATE ME 2005 TWO MARK

The Mohr's circle of plane stress for a point in a body is shown. The design is to be done on the basis of the maximum shear stress theory for yielding. Then, yielding will just begin if the designer chooses a ductile material whose yield strength is

(A) 45 MPa
(B) 50 MPa
(C) 90 MPa
(D) 100 MPa

Option (C) is correct.
Maximum shear stress,

$$
\tau=\frac{\sigma_{\max }-\sigma_{\min }}{2}
$$

Maximum shear stress at the elastic limit in simple tension (yield strength) $=\frac{\sigma_{Y}}{2}$ To prevent failure

$$
\begin{aligned}
& \frac{\sigma_{\max }-\sigma_{\min }}{2} \leq \frac{\sigma_{Y}}{2} \\
& \sigma_{\max }-\sigma_{\min }=\sigma_{Y}
\end{aligned}
$$

Here $\quad \sigma_{\text {max }}=-10 \mathrm{MPa}, \sigma_{\text {min }}=-100 \mathrm{MPa}$
So, $\quad \sigma_{Y}=-10-(-100)=90 \mathrm{MPa}$

A weighing machine consist of a 2 kg pan resting on a spring. In this condition, with the pan resting on the spring, the length of the spring is 200 mm . When a
mass of 20 kg is placed on the pan, the length of the spring becomes 100 mm . For the spring, the un-deformed length L and the spring constant k (stiffness) are
(A) $L=220 \mathrm{~mm}, k=1862 \mathrm{~N} / \mathrm{m}$
(B) $L=210 \mathrm{~mm}, k=1960 \mathrm{~N} / \mathrm{m}$
(C) $L=200 \mathrm{~mm}, k=1960 \mathrm{~N} / \mathrm{m}$
(D) $L=200 \mathrm{~mm}, k=2156 \mathrm{~N} / \mathrm{m}$

SOL 1.51 Option (B) is correct.
Initial length (un-deformed) of the spring $=L \&$ spring stiffness $=k$

Let spring is deformed by an amount Δx,
then Spring force, $F=k \Delta x$
For initial condition,

$$
\begin{equation*}
2 g=k(L-0.2) \tag{i}
\end{equation*}
$$

After this a mass of 20 kg is placed on the 2 kg pan. So total mass becomes 22 kg and length becomes 100 mm .
For this condition,

$$
\begin{equation*}
(20+2) g=k(L-0.1) \tag{ii}
\end{equation*}
$$

By dividing equation (ii) by equation (i),

$$
\begin{aligned}
\frac{22 g}{2 g} & =\frac{k(L-0.1)}{k(L-0.2)} \\
11 & =\frac{(L-0.1)}{(L-0.2)} \\
11 L-2.2 & =L-0.1 \\
10 L & =2.1 \\
L & =\frac{2.1}{10}=0.21 \mathrm{~m}=210 \mathrm{~mm}
\end{aligned}
$$

And from equation (i),

$$
\begin{aligned}
2 g & =k(0.21-0.2) \\
k & =\frac{2 \times 9.8}{0.01}=1960 \mathrm{~N} / \mathrm{m}
\end{aligned}
$$

So, $L=210 \mathrm{~mm}$, and $k=1960 \mathrm{~N} / \mathrm{m}$

MCQ 1.52

A venturimeter of 20 mm throat diameter is used to measure the velocity of water in a horizontal pipe of 40 mm diameter. If the pressure difference between the pipe and throat sections is found to be 30 kPa then, neglecting frictional losses, the flow
velocity is
(A) $0.2 \mathrm{~m} / \mathrm{s}$
(B) $1.0 \mathrm{~m} / \mathrm{s}$
(C) $1.4 \mathrm{~m} / \mathrm{s}$
(D) $2.0 \mathrm{~m} / \mathrm{s}$

SOL 1.52 Option (D) is correct.

Given : $d_{2}=20 \mathrm{~mm}=0.020 \mathrm{~m}, d_{1}=40 \mathrm{~mm}=0.040 \mathrm{~m}$

$$
\Delta p=p_{1}-p_{2}=30 \mathrm{kPa}
$$

Applying continuity equation at section (1) \& (2),

$$
\begin{align*}
A_{1} V_{1} & =A_{2} V_{2} \\
V_{1} & =\left(\frac{A_{2}}{A_{1}}\right) V_{2}=\frac{\frac{\pi}{4} d_{2}^{2}}{\frac{\pi}{4} d_{1}^{2}} \times V_{2} \\
& =\frac{d_{2}^{2}}{d_{1}^{2}} \times V_{2}=\left(\frac{20}{40}\right)^{2} V_{2}=\frac{V_{2}}{4} \tag{i}\\
V_{2} & =4 V_{1}
\end{align*}
$$

Now applying Bernoulli's equation at section (1) \& (2),

$$
\begin{array}{rlr}
\frac{p_{1}}{\rho g}+\frac{V_{1}^{2}}{2 g}+z_{1} & =\frac{p_{2}}{\rho g}+\frac{V_{2}^{2}}{2 g}+z_{2} & \text { For horizontal pipe } z_{1}=z_{2} \\
\frac{p_{1}-p_{2}}{\rho g} & =\frac{V_{2}^{2}-V_{1}^{2}}{2 g} & \\
\frac{\Delta p}{\rho} & =\frac{V_{2}^{2}-V_{1}^{2}}{2} & \\
\frac{30 \times 10^{3}}{1000} & =\frac{\left(4 V_{1}\right)^{2}-V_{1}^{2}}{2} & \text { From equation (i) } \\
30 & =\frac{16 V_{1}^{2}-V_{1}^{2}}{2}=\frac{15 V_{1}^{2}}{2} & \\
V_{1}^{2} & =\frac{30 \times 2}{15}=4 \Rightarrow V_{1}=2 \mathrm{~m} / \mathrm{sec} &
\end{array}
$$

MCQ 1.53 TWO MARK

A U-tube manometer with a small quantity of mercury is used to measure the static pressure difference between two locations A and B in a conical section through which an incompressible fluid flows. At a particular flow rate, the mercury column appears as shown in the figure. The density of mercury is $13600 \mathrm{~kg} / \mathrm{m}^{3}$ and
$g=9.81 \mathrm{~m} / \mathrm{s}^{2}$. Which of the following is correct?

(A) Flow direction is A to B and $p_{A}-p_{B}=20 \mathrm{kPa}$
(B) Flow direction is B to A and $p_{A}-p_{B}=1.4 \mathrm{kPa}$
(C) Flow direction is A to B and $p_{B}-p_{A}=20 \mathrm{kPa}$
(D) Flow direction is B to A and $p_{B}-p_{A}=1.4 \mathrm{kPa}$

SOL 1.53 Option (A) is correct.
It is a U-tube differential Manometer,
In this manometer $A \& B$ at different level \& the liquid contain in manometer has the same specific gravity (onlymercury is fill in the manometer)
Given : $\rho_{\text {mercury }}=13600 \mathrm{~kg} / \mathrm{m}^{3}, g=9.81 \mathrm{~m} / \mathrm{sec}^{2}, \Delta h=150 \mathrm{~mm}=0.150$ meter
Static pressure difference for U-tube differential manometer is given by,

$$
\begin{aligned}
p_{A}-p_{B} & =\rho g\left(h_{A}-h_{B}\right)=\rho g \Delta h \\
& =13600 \times 9.81 \times 0.150 \\
& =20.01 \times 10^{3} \mathrm{~Pa}=20.01 \mathrm{kPa} \approx 20 \mathrm{kPa}
\end{aligned}
$$

Hence $p_{A}-p_{B}$ is positive and $p_{A}>p_{B}$, Flow from A to B.

MCQ 1.54
GATE ME 2005 TWO MARK

A reversible thermodynamic cycle containing only three processes and producing work is to be constructed. The constraints are
(i) there must be one isothermal process,
(ii) there must be one isentropic process,
(iii) the maximum and minimum cycle pressures and the clearance volume are fixed, and
(iv) polytropic processes are not allowed. Then the number of possible cycles are
(A) 1
(B) 2
(C) 3
(D) 4

SOL 1.54 Option (A) is correct.

Now check the given processes :-
(i) Show in $p-\nu$ curve that process 1-2 \& process 3-4 are Reversible isothermal process.
(ii) Show that process 2-3 \& process 4-1 are Reversible adiabatic (isentropic) processes.
(iii) In carnot cycle maximum and minimum cycle pressure and the clearance volume are fixed.
(iv) From $p-\nu$ curve there is no polytropic process.

So, it consists only one cycle [carnot cycle]
MCQ 1.55 Nitrogen at an initial state of 10 bar, $1 \mathrm{~m}^{3}$ and 300 K is expanded isothermally to
(A) will be slightly less than 5 bar
(B) will be slightly more than 5 bar
(C) will be exactly 5 bar
(D) cannot be ascertained in the absence of the value of a

SOL 1.55 Option (B) is correct.
Given : $p_{1}=10$ bar, $\nu_{1}=1 \mathrm{~m}^{3}, T_{1}=300 \mathrm{~K}, \nu_{2}=2 \mathrm{~m}^{3}$
Given that Nitrogen Expanded isothermally.
So, $\quad R T=$ Constant
And from given relation,

$$
\begin{aligned}
\left(p+\frac{a}{\nu^{2}}\right) \nu & =R T=\text { Constant } \\
p_{1} \nu_{1}+\frac{a}{\nu_{1}} & =p_{2} \nu_{2}+\frac{a}{\nu_{2}} \\
p_{2} \nu_{2} & =p_{1} \nu_{1}+\frac{a}{\nu_{1}}-\frac{a}{\nu_{2}} \\
p_{2} & =p_{1}\left(\frac{\nu_{1}}{\nu_{2}}\right)+a\left(\frac{1}{\nu_{1} \nu_{2}}-\frac{1}{\nu_{2}^{2}}\right) \\
& =10\left(\frac{1}{2}\right)+a\left(\frac{1}{2}-\frac{1}{4}\right)=5+\frac{a}{4}
\end{aligned}
$$

Here $a>0$, so above equation shows that p_{2} is greater than 5 and +ve .
MCQ 1.56 Heat flows through a composite slab, as shown below. The depth of the slab is 1 m TWO MARK

(A) 17.2
(B) 21.9
(C) 28.6
(D) 39.2

SOL 1.56 Option (C) is correct.
Assumptions :
(1) Heat transfer is steady since there is no indication of change with time.
(2) Heat transfer can be approximated as being one-dimensional since it is predominantly in the x-direction.
(3) Thermal conductivities are constant.
(4) Heat transfer by radiation is negligible.

Analysis :

There is no variation in the horizontal direction. Therefore, we consider a 1 m deep and 1 m high portion of the slab, since it representative of the entire wall. Assuming any cross-section of the slab normal to the x - direction to be isothermal, the thermal resistance network for the slab is shown in the figure.

$$
\begin{aligned}
R_{1} & =\frac{L_{1}}{k_{1} A_{1}}=\frac{0.5}{0.02(1 \times 1)}=25 \mathrm{~K} / \mathrm{W} \\
R_{2} & =\frac{L_{2}}{k_{2} A_{2}}=\frac{0.25}{0.10 \times(1 \times 0.5)}=5 \mathrm{~K} / \mathrm{W} \\
R_{3} & =\frac{L_{3}}{k_{3} A_{3}}=\frac{0.25}{0.04 \times(1 \times 0.5)}=12.5 \mathrm{~K} / \mathrm{W}
\end{aligned}
$$

Resistance $R_{2} \& R_{3}$ are in parallel. So the equivalent resistance $R_{e q}$ will be

$$
\begin{aligned}
\frac{1}{R_{e q}} & =\frac{1}{R_{2}}+\frac{1}{R_{3}} \\
\frac{1}{R_{e q}} & =\frac{R_{3}+R_{2}}{R_{2} R_{3}} \\
R_{e q} & =\frac{R_{2} R_{3}}{R_{2}+R_{3}}=\frac{5 \times 12.5}{5+12.5}=3.6 \mathrm{~K} / \mathrm{W}
\end{aligned}
$$

Resistance $R_{1} \& R_{e q}$ are in series. So total Resistance will be

$$
R=R_{1}+R_{e q}=25+3.6=28.6 \mathrm{~K} / \mathrm{W}
$$

MCQ 1.57 GATE ME 2005 TWO MARK

A small copper ball of 5 mm diameter at 500 K is dropped into an oil bath whose temperature is 300 K . The thermal conductivity of copper is $400 \mathrm{~W} / \mathrm{mK}$, its density $9000 \mathrm{~kg} / \mathrm{m}^{3}$ and its specific heat $385 \mathrm{~J} / \mathrm{kgK}$. If the heat transfer coefficient is $250 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$ and lumped analysis is assumed to be valid, the rate of fall of the temperature of the ball at the beginning of cooling will be, in K / s,
(A) 8.7
(B) 13.9
(C) 17.3
(D) 27.7

SOL 1.57 Option (C) is correct.
Given : $D=5 \mathrm{~mm}=0.005 \mathrm{~m}, T_{i}=500 \mathrm{~K}, T_{a}=300 \mathrm{~K}, k=400 \mathrm{~W} / \mathrm{mK}$,
$\rho=9000 \mathrm{~kg} / \mathrm{m}^{3}, c=385 \mathrm{~J} / \mathrm{kg} \mathrm{K}, h=250 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$,
Given that lumped analysis is assumed to be valid.
So,

$$
\begin{array}{rl}
\frac{T-T_{a}}{T_{i}-T_{a}} & =\exp \left(-\frac{h A t}{\rho \nu c}\right)=\exp \left(-\frac{h t}{\rho l c}\right) \tag{i}\\
l & =\frac{\nu}{A}=\frac{\text { Volume of ball }}{\text { Surface Area }}=\frac{4}{3} \pi R^{3} \\
4 \pi R^{2} & l=\frac{\nu}{A} \\
l & =\frac{R}{3}=\frac{D}{6}=\frac{0.005}{6}=\frac{1}{1200} \mathrm{~m}
\end{array}
$$

On substituting the value of $l \&$ other parameters in equation. (i),

$$
\begin{aligned}
\frac{T-300}{500-300} & =\exp \left(-\frac{250 \times t}{9000 \times \frac{1}{1200} 385}\right) \\
T & =300+200 \times e^{-0.08658 t}
\end{aligned}
$$

On differentiating the above equation w.r.t. t,

$$
\frac{d T}{d t}=200 \times(-0.08658) \times e^{-0.08658 t}
$$

Rate of fall of temperature of the ball at the beginning of cooling is (at beginning $t=0$)

$$
\left(\frac{d T}{d t}\right)_{t=0}=200 \times(-0.08658) \times 1=-17.316 \mathrm{~K} / \mathrm{sec}
$$

Negative sign shows fall of temperature.
MCQ 1.58 A solid cylinder (surface 2) is located at the centre of a hollow sphere (surface 1). The diameter of the sphere is 1 m , while the cylinder has a diameter and length of 0.5 m each. The radiation configuration factor F_{11} is
(A) 0.375
(B) 0.625
(C) 0.75
(D) 1

SOL 1.58 Option (C) is correct.

Given : $d_{1}=1 \mathrm{~m}, d_{2}=0.5 \mathrm{~m}, L=0.5 \mathrm{~m}$
The cylinder surface cannot see itself and the radiation emitted by this surface falls on the enclosing sphere. So, from the conservation principle (summation rule) for surface 2,

$$
\begin{aligned}
F_{21}+F_{22} & =1 \\
F_{21} & =1
\end{aligned}
$$

(

$$
F_{22}=0
$$

From the reciprocity theorem,

$$
\begin{align*}
A_{1} F_{12} & =A_{2} F_{21} \tag{ii}\\
F_{12} & =\frac{A_{2}}{A_{1}} \times \frac{F_{21}=\frac{A_{2}}{A_{1}}}{+F_{12}} \tag{iii}
\end{align*}=1
$$

For sphere, $F_{11}+F_{12}=1$

From equation (ii) and (iii), we get

$$
\begin{aligned}
F_{11} & =1-\frac{A_{2}}{A_{1}}=1-\frac{2 \pi r_{2} l}{\pi d_{1}^{2}}=1-\frac{2 r_{2} l}{d_{1}^{2}} \\
& =1-\frac{2 \times 0.250 \times 0.5}{1^{2}}=1-\frac{1}{4}=0.75
\end{aligned}
$$

MCQ 1.59 Hot oil is cooled from 80 to $50^{\circ} \mathrm{C}$ in an oil cooler which uses air as the coolant. The TWO MARK air temperature rises from 30 to $40^{\circ} \mathrm{C}$. The designer uses a LMTD value of $26^{\circ} \mathrm{C}$. The type of heat exchange is
(A) parallel flow
(B) double pipe
(C) counter flow
(D) cross flow

SOL 1.59 Option (D) is correct.
The figure shown below are of parallel flow and counter flow respectively.

For parallel flow,

$$
\begin{aligned}
& t_{h 1}=80^{\circ} \mathrm{C}, t_{h 2}=50^{\circ} \mathrm{C}, t_{c 1}=30^{\circ} \mathrm{C}, t_{c 2}=40^{\circ} \mathrm{C} \\
& \theta_{m p}=\frac{\theta_{1}-\theta_{2}}{\ln \left(\frac{\theta_{1}}{\theta_{2}}\right)}=\frac{\left(t_{h 1}-t_{c 1}\right)-\left(t_{h 2}-t_{c 2}\right)}{\ln \left(\frac{t_{h 1}-t_{c 1}}{t_{h 2}-t_{c 2}}\right)}
\end{aligned}
$$

Where, $\theta_{m p}$ denotes the LMTD for parallel flow.

$$
\begin{aligned}
& \theta_{m p}=\frac{(80-30)-(50-40)}{\ln \left(\frac{50}{10}\right)}=\frac{40}{\ln (5)}=24.85^{\circ} \mathrm{C} \\
& \text { arrangement }
\end{aligned}
$$

For counter flow arrangement
$t_{h 1}=80^{\circ} \mathrm{C}, t_{h 2}=50^{\circ} \mathrm{C}, t_{c 1}=40^{\circ} \mathrm{C}, t_{c 2}=30^{\circ} \mathrm{C}$
Where, $\theta_{m c}$ denotes the LMTD for counter flow.

$$
\begin{aligned}
\theta_{m c} & =\frac{\theta_{1}-\theta_{2}}{\ln \left(\frac{\theta_{1}}{\theta_{2}}\right)}=\frac{\left(t_{h 1}-t_{c 2}\right)-\left(t_{h 2}-t_{c 1}\right)}{\ln \left(\frac{t_{h 1}-t_{c 2}}{t_{h 2}-t_{c 1}}\right)} \\
& =\frac{(80-30)-(50-40)}{\ln \left(\frac{50}{10}\right)}=\frac{40}{\ln (5)}=28.85^{\circ} \mathrm{C}
\end{aligned}
$$

Now for defining the type of flow, we use the correction factor.

$$
\begin{equation*}
\theta_{m}=F \theta_{m c}=F \theta_{m p} \tag{i}
\end{equation*}
$$

Where $F=$ correction factor, which depends on the geometry of the heat exchanger and the inlet and outlet temperatures of the of the hot \& cold streams.
$F<1$, for cross flow and $F=1$, for counter \& parallel flow
So, From equation (i),

$$
F=\frac{\theta_{m}}{\theta_{m c}}=\frac{26}{28.85}=0.90<1
$$

and also

$$
F=\frac{\theta_{m}}{\theta_{m p}}=\frac{26}{24.85}=1.04>1
$$

So, cross flow in better for this problem.
MCQ 1.60 The vapour compression refrigeration cycle is represented as shown in the figure below, with state 1 being the exit of the evaporator. The coordinate system used in this figure is

(A) $p-h$
(B) $T-s$
(C) $p-s$
(D) $T-h$

SOL 1.60 Option (A) is correct.
Given curve is the theoretical p - h curve for vapour compression refrigeration cycle.

Hence, curve given in question is a ideal $p-h$ curve for vapour compression refrigeration cycle.

MCQ 1.61 A vapour absorption refrigeration system is a heat pump with three thermal

GATE ME 2005 TWO MARK reservoirs as shown in the figure. A refrigeration effect of 100 W is required at 250 K when the heat source available is at 400 K . Heat rejection occurs at 300 K . The minimum value of heat required (in W) is

(A) 167
(B) 100
(C) 80
(D) 20

SOL 1.61 Option (C) is correct.

$$
\begin{aligned}
(C O P)_{r e f} & =\frac{\text { Refrigeration Effect }}{\text { Work done }}=\frac{T_{1}}{T_{2}-T_{1}} \\
\frac{100}{W} & =\frac{250}{300-250} \\
W & =\frac{100}{250} \times 50=20 \mathrm{Watt}
\end{aligned}
$$

For supply this work, heat is taken from reservoir 3 \& rejected to sink 2.
So efficiency,

$$
\begin{aligned}
\eta & =\frac{W}{Q_{3}}=\frac{T_{3}-T_{2}}{T_{3}} & \text { It works as a heat engine. } \\
\frac{20}{Q_{3}} & =\frac{400-300}{400} \Rightarrow Q_{3}=80 \mathrm{Watt} &
\end{aligned}
$$

MCQ 1.62
GATE ME 2005 TWO MARK

Various psychometric processes are shown in the figure below.

Process in Figure
P. 0-1
Q. $0-2$
R. $0-3$
S. $0-4$
T. $0-5$

Name of the process

(i). Chemical dehumidification
(ii). Sensible heating
(iii). Cooling and dehumidification
(iv). Humidification with steam injection
(v). Humidification with water injection

The matching pairs are
(A) P-(i), Q-(ii), R-(iii), S-(iv), T-(v)
(B) P-(ii), Q-(i), R-(iii), S-(v), T-(iv)
(C) P-(ii), Q-(i), R-(iii), S-(iv), T-(v)
(D) P-(iii), Q-(iv), R-(v), S-(i), T-(ii)

SOL 1.62 Option (B) is correct.

Specific
Humidity
$W(\mathrm{~kg} / \mathrm{kg})$

Dry Bulb Temperature

Process	Process Name	$\boldsymbol{t}_{D B T}$	\boldsymbol{W}
$\mathbf{0 - 1}$	Sensible Heating	Increase	Constant
$\mathbf{0 - 2}$	Chemical dehumidification	Increase	Decrease
$\mathbf{0 - 3}$	Cooling and dehumidification	Decrease	Decrease
$\mathbf{0 - 4}$	Humidification with water injection	Decrease	Increase
$\mathbf{0 - 5}$	Humidification with steam injection	Increase	Increase

MCQ 1.63 In the velocity diagram shown below, u a blade velocity, $C=$ absolute fluid velocity

GATE ME 2005 TWO MARK and $W=$ relative velocity of fluid and the subscripts 1 and 2 refer to inlet and outlet. This diagram is for

help

(A) an impulse turbine
(B) a reaction turbine
(C) a centrifugal compressor
(D) an axial flow compressor

SOL 1.63 Option (B) is correct.
Velocity of flow, $\quad u=u_{1}=u_{2}=$ constant
\& $\quad W_{2} \gg W_{1} \quad W=$ Whirl velocity
Hence, it is a diagram of reaction turbine.

MCQ 1.64
GATE ME 2005 TWO MARK

A leaf is caught in a whirlpool. At a given instant, the leaf is at a distance of 120 m from the centre of the whirlpool. The whirlpool can be described by the following velocity distribution:

$$
V_{r}=-\left(\frac{60 \times 10^{3}}{2 \pi r}\right) \mathrm{m} / \mathrm{s} \text { and } V_{\theta}=\frac{300 \times 10^{3}}{2 \pi r} \mathrm{~m} / \mathrm{s}
$$

Where r (in metres) is the distance from the centre of the whirlpool. What will be
the distance of the leaf from the centre when it has moved through half a revolution ?
(A) 48 m
(B) 64 m
(C) 120 m
(D) 142 m

SOL 1.64 Option (B) is correct.
Given : $\quad V_{r}=-\left(\frac{60 \times 10^{3}}{2 \pi r}\right) \mathrm{m} / \mathrm{sec}$
And

$$
\begin{equation*}
V_{\theta}=\frac{300 \times 10^{3}}{2 \pi r} \mathrm{~m} / \mathrm{sec} \tag{i}
\end{equation*}
$$

Dividing equation (i) by equation (ii), we get

$$
\begin{align*}
\frac{V_{r}}{V_{\theta}} & =-\frac{60 \times 10^{3}}{2 \pi r} \times \frac{2 \pi r}{300 \times 10^{3}}=-\frac{1}{5} \\
V_{r} & =-\frac{V_{\theta}}{5} \tag{iii}
\end{align*}
$$

In this equation (iii)

$$
\begin{aligned}
V_{r} & =\text { Radial Velocity }=\frac{d r}{d t} \\
V_{\theta} & =\text { Angular Velocity }=r \omega=r \frac{d \theta}{d t}
\end{aligned}
$$

So,

$$
\begin{aligned}
& \frac{d r}{d t}=-\frac{1}{5} r \frac{d \theta}{d t} \\
& \frac{d r}{r}=-\frac{1}{5} d \theta
\end{aligned}
$$

On integrating both the sides and put limits, between $r \Rightarrow 120$ to r and $\theta \Rightarrow 0$ to π (for half revolution).

$$
\begin{aligned}
\int_{120}^{r} \frac{d r}{r} & =-\frac{1}{5} \int_{0}^{\pi} d \theta \\
{[\ln r]_{120}^{r} } & =-\frac{1}{5}[\theta]_{0}^{\pi} \\
\ln r-\ln 120 & =-\frac{1}{5}[\pi-0]=-\frac{\pi}{5} \\
\ln \frac{r}{120} & =-\frac{\pi}{5} \\
\frac{r}{120} & =e^{-\pi / 5}=0.533 \\
r & =0.533 \times 120=64 \text { meter }
\end{aligned}
$$

MCQ 1.65 GATE ME 2005 TWO MARK

A mould has a downsprue whose length is 20 cm and the cross sectional area at the base of the downsprue is $1 \mathrm{~cm}^{2}$. The downsprue feeds a horizontal runner leading into the mould cavity of volume $1000 \mathrm{~cm}^{3}$. The time required to fill the mould cavity will be
(A) 4.05 s
(B) 5.05 s
(C) 6.05 s
(D) 7.25 s

SOL 1.65 Option (B) is correct.
Given : $l=20 \mathrm{~cm}=0.2 \mathrm{~m}, A=1 \mathrm{~cm}^{2}=10^{-4} \mathrm{~m}^{2}$
$V=1000 \mathrm{~cm}^{3}=1000 \times 10^{-6} \mathrm{~m}^{3}=10^{-3} \mathrm{~m}^{3}$
Velocity at the base of sprue is,

$$
V=\sqrt{2 g h}=\sqrt{2 \times 9.8 \times 0.2}=1.98 \mathrm{~m} / \mathrm{sec}
$$

From the continuity equation flow rate to fill the mould cavity is, Filling rate

$$
\begin{aligned}
\dot{Q} & =\text { Area } \times \text { Velocity }=A V \\
\frac{v}{t} & =A V \\
t & =\frac{v}{A V} \\
t & =\frac{10^{-3}}{10^{-4} \times 1.98}=\frac{10}{1.98}=5.05 \mathrm{sec}
\end{aligned}
$$

A 2 mm thick metal sheet is to be bent at an angle of one radian with a bend radius

MCQ 1.66
GATE ME 2005 TWO MARK of 100 mm . If the stretch factor is 0.5 , the bend allowance is

(A) 99 mm
(C) 101 mm

SOL 1.66
Option (C) is correct.
Given : $\alpha=1$ radian $\times \frac{180}{\pi}=\left(\frac{180}{\pi}\right)^{\circ}, r=100 \mathrm{~mm}, k=0.5, t=2 \mathrm{~mm}$
Here,

$$
r>2 t
$$

So,

$$
k=0.5 t
$$

Bend allowance

$$
\begin{aligned}
& B=\frac{\alpha}{360} \times 2 \pi(r+k) \\
& B=\frac{180}{\pi} \times \frac{2 \pi}{360}(100+0.5 \times 2)=101 \mathrm{~mm}
\end{aligned}
$$

MCQ 1.67 TWO MARK

Spot welding of two 1 mm thick sheets of steel (density $=8000 \mathrm{~kg} / \mathrm{m}^{3}$) is carried out successfully by passing a certain amount of current for 0.1 second through the electrodes. The resultant weld nugget formed is 5 mm in diameter and 1.5 mm thick. If the latent heat of fusion of steel is $1400 \mathrm{~kJ} / \mathrm{kg}$ and the effective resistance in the welding operation is $200 \mu \Omega$, the current passing through the electrodes is approximately
(A) 1480 A
(B) 3300 A
(C) 4060 A
(D) 9400 A

SOL 1.67 Option (C) is correct.

Given :

$\rho=8000 \mathrm{~kg} / \mathrm{m}^{3}, t=0.1 \mathrm{sec} ., d=5 \mathrm{~mm}, w=1.5 \mathrm{~mm}, L_{f}=1400 \mathrm{~kJ} / \mathrm{kg}, R=200 \mu \Omega$
First of all calculate the mass,

$$
\begin{aligned}
\rho & =\frac{m}{V} \\
m & =\rho \times V=\rho \times \frac{\pi}{4} d^{2} \times t \\
& =8000 \times \frac{\pi}{4} \times\left(5 \times 10^{-3}\right)^{2} \times 1.5 \times 10^{-3} \\
& =235.5 \times 10^{-6} \mathrm{~kg}=2.35 \times 10^{-4} \mathrm{~kg}
\end{aligned}
$$

Total heat for fusion,

$$
\begin{array}{rlr}
Q & =m L_{f} & L=\text { Latent heat } \\
& =2.35 \times 10^{-4} \times 1400 \times 10^{3}=329 \mathrm{~J} & \ldots(\mathrm{i}) \tag{i}
\end{array}
$$

We also know that, the amount of heat generated at the contacting area of the element to be welded is,

$$
\begin{aligned}
Q & =I^{2} R t \\
329 & =I^{2} \times 200 \times 10^{-6} \times 0.1 \\
I^{2} & =\frac{329}{200 \times 10^{-7}}=16.45 \times 10^{6} \\
I & =-16.45 \times 10^{6}=4056 \mathrm{~A} \simeq 4060 \mathrm{~A}
\end{aligned}
$$

From equation (i)

MCQ 1.68
GATE ME 2005 TWO MARK

A $600 \mathrm{~mm} \times 30 \mathrm{~mm}$ flat surface of a plate is to be finish machined on a shaper. The plate has been fixed with the 600 mm side along the tool travel direction. If the tool over-travel at each end of the plate is 20 mm , average cutting speed is $8 \mathrm{~m} / \mathrm{min}$., feed rate is $0.3 \mathrm{~mm} /$ stroke and the ratio of return time to cutting time of the tool is $1: 2$, the time required for machining will be
(A) 8 minutes
(B) 12 minutes
(C) 16 minutes
(D) 20 minutes

SOL 1.68 Option (B) is correct.
Given : Side of the plate $=600 \mathrm{~mm}, V=8 \mathrm{~m} / \mathrm{min}, f=0.3 \mathrm{~mm} /$ stroke

$$
\frac{\text { Return time }}{\text { Cutting time }}=\frac{1}{2}
$$

The tool over travel at each end of the plate is 20 mm . So length travelled by the tool in forward stroke,

$$
L=600+20+20=640 \mathrm{~mm}
$$

Number of stroke required $=\frac{\text { Thickness of flat plate }}{\text { Feed rate/stroke }}$

$$
=\frac{30}{0.3}=100 \text { strokes }
$$

Distance travelled in 100 strokes is,

$$
d=640 \times 100
$$

$$
=64000 \mathrm{~mm}=64 \mathrm{~m}
$$

So, Time required for forward stroke

$$
\begin{aligned}
t & =\frac{d}{V}=\frac{64}{8}=8 \mathrm{~min} \\
\text { Return time } & =\frac{1}{2} \times 8=4 \mathrm{~min} \\
\text { Machining time, } \quad T_{M} & =\text { Cutting time }+ \text { Return time } \\
& =8+4=12 \mathrm{~min}
\end{aligned}
$$

MCQ 1.69
GATE ME 2005 TWO MARK

The tool of an NC machine has to move along a circular arc from $(5,5)$ to $(10,10)$ while performing an operation. The centre of the arc is at $(10,5)$. Which one of the following NC tool path command performs the above mentioned operation?
(A) N010 G02 X10 Y10 X5 Y5 R5
(B) N010 G03 X10 Y10 X5 Y5 R5
(C) N010 G01 X5 Y5 X10 Y10 R5
(D) N010 G02 X5 Y5 X10 Y10 R5

SOL 1.69 Option (A) is correct.

So,
N010 \rightarrow represent start the operation
G02 \rightarrow represent circular (clock wise) interpolation
X10Y10 \rightarrow represent final coordinates
X5Y5 \rightarrow represent starting coordinate
R $5 \rightarrow$ represent radius of the arc
So, NC tool path command is, N010 G02 X10 Y10 X5 Y5 R5

MCQ 1.70
GATE ME 2005 TWO MARK

A component can be produced by any of the four processes I, II, III and IV. Process I has a fixed cost of Rs. 20 and variable cost of Rs. 3 per piece. Process II has a fixed cost Rs. 50 and variable cost of Rs. 1 per piece. Process III has a fixed cost of Rs. 40 and variable cost of Rs. 2 per piece. Process IV has a fixed cost of Rs. 10 and variable cost of Rs. 4 per piece. If the company wishes to produce 100 pieces of the component, form economic point of view it should choose
(A) Process I
(B) Process II
(C) Process III
(D) Process IV

SOL 1.70 Option (B) is correct.

For economic point of view, we should calculate the total cost for all the four processes.

$$
\text { Total cost }=\text { Fixed cost }+ \text { Variable cos } t \times \text { Number of piece }
$$

For process (I) :

$$
\begin{aligned}
\text { Fixed cost } & =20 \text { Rs. } \\
\text { Variable cost } & =3 \text { Rs. per piece } \\
\text { Number of pieces } & =100 \\
\text { Total cost } & =20+3 \times 100 \\
& =320 \text { Rs. }
\end{aligned}
$$

For process (II) :

$$
\begin{aligned}
\text { Total cost } & =50+1 \times 100 \\
& =150 \mathrm{Rs} .
\end{aligned}
$$

For process (III) :

$$
\begin{aligned}
\text { Total cost } & =40+2 \times 100 \\
& =240 \mathrm{Rs} .
\end{aligned}
$$

For process (IV) :

$$
\begin{aligned}
\text { Total cost } & =10+4 \times 100 \\
& =410 \mathrm{Rs}
\end{aligned}
$$

Now, we can see that total cost is minimum for process (II). So process (II) should choose for economic point of view.

MCQ 1.71 A welding operation is time-studied during which an operator was pace-rated as

GATE ME 2005 TWO MARK 120%. The operator took, on an average, 8 minutes for producing the weld-joint. If a total of 10% allowances are allowed for this operation. The expected standard production rate of the weld-joint (in units per 8 hour day) is
(A) 45
(B) 50
(C) 55
(D) 60

SOL 1.71 Option (A) is correct.
Given : \quad Rating factor $=120 \%$

$$
\text { Actual time } T_{\text {actual }}=8 \mathrm{~min}
$$

$$
\text { Normal time } T_{\text {normal }}=\text { actual time } \times \text { Rating factor }
$$

$$
T_{\text {normal }}=8 \times \frac{120}{100}
$$

$$
=9.6 \mathrm{~min}
$$

10% allowance is allowed for this operation.
So, standard time,

$$
\begin{aligned}
T_{\text {standard }} & =\frac{T_{\text {normal }}}{1-\frac{10}{100}} \\
& =\frac{9.6}{0.9} \\
& =10.67 \mathrm{~min}
\end{aligned}
$$

Hence, standard production rate of the weld joint

$$
\begin{aligned}
& =\frac{8 \times 60}{10.67} \\
& =45 \text { units }
\end{aligned}
$$

MCQ 1.72 The distribution of lead time demand for an item is as follows:

Lead time demand	Probability
80	0.20
100	0.25
120	0.30
140	0.25

The reorder level is 1.25 times the expected value of the lead time demand. The service level is
(A) 25%
(B) 50%
(C) 75%
(D) 100%

SOL 1.72 Option (D) is correct.
The expected value of the lead time demand

$$
\begin{aligned}
& =80 \times 0.20+100 \times 0.25+120 \times 0.30+140 \times 0.25 \\
& =112
\end{aligned}
$$

Reorder level is 1.25 time the lead time demand.
So,

$$
\begin{aligned}
\text { Reorder value } & =1.25 \times 112 \\
& =140
\end{aligned}
$$

Here we can see that both the maximum demand or the reorder value is equal. Hence, service level $=100 \%$

MCQ 1.73 A project has six activities $(A$ to $F)$ with respective activity duration $7,5,6,6,8$, crashed with the same crash cost per day. The number of activities that need to be crashed to reduce the project duration by 1 day is
(A) 1
(B) 2
(C) 3
(D) 6

SOL 1.73 Option (C) is correct.
The 3 activity need to be crashed to reduce the project duration by 1 day.
MCQ 1.74 A company has two factories $S 1, S 2$, and two warehouses $D 1, D 2$. The supplies

GATE ME 2005 TWO MARK from $S 1$ and $S 2$ are 50 and 40 units respectively. Warehouse $D 1$ requires a minimum of 20 units and a maximum of 40 units. Warehouse $D 2$ requires a minimum of 20 units and, over and above, it can take as much as can be supplied. A balanced transportation problem is to be formulated for the above situation. The number
of supply points, the number of demand points, and the total supply (or total demand) in the balanced transportation problem respectively are
(A) $2,4,90$
(B) $2,4,110$
(C) $3,4,90$
(D) $3,4,110$

SOL 1.74 Option (C) is correct.
First we have to make a transportation model from the given details.

We know,
Basic condition for transportation model is balanced, if it contains no more than $m+n-1$ non-negative allocations, where m is the number of rows and n is the number of columns of the transportation problem.
So, Number of supply point (allocations) $=m+n-1$

$$
\begin{aligned}
& =2+2-1=3 \\
\text { Number of demand points } & =4 \text { (No. of blank blocks) } \\
\text { Total supply or demand } & =50+40=90
\end{aligned}
$$

MCQ 1.75 GATE ME 2005 TWO MARK

Two tools P and Q have signatures $5^{\circ}-5^{\circ}-6^{\circ}-6^{\circ}-8^{\circ}-30^{\circ}-0$ and $5^{\circ}-5^{\circ}-7^{\circ}-7^{\circ}-8^{\circ}-15^{\circ}$ -0 (both ASA) respectively. They are used to turn components under the same machining conditions. If h_{P} and h_{Q} denote the peak-to-valley heights of surfaces produced by the tools P and Q, the ratio h_{P} / h_{Q} will be
(A) $\frac{\tan 8^{\circ}+\cot 15^{\circ}}{\tan 8^{\circ}+\cot 30^{\circ}}$
(B) $\frac{\tan 15^{\circ}+\cot 8^{\circ}}{\tan 30^{\circ}+\cot 8^{\circ}}$
(C) $\frac{\tan 15^{\circ}+\cot 7^{\circ}}{\tan 30^{\circ}+\cot 7^{\circ}}$
(D) $\frac{\tan 7^{\circ}+\cot 15^{\circ}}{\tan 7^{\circ}+\cot 30^{\circ}}$

SOL 1.75 Option (B) is correct.
Tool designation or tool signature under ASA, system is given in the order.
Back rake, Side rake, End relief, Side relief, End cutting edge angle, Side cutting edge angle and nose radius that is

$$
\alpha_{b}-\alpha_{s}-\theta_{e^{-}}-\theta_{s}-C_{e}-C_{s}-R
$$

Given : For tool P, tool signature,

$$
5^{\circ}-5^{\circ}-6^{\circ}-6^{\circ}-8^{\circ}-30^{\circ}-0
$$

For tool Q

$$
5^{\circ}-5^{\circ}-7^{\circ}-7^{\circ}-8^{\circ}-15^{\circ}-0
$$

We know that,

$$
h=\frac{\text { feed }}{\tan (\text { SCEA })+\cot (\text { ECEA })}=\frac{f}{\tan \left(C_{s}\right)+\cot \left(C_{e}\right)}
$$

For tool P,

$$
h_{P}=\frac{f_{P}}{\tan 30^{\circ}+\cot 8^{\circ}}
$$

For tool Q

$$
h_{Q}=\frac{f_{Q}}{\tan 15^{\circ}+\cot 8^{\circ}}
$$

for same machining condition $f_{P}=f_{Q}$
Hence,

$$
\frac{h_{P}}{h_{Q}}=\frac{\tan 15^{\circ}+\cot 8^{\circ}}{\tan 30^{\circ}+\cot 8^{\circ}}
$$

Common Data for Questions 76, 77, and 78 :

An instantaneous configuration of a four-bar mechanism, whose plane is horizontal is shown in the figure below. At this instant, the angular velocity and angular acceleration of link $\mathrm{O}_{2} \mathrm{~A}$ are $\omega=8 \mathrm{rad} / \mathrm{s}$ and $\alpha=0$, respectively, and the driving torque (τ) is zero. The link $\mathrm{O}_{2} \mathrm{~A}$ is balanced so that its centre of mass falls at O_{2}.

MCQ 1.76 Which kind of 4-bar mechanism is $\mathrm{O}_{2} \mathrm{ABO}_{4}$?

GATE ME 2005 TWO MARK
(A) Double-crank mechanism
(B) Crank-rocker mechanism
(C) Double-rocker mechanism
(D) Parallelogram mechanism

SOL 1.76 Option (B) is correct.

From Triangle $A B C$,

$$
A B=\sqrt{(100)^{2}+(240)^{2}}=\sqrt{67600}=260 \mathrm{~mm}
$$

Length of shortest link $l_{1}=60 \mathrm{~mm}$
Length of longest link $l_{3}=260 \mathrm{~mm}$
From the Grashof's law,

So,

$$
\begin{aligned}
l_{1}+l_{3} & \ngtr l_{2}+l_{4} \\
60+260 & \ngtr 160+240 \\
320 & \ngtr 400
\end{aligned}
$$

$$
l_{1}+l_{3}<l_{2}+l_{4}
$$

Also, when the shortest link $O_{2} A$ will make a complete revolution relative to other three links, if it satisfies the Grashof's law. Such a link is known as crank. The link $O_{4} B$ which makes a partial rotation or oscillates is known as rocker. So, crank rocker mechanism is obtained.
Here,

$$
O_{2} A=l_{1}=60 \mathrm{~mm} \text { is crank (fixed link) }
$$

Adjacent link, $O_{2} O_{4}=240 \mathrm{~mm}$ is fixed
So, crank rocker mechanism will be obtained.
MCQ 1.77 At the instant considered, what is the magnitude of the angular velocity of $O_{4} B$?
(A) $1 \mathrm{rad} / \mathrm{s}$
(B) $3 \mathrm{rad} / \mathrm{s}$
(C) $8 \mathrm{rad} / \mathrm{s}$
(D) $\frac{64}{3} \mathrm{rad} / \mathrm{s}$

SOL 1.77 Option (B) is correct.
Let, ω_{4} is the angular velocity of link $O_{4} B$
From the triangle $A B C$,

$$
\begin{align*}
\tan \theta & =\frac{100}{240}=\frac{5}{12} \tag{i}\\
\theta & =\tan ^{-1}\left(\frac{5}{12}\right)=22.62^{\circ}
\end{align*}
$$

Also from the triangle $O_{1} O_{2} A$,

$$
\begin{aligned}
& \tan \theta=\frac{O_{2} A}{O_{1} O_{2}} \\
& O_{1} O_{2}=\frac{O_{2} A}{\tan \theta}=\frac{60}{\frac{5}{12}}=144 \mathrm{~mm}
\end{aligned}
$$

From the angular velocity ratio theorem.

$$
\begin{aligned}
V_{24} & =\omega_{4} \times I_{24} I_{14}=\omega \times I_{24} I_{12} \\
\omega_{4} & =\frac{I_{24} I_{12}}{I_{24} I_{14}} \times \omega \\
\omega_{4} & =\frac{144}{(240+144)} \times 8=\frac{144}{384} \times 8=3 \mathrm{rad} / \mathrm{sec}
\end{aligned}
$$

MCQ 1.78 At the same instant, if the component of the force at joint A along AB is 30 N , then

GATE ME 2005 TWO MARK the magnitude of the joint reaction at O_{2}
(A) is zero
(B) is 30 N

(C) is 78 N
(D) cannot be determined from the given data

SOL 1.78 Option (D) is correct.
From the given data the component of force at joint A along $A O_{2}$ is necessary to find the joint reaction at O_{2}. So, it is not possible to find the magnitude of the joint reaction at O_{2}.

Common Data for Question 79 and 80

In two air standard cycles-one operating in the Otto and the other on the Brayton cycle-air is isentropically compressed from 300 to 450 K . Heat is added to raise the temperature to 600 K in the Otto cycle and to 550 K in the Brayton cycle.

MCQ 1.79 In η_{O} and η_{B} are the efficiencies of the Otto and Brayton cycles, then
GATE ME 2005 TWO MARK
(A) $\eta_{O}=0.25, \eta_{B}=0.18$
(B) $\eta_{O}=\eta_{B}=0.33$
(C) $\eta_{O}=0.5, \eta_{B}=0.45$
(D) it is not possible to calculate the efficiencies unless the temperature after the
expansion is given
SOL 1.79 Option (B) is correct.
We know that efficiency,

$$
\begin{aligned}
\eta_{\text {Otto }} & =\eta_{\text {Brayton }}=1-\frac{T_{1}}{T_{2}} \\
\eta_{\text {Otto }} & =\eta_{\text {Brayton }}=1-\frac{300}{450} \\
& =1-\frac{6}{9}=0.33
\end{aligned}
$$

So, $\quad \eta_{\text {Otto }}=\eta_{\text {Brayton }}=33 \%$

MCQ 1.80 If W_{O} and W_{B} are work outputs per unit mass, then
GATE ME 2005 TWO MARK
(A) $W_{O}>W_{B}$
(B) $W_{O}<W_{B}$
(C) $W_{O}=W_{B}$
(D) it is not possible to calculate the work outputs unless the temperature after the expansion is given
sol 1.80 Option (A) is correct

From the previous part of the question
$T_{3(\text { Otto })}=600 \mathrm{~K}, T_{3 \text { (Brayton) }}=550 \mathrm{~K}$
From the $p-v$ diagram of Otto cycle, we have

$$
\begin{equation*}
W_{O}=Q_{1}-Q_{2}=c_{v}\left(T_{3}-T_{2}\right)-c_{v}\left(T_{4}-T_{1}\right) \tag{i}
\end{equation*}
$$

For process 3-4,

$$
\frac{T_{3}}{T_{4}}=\left(\frac{\nu_{4}}{\nu_{3}}\right)^{\gamma-1}=\left(\frac{\nu_{1}}{\nu_{2}}\right)^{\gamma-1} \quad \nu_{4}=\nu_{1}, \nu_{3}=\nu_{2}
$$

For process 1-2,

$$
\begin{array}{ll}
& \frac{T_{2}}{T_{1}}=\left(\frac{\nu_{1}}{\nu_{2}}\right)^{\gamma-1} \\
\text { So, } & \frac{T_{3}}{T_{4}}=\frac{T_{2}}{T_{1}}
\end{array}
$$

$$
T_{4}=\frac{T_{3}}{T_{2}} \times T_{1}=\frac{600}{450} \times 300=400 \mathrm{~K}
$$

And

$$
\begin{align*}
W_{O} & =c_{v}(600-450)-c_{v}(400-300) \\
& =c_{v}(150)-100 c_{v}=50 c_{v} \tag{ii}
\end{align*}
$$

From $p-\nu$ diagram of brayton cycle, work done is,

$$
\begin{align*}
W_{B} & =Q_{1}-Q_{2}=c_{p}\left(T_{3}-T_{2}\right)-c_{p}\left(T_{4}-T_{1}\right) \\
T_{4} & =\frac{T_{1}}{T_{2}} \times T_{3}=\frac{300}{450} \times 550=366.67 \mathrm{~K} \\
W_{B} & =c_{p}(550-450)-c_{p}(366.67-300)=33.33 c_{p} \tag{iii}
\end{align*}
$$

And

Dividing equation (ii) by (iii), we get

$$
\begin{aligned}
\frac{W_{O}}{W_{B}} & =\frac{50 c_{v}}{33.33 c_{p}}=\frac{50}{33.33 \gamma} \\
& =\frac{50}{33.33 \times 1.4}=\frac{50}{46.662}>1
\end{aligned}
$$

From this, we see that,

$$
W_{O}>W_{B}
$$

Statement for Linked Answer Question 81 \& 82 :
The complete solution of the ordinary differential equation

$$
\begin{aligned}
& \frac{d^{2} y}{d x^{2}}+p \frac{d y}{d x}+q y=0 \text { is } y=c_{1} e^{-x}+\epsilon_{2} e^{-3 x} \\
& \text { and } q \text { are }
\end{aligned}
$$

MCQ 1.81 Then p and q are
GATE ME 2005 TWO MARK
(A) $p=3, q=3$
(B) $p=3, q=4$
(C) $p=4, q=3$
(D) $p=4, q=4$

SOL 1.81 Option (C) is correct.
Given :

$$
\frac{d^{2} y}{d x^{2}}+p \frac{d y}{d x}+q y=0
$$

We know that the solution of this equation is given by,

$$
\begin{equation*}
y=c_{1} e^{m x}+c_{2} e^{n x} \tag{i}
\end{equation*}
$$

Here $m \& n$ are the roots of ordinary differential equation
Given solution is,

$$
\begin{equation*}
y=c_{1} e^{-x}+c_{2} e^{-3 x} \tag{ii}
\end{equation*}
$$

On comparing equation (i) \& (ii), we get

$$
m=-1 \quad n=-3
$$

Sum of roots,

$$
\begin{aligned}
m+n & =-p \\
-1-3 & =-p \\
-4 & =-p \\
p & =4
\end{aligned}
$$

\& Product of roots, $\quad m n=q$

$$
\begin{aligned}
(-1)(-3) & =q \\
q & =3
\end{aligned}
$$

MCQ 1.82
GATE ME 2005 TWO MARK

Which of the following is a solution of the differential equation

$$
\frac{d^{2} y}{d x^{2}}+p \frac{d y}{d x}+(q+1) y=0
$$

(A) $e^{-3 x}$
(B) $x e^{-x}$
(C) $x e^{-2 x}$
(D) $x^{2} e^{-2 x}$

SOL 1.82 Option (C) is correct.
Given : $\quad \frac{d^{2} y}{d x^{2}}+p \frac{d y}{d x}+(q+1) y=0$

$$
\left[D^{2}+p D+(q+1)\right] y=0
$$

$$
\frac{d}{d x}=D
$$

From the previous question, put $p=4 \& m=3$

$$
\begin{equation*}
\left[D^{2}+4 D+4\right] y=0 \tag{i}
\end{equation*}
$$

The auxilliary equation of equation (i) is written as

$$
\begin{aligned}
m^{2}+4 m+4 & =0 \\
(m+2)^{2} & =\underline{0} \\
m & =\in 2,+2
\end{aligned}
$$

Here the roots of auxiliary equation are same then the solution is

$$
y=\left(c_{1}+c_{2} x\right) \hat{e}^{m x} \equiv x e^{-2 x}
$$

$$
\left(\begin{array}{rl}
\text { Let } c_{1} & =0 \\
c_{2} & =1
\end{array}\right)
$$

Statement for Linked Answer Questions 83 and 84 :

A band brake consists of a lever attached to one end of the band. The other end of the band is fixed to the ground. The wheel has a radius of 200 mm and the wrap angle of the band is 270°. The braking force applied to the lever is limited to 100 N and the coefficient of friction between the band and the wheel is 0.5 . No other information is given.

MCQ 1.83 The maximum tension that can be generated in the band during braking is
(A) 1200 N
(B) 2110 N
(C) 3224 N
(D) 4420 N

SOL 1.83 Option (B) is correct.

Given : $r=200 \mathrm{~mm}=0.2 \mathrm{~m}, \theta=270^{\circ}=270 \times \frac{\pi}{180}=\frac{3 \pi}{2}$ radian, $\mu=0.5$
At the time of braking, maximum tension is generated at the fixed end of band near the wheel.
Let, $\quad T_{2} \rightarrow$ Tension in the slack side of band
$T_{1} \rightarrow$ Tension in the tight side of band at the fixed end
Taking the moment about the point O,

$$
T_{2} \times 1=100 \times 2 \quad \Rightarrow \quad T_{2}=200 \mathrm{~N}
$$

For the band brake, the limiting ratio of the tension is given by the relation

$$
\begin{aligned}
& \frac{T_{1}}{T_{2}}=e^{\mu \theta} \Rightarrow T_{1}=T_{2} \times e^{\mu \theta} \\
& T_{1}=200 \times e^{0.5 \times} \frac{3 \pi}{2}=200 \times 10.54=2108 \mathrm{~N} \simeq 2110 \mathrm{~N}
\end{aligned}
$$

So, maximum tension that can be generated in the band during braking is equal to 2110 N

MCQ 1.84 The maximum wheel torque that can be completely braked is

GATE ME 2005
TWO MARK
(A) 200 Nm
(B) 382 Nm
(C) 604 Nm
(D) 844 Nm

SOL 1.84 Option (B) is correct.
Maximum wheel torque or braking torque is given by,

$$
T_{W}=\left(T_{1}-T_{2}\right) r=(2110-200) \times 0.2=382 \mathrm{~N}-\mathrm{m}
$$

Statement for Linked Answer Question 85 and 86 :

Consider a linear programming problem with two variables and two constraints. The objective function is : Maximize $X_{1}+X_{2}$. The corner points of the feasible region are $(0,0),(0,2),(2,0)$ and $(4 / 3,4 / 3)$

MCQ 1.85 If an additional constraint $X_{1}+X_{2} \leq 5$ is added, the optimal solution is
(A) $\left(\frac{5}{3}, \frac{5}{3}\right)$
(B) $\left(\frac{4}{3}, \frac{4}{3}\right)$
(C) $\left(\frac{5}{2}, \frac{5}{2}\right)$
(D) $(5,0)$

SOL 1.85 Option (B) is correct.
Given : Objective function

$$
Z=X_{1}+X_{2}
$$

From the given corners we have to make a graph for X_{1} and X_{2}

From the graph, the constraint $X_{1}+X_{2} \leq 5$ has no effect on optimal region. Now, checking for optimal solution

	Point	$Z=X_{1}+X_{2}$
(i)	$O(0,0)$	$Z=0$
(ii)	$A(2,0)$	$Z=2+0=2$
(iii)	$B(0,2)$	$Z=0+2=2$
(iv)	$C(4 / 3,4 / 3)$	$Z=4 / 3+4 / 3=8 / 3$

The optimal solution occurs at point $C(4 / 3,4 / 3)$

MCQ 1.86 GATE ME 2005 TWO MARK

Let Y_{1} and Y_{2} be the decision variables of the dual and v_{1} and v_{2} be the slack variables of the dual of the given linear programming problem. The optimum dual variables are
(A) Y_{1} and Y_{2}
(B) Y_{1} and v_{1}
(C) Y_{1} and v_{2}
(D) v_{1} and v_{2}

SOL 1.86 Option (D) is correct.
We know,
The inequality constraints are changed to equality constraints by adding or subtracting a non-negative variable from the left-hand sides of such constraints. These variable is called slack variables or simply slacks.
They are added if the constraints are (\leq) and subtracted if the constraints are (\geq). These variables can remain positive throughout the process of solution and their values in the optimal solution given useful information about the problem.

Hence, Optimum dual variables are v_{1} and v_{2}.

Statement for Linked Answer Questions 87 and 88 :

The following table of properties was printed out for saturated liquid and saturated vapour of ammonia. The title for only the first two columns are available. All that we know that the other columns (column 3 to 8) contain data on specific properties, namely, internal energy ($\mathrm{kJ} / \mathrm{kg}$), enthalpy ($\mathrm{kJ} / \mathrm{kg}$) and entropy ($\mathrm{kJ} / \mathrm{kg} . \mathrm{K}$)

$t\left({ }^{\circ} \mathrm{C}\right)$	$\mathrm{p}(\mathrm{kPa})$						
-20	190.2	88.76	0.3657	89.05	5.6155	1299.5	1418.0
0	429.6	179.69	0.7114	180.36	5.3309	1318.0	1442.2
20	587.5	272.89	1.0408	274.30	5.0860	1332.2	1460.2
40	1554.9	368.74	1.3574	371.43	4.8662	1341.0	1470.2

MCQ 1.87 The specific enthalpy data are in columns

GATE ME 2005
TWO MARK
(A) 3 and 7
(B) 3 and 8
(C) 5 and 7
(D) 5 and 8

SOL 1.87 Option (D) is correct.
From saturated ammonia table column 5 and 8 are the specific enthalpy data column.

MCQ 1.88 When saturated liquid at $40^{\circ} \mathrm{C}$ is throttled to $-20^{\circ} \mathrm{C}$, the quality at exit will be
(A) 0.189
(B) 0.212
(C) 0.231
(D) 0.788

SOL 1.88 Option (B) is correct.
The enthalpy of the fluid before throttling is equal to the enthalpy of fluid after throttling because in throttling process enthalpy remains constant.

$$
\begin{aligned}
h_{1} & =h_{2} \\
371.43 & =89.05+x(1418-89.05) \\
& =89.05+x(1328.95) \\
x & =\frac{282.38}{1328.95}=0.212
\end{aligned}
$$

Statement for Linked Answer Question 89 and 90 :

An uninsulated air conditioning duct of rectangular cross section $1 \mathrm{~m} \times 0.5 \mathrm{~m}$, carrying air at $20^{\circ} \mathrm{C}$ with a velocity of $10 \mathrm{~m} / \mathrm{s}$, is exposed to an ambient of $30^{\circ} \mathrm{C}$. Neglect the effect of duct construction material. For air in the range of $20-30^{\circ} \mathrm{C}$, data are as follows; thermal conductivity $=0.025 \mathrm{~W} / \mathrm{mK}$; viscosity $=18 \mu \mathrm{Pas}$, Prandtl number $=0.73$; density $=1.2 \mathrm{~kg} / \mathrm{m}^{3}$. The laminar flow Nusselt number is 3.4 for
constant wall temperature conditions and for turbulent flow, $\mathrm{Nu}=0.023 \operatorname{Re}^{0.8} \operatorname{Pr}^{0.33}$
MCQ 1.89 The Reynolds number for the flow is
GATE ME 2005
(A) 444
(B) 890
TWO MARK
(C) 4.44×10^{5}
(D) 5.33×10^{5}

SOL 1.89 Option (C) is correct.
Given : A duct of rectangular cross section. For which sides are
$a=1 \mathrm{~m} \& b=0.5 \mathrm{~m}$
$T_{1}=30^{\circ} \mathrm{C}, T_{2}=20^{\circ} \mathrm{C}, V=10 \mathrm{~m} / \mathrm{sec}, k=0.025 \mathrm{~W} / \mathrm{m} \mathrm{K}$
Viscosity $=18 \mu$ Pas, $\operatorname{Pr}=0.73, \rho=1.2 \mathrm{~kg} / \mathrm{m}^{3}, \mathrm{Nu}=0.023 \operatorname{Re}^{0.8} \operatorname{Pr}^{0.33}$
Hence, For a rectangular conduit of sides $a \& b$,
Hydraulic diameter, $\quad D_{H}=\frac{4 A}{p}$
Where, A is the flow cross sectional area \& p the wetted perimeter

$$
\begin{aligned}
D_{H} & =\frac{4 a b}{2(a+b)}=\frac{2 a b}{(a+b)} \\
& =\frac{2 \times 1 \times 0.5}{(1+0.5)}=\frac{1}{1.5}=0.666 \mathrm{~m}
\end{aligned}
$$

Reynolds Number,

$$
\begin{aligned}
\operatorname{Re} & =\frac{\rho V D_{H}}{\mu} \\
& =\frac{1.2 \times 10 \times 0.666}{18 \times 10^{-6}}=4.44 \times 10^{5}
\end{aligned}
$$

MCQ 1.90 The heat transfer per meter length of the duct, in watts is

GATE ME 2005 TWO MARK
(A) 3.8
(B) 5.3
(C) 89
(D) 769

SOL 1.90 Option (D) is correct.
From the first part of the question,

$$
\operatorname{Re}=4.44 \times 10^{5}
$$

Which is greater than 3×10^{5}. So, flow is turbulent flow.
Therefore,

$$
\begin{array}{rlr}
\mathrm{Nu} & =0.023 \operatorname{Re}^{0.8} \operatorname{Pr}^{0.33} & \quad \mathrm{Nu}=\frac{h L}{k} \\
\frac{h L}{k} & =0.023\left(4.44 \times 10^{5}\right)^{0.8} \times(0.73)^{0.33} & \\
& =0.023 \times 32954 \times 0.9013=683.133 & \\
h & =683.133 \times \frac{k}{L} & \\
& =683.133 \times \frac{0.025}{0.666}=25.64 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K} & D_{H}=L=0.666 \mathrm{~m}
\end{array}
$$

Total Area,

$$
A=2(a+b) L=2(1+0.5) L=3 L
$$

Heat transfer by convection is given by,

$$
Q=h A\left(T_{1}-T_{2}\right)=25.64 \times 3 L \times[(273+30)-(273+20)]
$$

Heat transfer per meter length of the duct is given by

$$
\frac{Q}{L}=25.64 \times 3 \times 10=769.2 \mathrm{~W} \simeq 769 \mathrm{~W}
$$

Answer Sheet									
1.	(A)	19.	(B)	37.	(C)	55.	(B)	73.	(C)
2.	(B)	20.	(D)	38.	(D)	56.	(C)	74.	(C)
3.	(A)	21.	(A)	39.	(D)	57.	(C)	75.	(B)
4.	(C)	22.	(D)	40.	(C)	58.	(C)	76.	(B)
5.	(A)	23.	(B)	41.	(C)	59.	(D)	77.	(B)
6.	(D)	24.	(A)	42.	(B)	60.	(A)	78.	(D)
7.	(A)	25.	(C)	43.	(C)	61.	(C)	79.	(B)
8.	(A)	26.	(A)	44.	(B)	62.	(B)	80.	(A)
9.	(A)	27.	(A)	45.	(C)	63.	(B)	81.	(C)
10.	(C)	28.	(D)	46.	(A)	64.	(B)	82.	(C)
11.	(C)	29.	(C)	47.	(B)	65.	(B)	83.	(B)
12.	(A)	30.	(A)	48.	(C)	66.	(C)	84.	(B)
13.	(D)	31.	(A)	49.	(C)	67.	(C)	85.	(B)
14.	(D)	32.	(C)	50.	(C)	68.	(B)	86.	(D)
15.	(A)	33.	(A)	51.	(B) \square	69.	(A)	87.	(D)
16.	(D)	34.	(D)	52.	(D)	70.	(B)	88.	(B)
17.	(D)	35.	(D)	53.	(A) \square	71.	(A)	89.	(C)
18.	(B)	36.	(A)	54.	(A)	72.	(D)	90.	(D)

GATE Multiple Choice Questions For Mechanical Engineering

By NODIA and Company

Available in Three Volumes

Features:

- The book is categorized into chapter and the chapter are sub-divided into units
- Unit organization for each chapter is very constructive and covers the complete syllabus
- Each unit contains an average of 40 questions
- The questions match to the level of GATE examination
- Solutions are well-explained, tricky and consume less time. Solutions are presented in such a way that it enhances you fundamentals and problem solving skills
- There are a variety of problems on each topic
- Engineering Mathematics is also included in the book

Contents

VOLUME-1 Applied Mechanics and Design

UNIT 1. Engineering Mechanics

1.1 Equilibrium of forces
1.2 Structure
1.3 Friction
1.4 Virtual work
1.5 Kinematics of particle
1.6 Kinetics of particle
1.7 Plane kinematics of rigid bodies
1.8 Plane kinetics of rigid bodies

UNIT 2. Strength of Material

2.1 Stress and strain

2.2 Axial loading
2.3 Torsion
2.4 Shear force and bending moment
2.5 Transformation of stress and strain
2.6 Design of beams and shafts
2.7 Deflection of beams and shafts
2.8 Column
2.9 Energy methods

UNIT 3. Machine Design

3.1 Design for static and dynamic loading
3.2 Design of joints
3.3 Design of shaft and shaft components
3.4 Design of spur gears
3.5 Design of bearings
3.6 Design of clutch and brakes

UNIT 4. Theory of Machine

4.1 Analysis of plane mechanism
4.2 Velocity and acceleration
4.3 Dynamic analysis of slider-crank and cams
4.4 Gear-trains
4.5 Flywheel
4.6 vibration

VOLUME-2

Fluid Mechanics and Thermal Sciences

UNIT 5. Fluid Mechanics

5.1 Basic concepts and properties of fluids
5.2 Pressure and fluid statics
5.3 Fluid kinematics and Bernoulli Equation
5.4 Flow analysis using control volume
5.5 Flow analysis using differential method
5.6 Internal flow
5.7 External flow
5.8 Open channel flow
5.9 Turbomachinary

UNIT 6. Heat Transfer

6.1 Basic concepts and modes of Heat transfer
6.2 Fundamentals of conduction
6.3 Steady heat conduction
6.4 Transient heat conduction
6.5 Fundamentals of convection
6.6 Free convection
6.7 Forced convection
6.8 Fundamentals of thermal radiation
6.9 Radiation Heat transfer
6.10 Heat exchangers.

UNIT 7. Thermodynamics

7.1 Basic concepts and Energy analysis
7.2 Properties of pure substances
7.3 Energy analysis of closed system
7.4 Mass and energy analysis of control volume
7.5 Second law of thermodynamics
7.6 Entropy
7.7 Gas power cycles
7.8 Vapour and combined power cycles
7.9 Refrigeration and air conditioning

VOLUME-3 Manufacturing and Industrial Engineering

UNIT 8. Engineering Materials

8.1 Structure and properties of engineering materials, heat treatment, stress-strain diagrams for engineering materials

UNIT 9. Metal Casting:

Design of patterns, moulds and cores; solidification and cooling; riser and gating design, design considerations.

UNIT 10. Forming:

Plastic deformation and yield criteria; fundamentals of hot and cold working processes; load estimation for bulk (forging, rolling, extrusion, drawing) and sheet (shearing, deep drawing, bending) metal forming processes; principles of powder metallurgy.

UNIT 11. Joining:

Physics of welding, brazing and soldering; adhesive bonding; design considerations in welding.

UNIT 12. Machining and Machine Tool Operations:

Mechanics of machining, single and multi-point cutting tools, tool geometry and materials, tool life and wear; economics of machining; principles of non-traditional machining processes; principles of work holding, principles of design of jigs and fixtures

UNIT 13. Metrology and Inspection:

Limits, fits and tolerances; linear and angular measurements; comparators; gauge design; interferometry; form and finish measurement; alignment and testing methods; tolerance analysis in manufacturing and assembly.

UNIT 14. Computer Integrated Manufacturing:

Basic concepts of CAD/CAM and their integration tools.

UNIT 15. Production Planning and Control:

Forecasting models, aggregate production planning, scheduling, materials requirement planning

UNIT 16. Inventory Control:

Deterministic and probabilistic models; safety stock inventory control systems.

UNIT 17. Operations Research:

Linear programming, simplex and duplex method, transportation, assignment, network flow models, simple queuing models, PERT and CPM.

UNIT 18. Engineering Mathematics:

18.1 Linear Algebra

18.2 Differential Calculus

18.3 Integral Calculus

18.4 Differential Equation
18.5 Complex Variable
18.6 Probability \& Statistics
18.7 Numerical Methods

