ME GATE-04

MCQ 1.1 If $x=a(\theta+\sin \theta)$ and $y=a(1-\cos \theta)$, then $\frac{d y}{d x}$ will be equal to
GATE ME 2004 ONE MARK
(A) $\sin \left(\frac{\theta}{2}\right)$
(B) $\cos \left(\frac{\theta}{2}\right)$
(C) $\tan \left(\frac{\theta}{2}\right)$
(D) $\cot \left(\frac{\theta}{2}\right)$

SOL 1.1 Option (C) is correct.
Given: $\quad x=a(\theta+\sin \theta), y=a(1-\cos \theta)$
First differentiate x w.r.t. θ,

$$
\begin{aligned}
& \frac{d x}{d \theta}=a[1+\cos \theta] \\
& y \text { w.r.t. } \theta
\end{aligned}
$$

And differentiate y w.r.t. θ

We know,

$$
\frac{d y}{d \theta}=a[0-(-\sin \theta)]=a \sin \theta
$$

$$
\frac{d y}{d x}=\frac{d y}{d \theta} \times \frac{d \theta}{d x}=\frac{d y / d \theta}{d x / d \theta}
$$

Substitute the values of $\frac{d y}{d \theta} \& \frac{d x}{d \theta}$

$$
\begin{aligned}
\frac{d y}{d x} & =a \sin \theta \times \frac{1}{a[1+\cos \theta]}=\frac{\sin \theta}{1+\cos \theta}=\frac{2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}}{2 \cos ^{2} \frac{\theta}{2}} \\
& =\frac{\sin \frac{\theta}{2}}{\cos \frac{\theta}{2}}=\tan \frac{\theta}{2} \quad \cos \theta+1=2 \cos ^{2} \frac{\theta}{2}
\end{aligned}
$$

MCQ 1.2 The angle between two unit-magnitude coplanar vectors $P(0.866,0.500,0)$ and GATE ME 2004 ONE MARK
(A) 0°
(B) 30°
(C) 45°
(D) 60°

SOL 1.2 Option (C) is correct.
Given : $P(0.866,0.500,0)$, so we can write

$$
\boldsymbol{P}=0.866 \boldsymbol{i}+0.5 \boldsymbol{j}+0 \boldsymbol{k}
$$

$Q=(0.259,0.966,0)$, so we can write

$$
\boldsymbol{Q}=0.259 \boldsymbol{i}+0.966 \boldsymbol{j}+0 \boldsymbol{k}
$$

We know that for the coplanar vectors

$$
\begin{aligned}
\boldsymbol{P} \cdot \boldsymbol{Q} & =|\boldsymbol{P} \| \boldsymbol{Q}| \cos \theta \\
\cos \theta & =\frac{\boldsymbol{P} \cdot \boldsymbol{Q}}{|\boldsymbol{P} \| \boldsymbol{Q}|} \\
\boldsymbol{P} \cdot \boldsymbol{Q} & =(0.866 \boldsymbol{i}+0.5 \boldsymbol{j}+0 \boldsymbol{k}) \cdot(0.259 \boldsymbol{i}+0.966 \boldsymbol{j}+0 \boldsymbol{k}) \\
& =0.866 \times 0.259+0.5 \times 0.966 \\
\cos \theta & =\frac{0.866 \times 0.259+0.5 \times 0.966}{\sqrt{(0.866)^{2}+(0.5)^{2}}+\sqrt{(0.259)^{2}+(0.966)^{2}}} \\
& =\frac{0.22429+0.483}{\sqrt{0.99} \times \sqrt{1.001}}=\frac{0.70729}{\sqrt{0.99} \times \sqrt{1.001}}=0.707 \\
\theta & =\cos ^{-1}(0.707)=45^{\circ}
\end{aligned}
$$

So,

MCQ 1.3 The sum of the eigen values of the matrix given below is
GATE ME 2004 ONE MARK
(A) 5
(C) 9
\square - - (B) 7

$$
\operatorname{me}^{(D) 18}
$$

SOL 1.3 Option (B) is correct.

$$
\left[\begin{array}{lll}
1 & 2 & 3 \\
1 & 5 & 1 \\
3 & 1 & 1
\end{array}\right]
$$

Let

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
1 & 5 & 1 \\
3 & 1 & 1
\end{array}\right]
$$

We know that the sum of the eigen value of a matrix is equal to the sum of the diagonal elements of the matrix
So, the sum of eigen values is,

$$
1+5+1=7
$$

MCQ 1.4 The figure shows a pin-jointed plane truss loaded at the point M by hanging a mass of 100 kg . The member LN of the truss is subjected to a load of ONE MARK

(A) 0 Newton
(B) 490 Newtons in compression
(C) 981 Newtons in compression
(D) 981 Newtons in tension

SOL 1.4 Option (A) is correct.
First of all we consider all the forces, which are acting at point L.

Now sum all the forces which are acting along x direction,

$$
F_{L K}=F_{L M}
$$

Both are acting in opposite direction
Also summation of all the forces, which are acting along y-direction.

$$
F_{L N}=0 \quad \text { Only one forces acting in } y \text {-direction }
$$

So the member $L N$ is subjected to zero load.

MCQ 1.5 GATE ME 2004 ONE MARK

In terms of Poisson's ratio (v) the ratio of Young's Modulus (E) to Shear Modulus (G) of elastic materials is
(A) $2(1+v)$
(C) $\frac{1}{2}(1+v)$
qate
(B) $2(1-v)$
(D) $\frac{1}{2}(1-v)$

SOL 1.5 Option (A) is correct.

We know that, relation between $E, G \& v$ is given by,

$$
E=2 G(1+v)
$$

Where $\quad E=$ young's modulus
$G=$ Shear Modulus
$v=$ Poisson's ratio
Now,
$\frac{E}{G}=2(1+v)$
MCQ 1.6 Two mating spur gears have 40 and 120 teeth respectively. The pinion rotates at GATE ME 2004 ONE MARK 1200 rpm and transmits a torque of 20 Nm . The torque transmitted by the gear is
(A) 6.6 Nm
(B) 20 Nm
(C) 40 Nm
(D) 60 Nm

SOL 1.6 Option (D) is correct.

Given : $Z_{P}=40$ teeth, $Z_{G}=120$ teeth, $N_{P}=1200 \mathrm{rpm}, T_{P}=20 \mathrm{~N}-\mathrm{m}$
Velocity Ratio, $\quad \frac{Z_{P}}{Z_{G}}=\frac{N_{G}}{N_{P}}$

$$
\begin{aligned}
& N_{G}=\frac{Z_{P}}{Z_{G}} \times N_{P} \\
& N_{G}=\frac{40}{120} \times 1200=400 \mathrm{rpm}
\end{aligned}
$$

Power transmitted is same for both pinion \& Gear.

$$
\begin{aligned}
P & =\frac{2 \pi N_{P} T_{P}}{60}=\frac{2 \pi N_{G} T_{G}}{60} \\
N_{P} T_{P} & =N_{G} T_{G} \\
T_{G} & =\frac{N_{P} T_{P}}{N_{G}}=\frac{1200}{400} \times 20=60 \mathrm{~N}-\mathrm{m}
\end{aligned}
$$

So, the torque transmitted by the Gear is $60 \mathrm{~N}-\mathrm{m}$
MCQ 1.7 The figure shows the state of stress at a certain point in a stressed body. The

GATE ME 2004 ONE MARK magnitudes of normal stresses in x and y directions are 100 MPa and 20 MPa respectively. The radius of Mohr's stress circle representing this state of stress is

(A) 120
(B) 80
(C) 60
(D) 40

SOL 1.7 Option (C) is correct.

$\sigma_{x}=100 \mathrm{MPa}$ (Tensile), $\sigma_{y}=-20 \mathrm{MPa}$ (Compressive)
We know that, $\quad \sigma_{1}=\frac{\sigma_{x}+\sigma_{y}}{2}+\sqrt{\left(\frac{\sigma_{x}-\sigma_{y}}{2}\right)^{2}+\tau_{x y}^{2}}$

$$
\sigma_{2}=\frac{\sigma_{x}+\sigma_{y}}{2}-\sqrt{\left(\frac{\sigma_{x}-\sigma_{y}}{2}\right)^{2}+\tau_{x y}^{2}}
$$

From the figure, Radius of Mohr's circle,

$$
\begin{aligned}
R & =\frac{\sigma_{1}-\sigma_{2}}{2} \\
& =\frac{1}{2} \times 2 \sqrt{\left(\frac{\sigma_{x}-\sigma_{y}}{2}\right)^{2}+\tau_{x y}^{2}}
\end{aligned}
$$

Substitute the values, we get

$$
R=\sqrt{\left[\frac{100-(-20)}{2}\right]^{2}}=60
$$

MCQ 1.8 For a mechanism shown below, the mechanical advantage for the given configuration GATE ME 2004 is ONE MARK

(A) 0
(B) 0.5
(C) 1.0
(D) ∞

SOL 1.8
Option (D) is correct.
Mechanical advantage in the form of torque is given by,

$$
\text { M.A. }=\frac{T_{\text {output }}}{T_{\text {input }}}=\frac{\omega_{\text {input }}}{\omega_{\text {output }}}, \square
$$

Here output link is a slider, So, $\omega_{\text {output }}=0$
Therefore, M.A. $=\infty$
MCQ 1.9 A vibrating machine is isolated from the floor using springs. If the ratio of excitation is equal to 0.5 , then transmissibility ratio of isolation is
(A) $\frac{1}{2}$
(B) $\frac{3}{4}$
(C) $\frac{4}{3}$
(D) 2

SOL 1.9 Option (C) is correct.
Given $\frac{\omega}{\omega_{n}}=r=0.5$
And due to isolation damping ratio,

$$
\varepsilon=\frac{c}{c_{c}}=0
$$

For isolation $c=0$
We know the transmissibility ratio of isolation is given by,

$$
\text { T.R. }=\frac{\sqrt{1+\left(2 \varepsilon \frac{\omega}{\omega_{n}}\right)^{2}}}{\sqrt{\left[1-\left(\frac{\omega}{\omega_{n}}\right)^{2}\right]^{2}+\left[2 \varepsilon \frac{\omega}{\omega_{n}}\right]^{2}}}
$$

$$
=\frac{\sqrt{1+0}}{\sqrt{\left[1-(0.5)^{2}\right]^{2}+0}}=\frac{1}{0.75}=\frac{4}{3}
$$

MCQ 1.10
GATE ME 2004 ONE MARK

A torque of 10 Nm is transmitted through a stepped shaft as shown in figure. The torsional stiffness of individual sections of length MN, NO and OP are $20 \mathrm{Nm} / \mathrm{rad}$, $30 \mathrm{Nm} / \mathrm{rad}$ and $60 \mathrm{Nm} / \mathrm{rad}$ respectively. The angular deflection between the ends M and P of the shaft is

(A) 0.5 rad
(B) 1.0 rad
(C) 5.0 rad
(D) 10.0 rad

SOL 1.10 Option (B) is correct.
Given : $T=10 \mathrm{~N}-\mathrm{m}, k_{M N}=20 \mathrm{~N}-\mathrm{m} / \mathrm{rad}, k_{N O}=30 \mathrm{~N}-\mathrm{m} / \mathrm{rad}, k_{O P}=60 \mathrm{~N}-\mathrm{m} / \mathrm{rad}$
We know that angular deflection,

$$
\theta=\frac{T}{k}
$$

For section $M N, N O$ or $O P$, $\theta_{M N}=\frac{10}{20} \mathrm{rad}, \theta_{N O}=\frac{10}{30} \mathrm{rad}, \theta_{O P}=\frac{10}{60} \mathrm{rad}$
Since $M N, N O \& O P$ are connected in series combination. So angular deflection between the ends M and P of the shaft is,

$$
\theta_{M P}=\theta_{M N}+\theta_{N O}+\theta_{O P}=\frac{10}{20}+\frac{10}{30}+\frac{10}{60}=1 \text { radian }
$$

MCQ 1.11 In terms of theoretical stress concentration factor $\left(K_{t}\right)$ and fatigue stress concentration

GATE ME 2004 ONE MARK
(A) $\frac{\left(K_{f}-1\right)}{\left(K_{t}-1\right)}$
(B) $\frac{\left(K_{f}-1\right)}{\left(K_{t}+1\right)}$
(C) $\frac{\left(K_{t}-1\right)}{\left(K_{f}-1\right)}$
(D) $\frac{\left(K_{f}+1\right)}{\left(K_{t}+1\right)}$

SOL 1.11 Option (A) is correct.
When the notch sensitivity factor q is used in cyclic loading, then fatigue stress concentration factor may be obtained from the following relation.

$$
\begin{aligned}
K_{f} & =1+q\left(K_{t}-1\right) \\
K_{f}-1 & =q\left(K_{t}-1\right) \\
q & =\frac{K_{f}-1}{K_{t}-1}
\end{aligned}
$$

MCQ 1.12 The S-N curve for steel becomes asymptotic nearly at

GATE ME 2004 ONE MARK
(A) 10^{3} cycles
(B) 10^{4} cycles
(C) 10^{6} cycles
(D) 10^{9} cycles

SOL 1.12 Option (C) is correct.
The S-N curve for the steel is shown below :

We can easily see from the $\mathrm{S}=\mathrm{N}$ curve that, steel becomes asymptotic nearly at 10^{6} cycles.

MCQ 1.13 In the window air conditioner, the expansion device used is

GATE ME 2004 ONE MARK
(A) capillary tube
(B)-thermostatic expansion valve
(C) automatic expansion valve
(D) float valve

SOL 1.13 Option (A) is correct.
Air conditioner mounted in a window or through the wall are self-contained units of small capacity of 1 TR to 3 TR . The capillary tube is used as an expansion device in small capacity refrigeration units.

MCQ 1.14 During the chemical dehumidification process of air
GATE ME 2004 (A) dry bulb temperature and specific humidity decreases
ONE MARK
(B) dry bulb temperature increases and specific humidity decreases
(C) dry bulb temperature decreases and specific humidity increases
(D) dry bulb temperature and specific humidity increases

SOL 1.14 Option (B) is correct.

In the process of chemical dehumidification of air, the air is passed over chemicals which have an affinity for moisture and the moisture of air gets condensed out and gives up its latent heat. Due to the condensation, the specific humidity decreases and the heat of condensation supplies sensible heat for heating the air and thus increasing its dry bulb temperature.
So chemical dehumidification increase dry bulb temperature \& decreases specific humidity.

MCQ 1.15
GATE ME 2004 ONE MARK

At the time of starting, idling and low speed operation, the carburretor supplies a mixture which can be termed as
(A) Lean
(C) stoichiometric

SOL 1.15 Option (C) is correct.

Stoichiometric mixture :

The S.M. is one in which there is just enough air for complete combustion of fuel.

MCQ 1.16
GATE ME 2004 ONE MARK

One dimensional unsteady state heat transfer equation for a sphere with heat generation at the rate of ' q ' can be written as
(A) $\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial T}{\partial r}\right)+\frac{q}{k}=\frac{1}{\alpha} \frac{\partial T}{\partial t}$
(B) $\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial T}{\partial r}\right)+\frac{q}{k}=\frac{1}{\alpha} \frac{\partial T}{\partial t}$
(C) $\frac{\partial^{2} T}{\partial r^{2}}+\frac{q}{k}=\frac{1}{\alpha} \frac{\partial T}{\partial t}$
(D) $\frac{\partial^{2}}{\partial r^{2}}(r T)+\frac{q}{k}=\frac{1}{\alpha} \frac{\partial T}{\partial t}$

SOL 1.16 Option (B) is correct.
The one dimensional time dependent heat conduction equation can be written more compactly as a simple equation,

$$
\begin{equation*}
\frac{1}{r^{n}} \frac{\partial}{\partial r}\left[r^{n} \frac{\partial T}{\partial r}\right]+\frac{q}{k}=\frac{\rho c}{k} \frac{\partial T}{\partial t} \tag{i}
\end{equation*}
$$

Where, $\quad n=0$, For rectangular coordinates
$n=1$, For cylindrical coordinates
$n=2$, For spherical coordinates
Further, while using rectangular coordinates it is customary to replace the r -variable by the x-variable.

For sphere, substitute $r=2$ in equation (i)

$$
\begin{array}{ll}
\frac{1}{r^{2}} \frac{\partial}{\partial r}\left[r^{2} \frac{\partial T}{\partial r}\right]+\frac{q}{k}=\frac{\rho c}{k} \frac{\partial T}{\partial t} & \\
\frac{1}{r^{2}} \frac{\partial}{\partial r}\left[r^{2} \frac{\partial T}{\partial r}\right]+\frac{q}{k}=\frac{1}{\alpha} \frac{\partial T}{\partial t} & \alpha=\frac{k}{\rho c}=\text { thermal diffusivity }
\end{array}
$$

MCQ 1.17
GATE ME 2004 ONE MARK

An incompressible fluid (kinematic viscosity, $7.4 \times 10^{-7} \mathrm{~m}^{2} / \mathrm{s}$, specific gravity, 0.88) is held between two parallel plates. If the top plate is moved with a velocity of $0.5 \mathrm{~m} / \mathrm{s}$ while the bottom one is held stationary, the fluid attains a linear velocity profile in the gap of 0.5 mm between these plates; the shear stress in Pascals on the surfaces of top plate is
(A) 0.651×10^{-3}
(B) 0.651
(C) 6.51
(D) 0.651×10^{3}

SOL 1.17 Option (B) is correct.

Given : $v=7.4 \times 10^{-7} \mathrm{~m}^{2} / \mathrm{sec}, S=0.88, y=0.5 \mathrm{~mm}=0.5 \times 10^{-3}$ meter
Density of liquid $=S \times$ density of water

$$
=0.88 \times 1000=880 \mathrm{~kg} / \mathrm{m}^{3}
$$

Kinematic Viscosity

$$
\begin{aligned}
& v=\frac{\mu}{\rho}=\frac{\text { Dynamic viscosity }}{\text { Density of liquid }} \\
& \mu=v \times \rho=7.4 \times 10^{-7} \times 880=6.512 \times 10^{-4} \mathrm{~Pa}-\mathrm{s}
\end{aligned}
$$

From the Newton's law of viscosity,

$$
\begin{aligned}
\tau & =\mu \times \frac{u}{y} \\
& =6.512 \times 10^{-4} \times \frac{0.5}{0.5 \times 10^{-3}}=0.6512 \mathrm{~N} / \mathrm{m}^{2} \\
& =0.651 \mathrm{~Pa}
\end{aligned}
$$

MCQ 1.18 Environment friendly refrigerant R134 is used in the new generation domestic refrigerators. Its chemical formula is
(A) CHClF_{2}
(B) $\mathrm{C}_{2} \mathrm{Cl}_{3} \mathrm{~F}_{3}$
(C) $\mathrm{C}_{2} \mathrm{Cl}_{2} \mathrm{~F}_{4}$
(D) $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{~F}_{4}$

SOL 1.18 Option (D) is correct.
If a refrigerant is written in the from of Rabc.
The first digit on the right (c) is the number of fluorine (F) atoms, the second digit from the right (b) is one more than the number of hydrogen (H) atoms required \&
third digit from the right (a) is one less than the Number of carbon (C) atoms in the refrigerant. So, For R134
First digit from the Right $=4=$ Number of Fluorine atoms
Second digit from the right $=3-1=2=$ Number of hydrogen atoms
Third digit from the right $=1+1=2=$ Number of carbon atoms
Hence, Chemical formula is $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{~F}_{4}$
MCQ 1.19 A fluid flow is represented by the velocity field $\boldsymbol{V}=a x \boldsymbol{i}+a y \boldsymbol{j}$, where a is a constant. GATE ME 2004 The equation of stream line passing through a point $(1,2)$ is ONE MARK
(A) $x-2 y=0$
(B) $2 x+y=0$
(C) $2 x-y=0$
(D) $x+2 y=0$

SOL 1.19 Option (C) is correct.
Given: $\quad \boldsymbol{V}=a x \boldsymbol{i}+a y \boldsymbol{j}$
The equation of stream line is,

$$
\begin{equation*}
\frac{d x}{u_{x}}=\frac{d y}{u_{y}}=\frac{d z}{u_{z}} \tag{i}
\end{equation*}
$$

From equation (i), $u_{x}=a x, u_{y}=a y$ and $u_{z}=0$
Substitute there values in equation (ii), we get

$$
\begin{aligned}
& \frac{d x}{a x}=\frac{d y}{a y} \\
& \frac{d x}{x}=\frac{d y}{y} \\
& \text { sides, we get }
\end{aligned}
$$

$$
\begin{align*}
\int \frac{d x}{x} & =\int \frac{d y}{y} \\
\log x & =\log y+\log c=\log y c \Rightarrow x=y c \tag{iii}
\end{align*}
$$

At point (1, 2),

$$
1=2 c \Rightarrow c=\frac{1}{2}
$$

From equation (iii),

$$
x=\frac{y}{2} \Rightarrow 2 x-y=0
$$

MCQ 1.20
GATE ME 2004 ONE MARK

A gas contained in a cylinder is compressed, the work required for compression being 5000 kJ . During the process, heat interaction of 2000 kJ causes the surroundings to be heated. The changes in internal energy of the gas during the process is
(A) -7000 kJ
(B) -3000 kJ
(C) +3000 kJ
(D) +7000 kJ

SOL 1.20 Option (C) is correct.
Given : $\quad W=-5000 \mathrm{~kJ}$ (Negative sign shows that work is done on the system) \& $\quad Q=-2000 \mathrm{~kJ}$ (Negative sign shows that heat rejected by the system) From the first law of thermodynamics,

$$
\text { So, } \quad \begin{aligned}
\Delta Q & =\Delta W+\Delta U \\
\Delta U & =\Delta Q-\Delta W=-2000-(-5000) \\
& =-2000+5000=3000 \mathrm{~kJ}
\end{aligned}
$$

MCQ 1.21 The compression ratio of a gas power plant cycle corresponding to maximum work ONE MARK
(A) $\left(\frac{T_{\text {max }}}{T_{\text {min }}}\right)^{\frac{\gamma}{2(\gamma-1)}}$
(B) $\left(\frac{T_{\text {min }}}{T_{\text {max }}}\right)^{\frac{\gamma}{2(\gamma-1)}}$
(C) $\left(\frac{T_{\max }}{T_{\min }}\right)^{\frac{\gamma-1}{\gamma}}$
(D) $\left(\frac{T_{\min }}{T_{\max }}\right)^{\frac{\gamma-1}{\gamma}}$

SOL 1.21 Option (A) is correct.
The $T-s$ curve for simple gas power plant cycle (Brayton cycle) is shown below :

From the $T-s$ diagram, Net work output for Unit Mass,

$$
\begin{equation*}
W_{n e t}=W_{T}-W_{c}=c_{p}\left[\left(T_{3}-T_{4}\right)-\left(T_{2}-T_{1}\right)\right] \tag{i}
\end{equation*}
$$

And from the $T-s$ diagram,

$$
T_{3}=T_{\max } \text { and } T_{1}=T_{\min }
$$

Apply the general relation for reversible adiabatic process, for process 3-4 and 1-2,

$$
\begin{align*}
\frac{T_{3}}{T_{4}} & =\left(\frac{p_{3}}{p_{4}}\right)^{\left(\frac{\gamma-1}{\gamma}\right)}=\left(r_{p}\right)^{\frac{\gamma-1}{\gamma}} \\
T_{4} & =T_{3}\left(r_{p}\right)^{-\left(\frac{\gamma-1}{\gamma}\right)} \quad \quad \frac{p_{3}}{p_{4}}=\frac{p_{2}}{p_{1}}=r_{p}=\text { Pressure ratio } \\
\frac{T_{2}}{T_{1}} & =\left(\frac{p_{2}}{p_{1}}\right)^{\frac{\gamma-1}{\gamma}}=\left(r_{p}\right)^{\frac{\gamma-1}{\gamma}} \\
T_{2} & =T_{1}\left(r_{p}\right)^{\frac{\gamma-1}{\gamma}} \\
W_{n e t} & =c_{p}\left[T_{3}-T_{3}\left(r_{p}\right)^{-\left(\frac{\gamma-1}{\gamma}\right)}-T_{1}\left(r_{p}\right)^{\frac{\gamma-1}{\gamma}}+T_{1}\right] \tag{ii}
\end{align*}
$$

Differentiating equation (ii) w.r.t. $\left(r_{p}\right)$ and on equating it to the zero, we get

$$
\begin{aligned}
\frac{d W_{\text {net }}}{d r_{p}} & =c_{p}\left[-T_{3}\left(-\frac{\gamma-1}{\gamma}\right) r_{p}^{-\left(\frac{\gamma-1}{\gamma}\right)-1}-T_{1}\left(\frac{\gamma-1}{\gamma}\right) r_{p}\left(\frac{\gamma-1}{\gamma}-1\right)\right] \\
& =c_{p}\left[-T_{3}\left(-\frac{\gamma-1}{\gamma}\right) r_{p}\left(\frac{-\gamma+1-\gamma}{\gamma}\right)-T_{1}\left(\frac{\gamma-1}{\gamma}\right) r_{p}\left(-\frac{1}{\gamma}\right)\right] \\
& =c_{p}\left[-T_{3}\left(-\frac{\gamma-1}{\gamma}\right) r_{p}\left(\frac{1-2 \gamma}{\gamma}\right)-T_{1}\left(\frac{\gamma-1}{\gamma}\right) r_{p}\left(-\frac{1}{\gamma}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
T_{3} r_{p}^{\left(\frac{1}{\gamma}-2\right)}-T_{1} r_{p}^{\left(-\frac{1}{\gamma}\right)} & =0 \\
T_{3} r_{p}^{\left(\frac{1}{\gamma}-2\right)} & =T_{1} r_{p}^{-\frac{1}{\gamma}} \\
\frac{T_{3}}{T_{1}} & =\frac{\left(r_{p}\right)^{-\frac{1}{\gamma}}}{r_{p}^{\frac{1}{\gamma}-2}}=\left(r_{p}\right)^{-\frac{1}{\gamma}-\frac{1}{\gamma}+2}=r_{p}^{\frac{2(\gamma-1)}{\gamma}} \\
\left(r_{p}\right)_{o p t} & =\left(\frac{T_{3}}{T_{1}}\right)^{\frac{\gamma}{2(\gamma-1)}}=\left(\frac{T_{\max }}{T_{\min }}\right)^{\frac{\gamma}{2(\gamma-1)}}
\end{aligned}
$$

MCQ 1.22 In an interchangeable assembly, shafts of size $25.000_{-0.0100}^{+0.040} \mathrm{~mm}$ mate with holes of GATE ME 2004 ONE MARK size $25.000_{-0.000}^{+0.020} \mathrm{~mm}$. The maximum possible clearance in the assembly will be
(A) 10 microns
(B) 20 microns
(C) 30 microns
(D) 60 microns

SOL 1.22 Option (C) is correct.
We know that maximum possible clearance occurs between minimum shaft size and maximum hole size.
Maximum size of shaft $\quad=25+0.040=25.040 \mathrm{~mm}$
Minimum size of shaft $\quad=25-0.100=24.99 \mathrm{~mm}$
$\begin{array}{ll}\text { Maximum size of hole } & =25+0.020=25.020 \mathrm{~mm} \\ \text { Minimum size of hole } & =25-0.000=25.00 \mathrm{~mm}\end{array}$

$$
25.020-24.99=0.03 \mathrm{~mm} \text { ق } 30 \text { microns }
$$

MCQ 1.23 During the execution of a CNC part program block
GATE ME 2004 ONE MARK
the type of tool motion will be
(A) circular Interpolation - clockwise
(B) circular Interpolation - counterclockwise
(C) linear Interpolation
(D) rapid feed

SOL 1.23 Option (A) is correct.
Given:- N020 G02 X45.0 Y25.0 R5.0
Here term $X 45.0 Y 25.0 ~ R 5.0$ will produce circular motion because radius is consider in this term and G02 will produce clockwise motion of the tool.

MCQ 1.24 The mechanism of material removal in EDM process is
GATE ME 2004 ONE MARK
(A) Melting and Evaporation
(B) Melting and Corrosion
(C) Erosion and Cavitation
(D) Cavitation and Evaporation

SOL 1.24 Option (A) is correct
In EDM, the thermal energy is employed to melt and vaporize tiny particles of work material by concentrating the heat energy on a small area of the work-piece.

MCQ 1.25 Two 1 mm thick steel sheets are to be spot welded at a current of 5000 A . Assuming GATE ME 2004 effective resistance to be $200 \mu \mathrm{~m}$ and current flow time of 0.2 second, heat generated ONE MARK during the process will be
(A) 0.2 Joule
(B) 1 Joule
(C) 5 Joule
(D) 1000 Joule

SOL 1.25 Option (D) is correct
Given : $I=5000 \mathrm{~A}, R=200 \mu \Omega=200 \times 10^{-6} \Omega, \Delta t=0.2$ second
Heat generated,

$$
\begin{aligned}
H_{g} & =I^{2}(R \Delta t) \\
H_{g} & =(5000)^{2} \times 200 \times 10^{-6} \times 0.2 \\
& =25 \times 10^{6} \times 40 \times 10^{-6}=1000 \text { Joule }
\end{aligned}
$$

MCQ 1.26 In PERT analysis a critical activity has

GATE ME 2004
ONE MARK
(A) maximum Float
(B) zero Float
(C) maximum Cost
(D) minimum Cost

SOL 1.26 Option (B) is correct.
PERT (Programme Evaluation and Review Technique) uses even oriented network in which successive events are joined by arrows.
Float is the difference between the maximum time available to perform the activity and the activity duration. In PERT analysis a critical activity has zero float.

MCQ 1.27 For a product, the forecast and the actual sales for December 2002 were 25 and ONE MARK 20 respectively. If the exponential smoothing constant (α) is taken as 0.2 , then forecast sales for January 2003 would be
(A) 21
(B) 23
(C) 24
(D) 27

SOL 1.27 Option (C) is correct.
Given :
Forecast sales for December $u_{t}=25$
Actual sales for December $X_{t}=20$
Exponential smoothing constant $\alpha=0.2$
We know that, Forecast sales for January is given by

$$
\begin{aligned}
u_{t+1} & =u_{t}+\alpha\left[X_{t}-u_{t}\right] \\
u_{t+1} & =25+0.2(20-25) \\
& =25+0.2 \times(-5) \\
& =25-1 \\
& =24
\end{aligned}
$$

Hence, Forecast sales for January 2003 would be 24.
MCQ 1.28 There are two products P and Q with the following characteristics

Product	Demand (Units)	Order cost (Rs/order)	Holding Cost (Rs./ unit/ year)
P	100	50	4
Q	400	50	1

The economic order quantity (EOQ) of products P and Q will be in the ratio
(A) $1: 1$
(B) $1: 2$
(C) $1: 4$
(D) $1: 8$

SOL 1.28 Option (C) is correct.
For product $P: \quad D=100$ units, $C_{o}=50 \mathrm{Rs}$./order, $C_{h}=4 \mathrm{Rs}$./unit/year
Economic order quantity (EOQ) for product P,

$$
\begin{align*}
& (\mathrm{EOQ})_{P}=\sqrt{\frac{2 C_{o} D}{C_{h}}} \\
& (\mathrm{EOQ})_{P}=\sqrt{\frac{2 \times 50 \times 100}{4}}=\sqrt{2500}=50 \tag{i}
\end{align*}
$$

For product Q :

$$
D=400 \text { Units } C_{o}=50 \text { Rs. order, } C_{h}=1 \text { Rs. Unit/year }
$$

EOQ For Product Q,

From equation (i) \& (ii),

MCQ 1.29 Misrun is a casting defect which occurs due to
GATE ME 2004 ONE MARK
(A) very high pouring temperature of the metal
(B) insufficient fluidity of the molten metal
(C) absorption of gases by the liquid metal
(D) improper alignment of the mould flasks

SOL 1.29 Option (B) is correct
Two streams of liquid metal which are not hot enough to fuse properly result into a casting defect, known as Misrun/cold shut.
It occurs due to insufficient fluidity of the molten metal.
MCQ 1.30 The percentage of carbon in gray cast iron is in the range of
GATE ME 2004 ONE MARK
(A) 0.25 to 0.75 percent
(B) 1.25 to 1.75 percent
(C) 3 to 4 percent
(D) 8 to 10 percent

SOL 1.30 Option (C) is correct.

Gray cast iron is the most widely used of all cast irons. In fact, it is common to speak of gray cast iron just as cast iron.
It contains 3 to $4 \% \mathrm{C}$ and $2.5 \% \mathrm{Si}$.
MCQ 1.31 The following data about the flow of liquid was observed in a continuous chemical TWO MARK process plant :

Flow rate (litres / sec)	7.5 to 7.7	7.7 to 7.9	7.9 to 8.1	8.1 to 8.3	8.3 to 8.5	8.5 to 8.7
Frequency	1	5	35	17	12	10

Mean flow rate of the liquid is
(A) 8.00 litres $/ \mathrm{sec}$
(B) 8.06 litres $/ \mathrm{sec}$
(C) 8.16 litres/sec
(D) 8.26 litres $/ \mathrm{sec}$

SOL 1.31 Option (C) is correct.
In this question we have to make the table for calculate mean flow rate :

Flow rate litres/sec.	$\left.\begin{array}{c}\text { Mean flow rate } \\ x=\left(\frac{x_{i}+x_{f}}{c} 2\right.\end{array}\right)$	Frequency f	$f x$
7.5 to 7.7	7.6	1	7.6
7.7 to 7.9	7.8	5	39
7.9 to 8.1	8.0	35	280
8.1 to 8.3	8.2	17	139.4
8.3 to 8.5	8.4	12	100.8
8.5 to 8.7	8.6	10	86
		$\Sigma f=80$	$\Sigma f x=652.8$

Mean flow rate, $\quad \bar{x}=\frac{\Sigma f x}{\Sigma f}=\frac{652.8}{80}=8.16$ litres $/ \mathrm{sec}$
MCQ 1.32 From a pack of regular playing cards, two cards are drawn at random. What is the

GATE ME 2004 TWO MARK probability that both cards will be Kings, if first card in NOT replaced?
(A) $\frac{1}{26}$
(B) $\frac{1}{52}$
(C) $\frac{1}{169}$
(D) $\frac{1}{221}$

SOL 1.32 Option (D) is correct.
Given : Total number of cards $=52$ and two cards are drawn at random.
Number of kings in playing cards $=4$
So the probability that both cards will be king is given by,

$$
P=\frac{{ }^{4} C_{1}}{{ }^{52} C_{1}} \times \frac{{ }^{3} C_{1}}{{ }^{51} C_{1}}
$$

$$
{ }^{n} C_{r}=\frac{\underline{n}}{\underline{r \mid n-r}}
$$

Solving this we get,

$$
P=\frac{4}{52} \times \frac{3}{51}=\frac{1}{221}
$$

$\begin{array}{ll}\text { MCQ 1.33 } & \text { A delayed unit step function is defined as } U(t-a)=\left\{\begin{array}{l}0, \text { for } t<a \\ 1, \text { for } t \geq a\end{array} \text { Its Laplace }\right. \\ \text { GATE ME 2004 } & \text { transform is }\end{array}$

GATE ME 2004 TWO MARK transform is
(A) $a e^{-a s}$
(B) $\frac{e^{-a s}}{s}$
(C) $\frac{e^{a s}}{s}$
(D) $\frac{e^{a s}}{a}$

SOL 1.33 Option (B) is correct.
Given : $\quad U(t-a)= \begin{cases}0, & \text { for } t<a \\ 1, & \text { for } t \geq a\end{cases}$
From the definition of Laplace Transform

$$
\begin{aligned}
\mathcal{L}[F(t)] & =\int_{0}^{\infty} e^{-s t} f(t) d t \\
\mathcal{L}[U(t-a)] & =\int_{0}^{\infty} e^{-s t} U(t-a) d t \\
& =\int_{0}^{a} e^{-s t}(0)+\int_{a}^{\infty} \frac{e^{-s t}}{e^{-s}}(1) d t=0+\int_{a}^{\infty} e^{-s t} d t \\
\mathcal{L}[U(t-a)] & =\left[\frac{e^{-s t}}{-s}\right]_{a}^{\infty}=0-\left[\frac{e^{-a s}}{-\underline{s}}\right]=\frac{e^{-a s}}{s}
\end{aligned}
$$

MCQ 1.34 The values of a function $f(x)$ are tabulated below

x	$f(x)$
0	1
1	2
2	1
3	10

Using Newton's forward difference formula, the cubic polynomial that can be fitted to the above data, is
(A) $2 x^{3}+7 x^{2}-6 x+2$
(B) $2 x^{3}-7 x^{2}+6 x-2$
(C) $x^{3}-7 x^{2}-6 x^{2}+1$
(D) $2 x^{3}-7 x^{2}+6 x+1$

SOL 1.34 Option (D) is correct.
First we have to make the table from the given data

Take $x_{0}=0$ and $h=1$
Then

$$
P=\frac{x-x_{0}}{h}=x
$$

From Newton's forward Formula

$$
\begin{align*}
f(x) & =f\left(x_{0}\right)+\frac{P}{\lfloor 1} \Delta f(0)+\frac{P(P-1)}{\underline{2}} \Delta^{2} f(0)+\frac{P(P-1)(P-2)}{\boxed{3}} \Delta^{3} f(0) \\
& =f(0)+x \Delta f(0)+\frac{x(x-1)}{2} \Delta^{2} f(0)+\frac{x(x-1)(x-2)}{6} \Delta^{3} f(0) \\
& =1+x(1)+\frac{x(x-1)}{2}(-2)+\frac{x(x-1)(x-2)}{6}(12) \tag{12}\\
& =1+x-x(x-1)+2 x(x-1)(x-2) \\
f(x) & =2 x^{3}-7 x^{2}+6 x+1
\end{align*}
$$

MCQ 1.35 The volume of an object expressed in spherical co-ordinates is given by

$$
\begin{aligned}
& V=\int_{0}^{2 \pi} \int_{0}^{\pi / 3} \int_{0}^{1} r^{2} \sin \phi d r d \phi d \theta \\
& \text { the integral is }
\end{aligned}
$$

The value of the integral is
(A) $\frac{\pi}{3}$
(B) $\frac{\pi}{6}$
(C) $\frac{2 \pi}{3}$
(D) $\frac{\pi}{4}$

SOL 1.35 Option (A) is correct.
Given : $\quad V=\int_{0}^{2 \pi} \int_{0}^{\pi / 3} \int_{0}^{1} r^{2} \sin \phi d r d \phi d \theta$
First integrating the term of r, we get

$$
V=\int_{0}^{2 \pi} \int_{0}^{\pi / 3}\left[\frac{r^{3}}{3}\right]_{0}^{1} \sin \phi d \phi d \theta=\int_{0}^{2 \pi} \int_{0}^{\pi / 3} \frac{1}{3} \sin \phi d \phi d \theta
$$

Integrating the term of ϕ, we have

$$
\begin{aligned}
V & =\frac{1}{3} \int_{0}^{2 \pi}[-\cos \phi]_{0}^{\pi / 3} d \theta \\
& =-\frac{1}{3} \int_{0}^{2 \pi}\left[\cos \frac{\pi}{3}-\cos 0\right] d \theta=-\frac{1}{3} \int_{0}^{2 \pi}\left[\frac{1}{2}-1\right] d \theta \\
& =-\frac{1}{3} \int_{0}^{2 \pi}\left(-\frac{1}{2}\right) d \theta=-\frac{1}{3} \times\left(-\frac{1}{2}\right) \int_{0}^{2 \pi} d \theta
\end{aligned}
$$

Now, integrating the term of θ, we have

$$
V=\frac{1}{6}[\theta]_{0}^{2 \pi}=\frac{1}{6}[2 \pi-0]=\frac{\pi}{3}
$$

MCQ 1.36 For which value of x will the matrix given below become singular ?

GATE ME 2004 TWO MARK

$$
=\left[\begin{array}{rrr}
8 & x & 0 \\
4 & 0 & 2 \\
12 & 6 & 0
\end{array}\right]
$$

(A) 4
(B) 6
(C) 8
(D) 12

SOL 1.36 Option (A) is correct.
Let,

$$
A=\left[\begin{array}{rrr}
8 & x & 0 \\
4 & 0 & 2 \\
12 & 6 & 0
\end{array}\right]
$$

For singularity of the matrix $|A|=0$

$$
\begin{aligned}
&\left|\begin{array}{rrr}
8 & x & 0 \\
4 & 0 & 2 \\
12 & 6 & 0
\end{array}\right|=0 \\
& 8[0-2 \times 6]-x[0-24]+0[24-0]=0 \\
& 8 \times(-12)+24 x=0 \\
&-96+24 x=0 \\
& 24 x=96 \\
& x=\frac{96}{24}=4
\end{aligned}
$$

MCQ 1.37
GATE ME 2004 TWO MARK

In the figure shown, the relative velocity of link 1 with respect to link 2 is $12 \mathrm{~m} / \mathrm{sec}$. Link 2 rotates at a constant speed of 120 rpm . The magnitude of Coriolis component of acceleration of link 1 is

(A) $302 \mathrm{~m} / \mathrm{s}^{2}$
(B) $604 \mathrm{~m} / \mathrm{s}^{2}$
(C) $906 \mathrm{~m} / \mathrm{s}^{2}$
(D) $1208 \mathrm{~m} / \mathrm{s}^{2}$

SOL 1.37 Option (A) is correct.
Given $N_{2}=120 \mathrm{rpm}, v_{1}=12 \mathrm{~m} / \mathrm{sec}$
So, coriolis component of the acceleration of link 1 is,

$$
a_{12}^{c}=2 \omega_{2} v_{1}=2 \times \frac{2 \pi \times 120}{60} \times 12
$$

$$
=301.44 \mathrm{~m} / \mathrm{s}^{2} \simeq 302 \mathrm{~m} / \mathrm{s}^{2}
$$

MCQ 1.38 The figure below shows a planar mechanism with single degree of freedom. The instant centre 24 for the given configuration is located at a position

(A) L
(B) M
(C) N

SOL 1.38 Option (D) is correct.
Given planar mechanism has degree offreedom, $N=1$ and two infinite parallel lines meet at infinity. So, the instantaneous centre I_{24} will be at N, but for single degree of freedom, system moves only in one direction.
Hence, I_{24} is located at infinity (∞).
MCQ 1.39 A uniform stiff rod of length 300 mm and having a weight of 300 N is pivoted at
one end and connected to a spring at the other end. For keeping the rod vertical in a stable position the minimum value of spring constant k needed is

(A) $300 \mathrm{~N} / \mathrm{m}$
(B) $400 \mathrm{~N} / \mathrm{m}$
(C) $500 \mathrm{~N} / \mathrm{m}$
(D) $1000 \mathrm{~N} / \mathrm{m}$

SOL 1.39 Option (C) is correct.

Given $l=300 \mathrm{~mm}=0.3 \mathrm{~m}, W=300 \mathrm{~N}$
Let, rod is twisted to the left, through an angle θ.
From the similar triangle $O C D \& O A B$,

$$
\tan \theta=\frac{y}{0.15}=\frac{x}{0.30}
$$

If θ is very very small, than

$$
\begin{equation*}
\tan \theta \simeq \theta=\frac{y}{0.15}=\frac{x}{0.30} \tag{i}
\end{equation*}
$$

$x=0.30 \theta$ and $y=0.15 \theta$
On taking moment about the hinged point " O ",

$$
\begin{aligned}
k x \times 300+W \times y & =0 \\
k & =-\frac{W y}{300 x}=-\frac{300}{300} \times\left(\frac{y}{x}\right) \\
k & =-\frac{1}{2}=-0.5 \mathrm{~N} / \mathrm{mm} \quad \text { From equation (i) } y / x=0.15 \theta / 0.30 \theta \\
& =-500 \mathrm{~N} / \mathrm{m}
\end{aligned}
$$

Negative sign shows that the spring tends to move to the point B.
In magnitude, $\quad k=500 \mathrm{~N} / \mathrm{m}$

MCQ 1.40 GATE ME 2004 TWO MARK

A mass M, of 20 kg is attached to the free end of a steel cantilever beam of length 1000 mm having a cross-section of $25 \times 25 \mathrm{~mm}$. Assume the mass of the cantilever to be negligible and $E_{\text {steel }}=200 \mathrm{GPa}$. If the lateral vibration of this system is critically damped using a viscous damper, then damping constant of the damper is

(A) $1250 \mathrm{Ns} / \mathrm{m}$
(B) $625 \mathrm{Ns} / \mathrm{m}$
(C) $312.50 \mathrm{Ns} / \mathrm{m}$
(D) $156.25 \mathrm{Ns} / \mathrm{m}$

SOL 1.40 Option (A) is correct.
Given $M=20 \mathrm{~kg}, l=1000 \mathrm{~mm}=1 \mathrm{~m}, A=25 \times 25 \mathrm{~mm}^{2}$
$E_{\text {steel }}=200 \mathrm{GPa}=200 \times 10^{9} \mathrm{~Pa}$
Mass moment of inertia of a square section is given by,

$$
I=\frac{b^{4}}{12}=\frac{\left(25 \times 10^{-3}\right)^{4}}{12}=3.25 \times 10^{-8} \mathrm{~m}^{4}
$$

Deflection of a cantilever, Loaded with a point load placed at the free end is,

$$
\begin{aligned}
\delta & =\frac{W l^{3}}{3 E I}=\frac{m g l^{3}}{3 E I} \\
& =\frac{20 \times 9.81 \times(1)^{3}}{3 \times 200 \times 10^{9} \times 3.25 \times 10^{-8}}=\frac{196.2}{19500}=0.01 \mathrm{~m} \\
\omega_{n} & =\sqrt{\frac{g}{\delta}}=\sqrt{\frac{9.81}{0.01}}=31.32 \mathrm{rad} / \mathrm{sec}
\end{aligned}
$$

Therefore, critical damping constant

$$
\begin{aligned}
c_{c} & =2 M \omega_{n}=2 \times 20 \times 31.32 \\
& =1252.8 \mathrm{Ns} / \mathrm{m} \simeq 1250 \mathrm{Ns} / \mathrm{m}
\end{aligned}
$$

MCQ 1.41 TWO MARK

In a bolted joint two members are connected with an axial tightening force of 2200 N . If the bolt used has metric threads of 4 mm pitch, the torque required for achieving the tightening force is

(A) 0.7 Nm
(B) 1.0 Nm
(C) 1.4 Nm
(D) 2.8 Nm

SOL 1.41 Option (C) is correct.
Given : $F_{t}=2200 \mathrm{~N}, p=4 \mathrm{~mm}=0.004 \mathrm{~m}$
Torque required for achieving the tightening force is,

$$
\begin{aligned}
T & =F_{t} \times r=F_{t} \times \frac{\text { Pitch }}{2 \pi} \\
& =2200 \times \frac{0.004}{2 \times 3.14}=1.4 \mathrm{~N}-\mathrm{m}
\end{aligned}
$$

MCQ 1.42 TWO MARK

The figure below shows a steel rod of $25 \mathrm{~mm}^{2}$ cross sectional area. It is loaded at four points, K, L, M and N. Assume $E_{\text {steel }}=200 \mathrm{GPa}$. The total change in length of the rod due to loading is

(A) $1 \mu \mathrm{~m}$
(B) $-10 \mu \mathrm{~m}$
(C) $16 \mu \mathrm{~m}$
(D) $-20 \mu \mathrm{~m}$

SOL 1.42 Option (B) is correct.
Given : $A=25 \mathrm{~mm}^{2}, E_{\text {steel }}=200 \mathrm{GPa}=200 \times 10^{9} \mathrm{~N} / \mathrm{m}^{2}=200 \times 10^{3} \mathrm{~N} / \mathrm{mm}^{2}$
First of all we have to make the F.B.D of the sections $K L, L M \& M N$ separately.

Now, From the F.B.D,

$$
\begin{aligned}
P_{K L} & =100 \mathrm{~N}(\text { Tensile }) \\
P_{L M} & =-150 \mathrm{~N}(\text { Compressive }) \\
P_{M N} & =50 \mathrm{~N}(\text { Tensile }) \\
\text { or } \quad L_{K L} & =500 \mathrm{~mm}, L_{L M}=800 \mathrm{~mm}, L_{M N}=400 \mathrm{~mm}
\end{aligned}
$$

Total change in length,

$$
\begin{array}{rlr}
\Delta L & =\Delta L_{K L}+\Delta L_{L M}+\Delta L_{M N} \\
& =\frac{P_{K L} L_{K L}}{A E}+\frac{P_{L M} L_{L M}}{A E}+\frac{P_{M N} L_{M N}}{A E} & \Delta L=\frac{P L}{A E}
\end{array}
$$

Substitute the values, we get

$$
\begin{aligned}
\Delta L & =\frac{1}{25 \times 200 \times 10^{3}}[100 \times 500-150 \times 800+50 \times 400] \\
& =\frac{1}{5000 \times 10^{3}}[-50000]=-10000 \times 10^{-6} \mathrm{~mm}=-10 \mu \mathrm{~m}
\end{aligned}
$$

MCQ 1.43

GATE ME 2004 TWO MARK

An ejector mechanism consists of a helical compression spring having a spring constant of $k=981 \times 10^{3} \mathrm{~N} / \mathrm{m}$. It is pre-compressed by 100 mm from its free state. If it is used to eject a mass of 100 kg held on it, the mass will move up through a distance of

(A) 100 mm
(B) 500 mm
(C) 581 mm
(D) 1000 mm

SOL 1.43 Option (A) is correct.
Given : $k=981 \times 10^{3} \mathrm{~N} / \mathrm{m}, x_{i}=100 \mathrm{~mm}=0.1 \mathrm{~m}, m=100 \mathrm{~kg}$
Let, when mass $m=100 \mathrm{~kg}$ is put on the spring then spring compressed by $x \mathrm{~mm}$.
From the conservation of energy :
Energy stored in free state = Energy stored after the mass is attach.

$$
\begin{aligned}
(\text { K.E. })_{i} & =(\text { K.E. })_{f}+(\text { P.E. })_{f} \\
\frac{1}{2} k x_{i}^{2} & =\frac{1}{2} k x^{2}+m g(x+0.1) \\
k x_{i}^{2} & =k x^{2}+2 m g(x+0.1)
\end{aligned}
$$

Substitute the values, we get

$$
\begin{aligned}
981 \times 10^{3} \times(0.1)^{2} & =\left(981 \times 10^{3} \times x^{2}\right)+[2 \times 100 \times 9.81 \times(x+0.1)] \\
10^{3} \times 10^{-2} & =10^{3} x^{2}+2(x+0.1) \\
10 & =1000 x^{2}+2 x+0.2 \\
1000 x^{2}+2 x-9.8 & =0
\end{aligned}
$$

So, on solving above equation, we get

$$
\begin{aligned}
x & =\frac{-2 \pm \sqrt{(2)^{2}-4 \times 1000(-9.8)}}{2 \times 1000} \\
& =\frac{-2 \pm \sqrt{4+39200}}{2000}=\frac{-2 \pm 198}{2000}
\end{aligned}
$$

On taking -ve sign, we get

$$
x=\frac{-2-198}{2000}=-\frac{1}{10} \mathrm{~m}=-100 \mathrm{~mm}
$$

(-ve sign shows the compression of the spring)

MCQ 1.44 GATE ME 2004 TWO MARK

A rigid body shown in the figure (a) has a mass of 10 kg . It rotates with a uniform angular velocity ' ω '. A balancing mass of 20 kg is attached as shown in figure (b). The percentage increase in mass moment of inertia as a result of this addition is

(A) 25%
(B) 50%
(C) 100%
(D) 200%

SOL 1.44 Option (B) is correct.
Given: \quad First Mass, $m_{1}=10 \mathrm{~kg}$
Balancing Mass, $m_{2}=20 \mathrm{~kg}$
We know the mass moment of inertia, $I=m k^{2}$
Where,

$$
k=\text { Radius of gyration }
$$

Case (I): When mass of 10 kg is rotates with uniform angular velocity ' ω '
The moment of inertia $I_{1}=m_{1} k_{1}^{2}$

$$
I_{1}=10 \times(0.2)^{2} \quad k_{1}=200 \mathrm{~mm}=0.2 \text { meter }
$$

Case (II) : When balancing mass of 20 kg is attached then moment of inertia

$$
\begin{array}{rlrl}
I_{2} & =10 \times(0.2)^{2}+20 \times(0.1)^{2} & \text { Here } k_{1}=0.2 \mathrm{~m} \\
& =0.4+0.2=0.6 & & \text { and } k_{2}
\end{array}=0.1 \mathrm{~m}
$$

Percent increase in mass moment of inertia,

$$
I=\frac{I_{2}-I_{1}}{I_{1}} \times 100=\frac{0.6-0.4}{0.4} \times 100=\frac{1}{2} \times 100=50 \%
$$

MCQ 1.45 The figure shows a pair of pin-jointed gripper-tongs holding an object weighting
of action of the input force and YY is the line of application of gripping force. If the pin-joint is assumed to be frictionless, the magnitude of force F required to hold the weight is

(A) 1000 N
(B) 2000 N
(C) 2500 N
(D) 5000 N

SOL 1.45 Option (D) is correct.
Given: Weight of object $W=2000 \mathrm{~N}$
Coefficient of Friction $\mu=0.1$
First of all we have to make the FBD of the system.

Here, $\quad R_{N}=$ Normal reaction force acting by the pin joint.

$$
F=\mu R_{N}=\text { Friction force }
$$

In equilibrium condition of all the forces which are acting in y direction.

$$
\begin{aligned}
\mu R_{N}+\mu R_{N} & =2000 \mathrm{~N} \\
\mu R_{N} & =1000 \mathrm{~N} \\
R_{N} & =\frac{1000}{0.1}=10000 \mathrm{~N}
\end{aligned}
$$

$$
\mu=0.1
$$

By taking the moment about the pin, we get

$$
\begin{aligned}
10000 \times 150 & =F \times 300 \\
F & =5000 \mathrm{~N}
\end{aligned}
$$

MCQ 1.46
GATE ME 2004 TWO MARK

A solid circular shaft of 60 mm diameter transmits a torque of 1600 N.m. The value of maximum shear stress developed is
(A) 37.72 MPa
(B) 47.72 MPa
(C) 57.72 MPa
(D) 67.72 MPa

SOL 1.46 Option (A) is correct.
Given : $d=60 \mathrm{~mm}, T=1600 \mathrm{~N}-\mathrm{m}$
From the torsional formula,

$$
\frac{T}{J}=\frac{\tau}{r}
$$

$$
r=\frac{d}{2} \text { and } J=\frac{\pi}{32} d^{4}
$$

So,

$$
\tau_{\max }=\frac{T}{\frac{\pi}{32} d^{4}} \times \frac{d}{2}=\frac{16 T}{\pi d^{3}}
$$

Substitute the values, we get

$$
\begin{aligned}
\tau_{\max } & =\frac{16 \times 1600}{3.14 \times\left(60 \times 10^{-3}\right)^{3}}=\frac{8152.866}{(60)^{3}} \times 10^{9} \\
& =0.03774 \times 10^{9} \mathrm{~Pa}=37.74 \mathrm{MPa} \simeq 37.72 \mathrm{MPa}
\end{aligned}
$$

MCQ 1.47 For a fluid flow through a divergent pipe of length L having inlet and outlet radii TWO MARK of R_{1} and R_{2} respectively and a constant flow rate of Q, assuming the velocity to be axial and uniform at any cross-section, the acceleration at the exit is
(A) $\frac{2 Q\left(R_{1}-R_{2}\right)}{\pi L R_{2}^{3}}$
(B) $\frac{2 Q^{2}\left(R_{1}-R_{2}\right)}{\pi L R_{2}^{3}}$
(C) $\frac{2 Q^{2}\left(R_{1}-R_{2}\right)}{\pi^{2} L R_{2}^{5}}$
(D) $\frac{2 Q^{2}\left(R_{2}-R_{1}\right)}{\pi^{2} L R_{2}^{5}}$

SOL 1.47

Flow rate,

$$
Q=A V
$$

Inlet velocity, $\quad V_{1}=\frac{Q}{A_{1}}=\frac{Q}{\frac{\pi}{4}\left(2 R_{1}\right)^{2}}=\frac{Q}{\pi R_{1}^{2}}$
Outlet Velocity, $\quad V_{2}=\frac{Q}{A_{2}}=\frac{Q}{\pi R_{2}^{2}}$
Therefore, resultant velocity will be,

$$
d V=V_{2}-V_{1}=\frac{Q}{\pi}\left[\frac{1}{R_{2}^{2}}-\frac{1}{R_{1}^{2}}\right]
$$

Acceleration at the exit section,

$$
a=\frac{d V}{d t}=V \frac{d V}{d x}
$$

In this case

$$
\begin{aligned}
d V & =V_{2}-V_{1} \\
V & =V_{2}
\end{aligned}
$$

And

$$
d x=L
$$

So,

$$
\begin{aligned}
a & =\frac{Q}{\pi R_{2}^{2}} \times \frac{Q}{\pi L}\left[\frac{1}{R_{2}^{2}}-\frac{1}{R_{1}^{2}}\right]=\frac{Q^{2}}{\pi^{2} R_{2}^{2} L}\left[\frac{R_{1}^{2}-R_{2}^{2}}{R_{1}^{2} R_{2}^{2}}\right] \\
& =\frac{Q^{2}}{\pi^{2} R_{2}^{2} L}\left[\frac{\left(R_{1}+R_{2}\right)\left(R_{1}-R_{2}\right)}{R_{1}^{2} R_{2}^{2}}\right]
\end{aligned}
$$

Considering limiting case $R_{1} \rightarrow R_{2}$
Then,

$$
\begin{aligned}
a & =\frac{Q^{2}}{\pi^{2} R_{2}^{2} L}\left[\frac{\left(R_{1}-R_{2}\right) 2 R_{2}}{R_{2}^{2} R_{2}^{2}}\right] \\
& =\frac{2 Q^{2}}{\pi^{2} R_{2}^{5} L}\left[R_{1}-R_{2}\right]=\frac{2 Q^{2}\left(R_{1}-R_{2}\right)}{\pi^{2} R_{2}^{5} L}
\end{aligned}
$$

MCQ 1.48 A closed cylinder having a radius R and height H is filled with oil of density ρ. If the cylinder is rotated about its axis at an angular velocity of ω, then thrust at the bottom of the cylinder is
(A) $\pi R^{2} \rho g H$
(4) (B) $\pi R^{2} \frac{\rho \omega^{2} R^{2}}{4}$
(C) $\pi R^{2}\left(\rho \omega^{2} R^{2}+\rho g H\right)$

SOL 1.48 Option (D) is correct.

Total thrust at the bottom of cylinder $=$ Weight of water in cylinder

+ Pressure force on the cylinder
For rotating motion,

$$
\frac{\partial p}{\partial r}=\frac{\rho V^{2}}{r}=\frac{\rho r^{2} \omega^{2}}{r}=\rho \omega^{2} r
$$

$$
p=\text { Pressure, } V=r \omega
$$

And

$$
\partial p=\rho \omega^{2} r d r
$$

Integrating both the sides within limits p between 0 to $p \& r$ between 0 to r,

$$
\begin{aligned}
\int_{0}^{p} \partial p & =\int_{0}^{r} \rho \omega^{2} r d r \\
{[p]_{0}^{p} } & =\rho \omega^{2}\left[\frac{r^{2}}{2}\right]_{0}^{r}
\end{aligned}
$$

For calculating the total pressure on the cylinder,

$$
p=\rho \omega^{2} \times\left[\frac{r^{2}}{2}-0\right]=\frac{\rho \omega^{2} r^{2}}{2}
$$

On dividing whole area of cylinder in the infinite small rings with thickness $d r$, Force on elementary ring

$$
\begin{aligned}
& =\text { Pressure intensity } \times \text { Area of ring } \\
& =\frac{\rho \omega^{2} r^{2}}{2} \times 2 \pi r d r
\end{aligned}
$$

Total force,

$$
\begin{aligned}
F & =\int_{0}^{R} \frac{\rho \omega^{2} r^{2}}{2} \times 2 \pi r d r=\pi \rho \omega^{2} \int_{0}^{R} r^{3} d r \\
& =\pi \rho \omega^{2}\left[\frac{r^{4}}{4}\right]_{0}^{R}=\pi \rho \omega^{2} \frac{R^{4}}{4}
\end{aligned}
$$

$$
\text { Weight of water }=m g=\rho \nu g
$$

$$
m=\rho \nu
$$

$$
=\rho \pi R^{2} \times H g=\rho g H \pi R^{2}
$$

$$
A=\pi R^{2}
$$

So, \quad Net force $=\rho g H \pi R^{2}+\rho \omega^{2} \frac{\pi R^{4}}{4}=\pi R^{2}\left[\frac{\rho \omega^{2} R^{2}}{4}+\rho g H\right]$

MCQ 1.49
GATE ME 2004 TWO MARK

For air flow over a flat plate, velocity (\bar{U}) and boundary layer thickness (δ) can be expressed respectively, as

$$
\frac{U}{U_{\infty}}=\frac{3 y}{2 \delta}-\frac{1}{2}\left(\frac{y}{\delta}\right)^{3} ; \delta=\frac{4.64 x}{\sqrt{\operatorname{Re}_{x}}}
$$

If the free stream velocity is $2 \mathrm{~m} / \mathrm{s}$, and air has kinematic viscosity of $1.5 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}$ and density of $1.23 \mathrm{~kg} / \mathrm{m}^{3}$, the wall shear stress at $x=1 \mathrm{~m}$, is
(A) $2.36 \times 10^{2} \mathrm{~N} / \mathrm{m}^{2}$
(B) $43.6 \times 10^{-3} \mathrm{~N} / \mathrm{m}^{2}$
(C) $4.36 \times 10^{-3} \mathrm{~N} / \mathrm{m}^{2}$
(D) $2.18 \times 10^{-3} \mathrm{~N} / \mathrm{m}^{2}$

SOL 1.49 Option (C) is correct.
Given relation is,
$\frac{U}{U_{\infty}}=\frac{3}{2} \frac{y}{\delta}-\frac{1}{2}\left(\frac{y}{\delta}\right)^{3}$ and $\delta=\frac{4.64 x}{\sqrt{\operatorname{Re}_{x}}}$
$U_{\infty}=U=2 \mathrm{~m} / \mathrm{sec}, v=1.5 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}, \rho=1.23 \mathrm{~kg} / \mathrm{m}^{3}, L=x=1$
Kinematic viscosity,

$$
\begin{aligned}
v & =\frac{\mu}{\rho} \\
\mu & =v \times \rho=1.5 \times 10^{-5} \times 1.23 \\
& =1.845 \times 10^{-5} \mathrm{~kg} / \mathrm{m} \mathrm{sec}
\end{aligned}
$$

Reynolds Number is given as,

$$
\begin{aligned}
& \operatorname{Re}_{x}=\frac{\rho U x}{\mu}=\frac{1.23 \times 2 \times 1}{1.845 \times 10^{-5}}=1.33 \times 10^{5} \\
& \delta=\frac{4.64 \times 1}{\sqrt{1.33 \times 10^{5}}}=0.0127 \\
& \text { And } \\
& \frac{U}{U_{\infty}}=\frac{3}{2} \frac{y}{\delta}-\frac{1}{2}\left(\frac{y}{\delta}\right)^{3} \\
& \frac{d U}{d y}=U_{\infty} \frac{d}{d y}\left[\frac{3}{2} \frac{y}{\delta}-\frac{1}{2}\left(\frac{y}{\delta}\right)^{3}\right]=U_{\infty}\left[\frac{3}{2} \times \frac{1}{\delta}-\frac{3}{2} \frac{y^{2}}{\delta^{3}}\right] \\
& \text { where } U_{\infty}=\text { Free stream velocity }=U \\
& \left(\frac{d U}{d y}\right)_{y=0}=U_{\infty}\left[\frac{3}{2 \delta}\right]=\frac{3 U_{\infty}}{2 \delta}
\end{aligned}
$$

We know that shear stress by the Newton's law of viscosity,

$$
\tau_{0}=\mu\left(\frac{d U}{d y}\right)_{y=0}=1.845 \times 10^{-5} \times \frac{3 U_{\infty}}{2 \delta}
$$

Substitute the values of U_{∞} and δ, we get

$$
\begin{aligned}
& =1.845 \times 10^{-5} \times \frac{3 \times 2}{2 \times 0.0127} \\
& =435.82 \times 10^{-5} \mathrm{~N} / \mathrm{m}^{2}=4.36 \times 10^{-3} \mathrm{~N} / \mathrm{m}^{2}
\end{aligned}
$$

MCQ 1.50
GATE ME 2004 TWO MARK

A centrifugal pump is required to pump water to an open water tank situated 4 km away from the location of the pump through a pipe of diameter 0.2 m having Darcy's friction factor of 0.01 . The average speed of water in the pipe is $2 \mathrm{~m} / \mathrm{s}$. If it is to maintain a constant head of 5 m in the tank, neglecting other minor losses, then absolute discharge pressure at the pump exit is
(A) 0.449 bar
(B) 5.503 bar
(C) 44.911 bar
(D) 55.203 bar

SOL 1.50 Option (B) is correct.
Given : $\quad L=4 \mathrm{~km}=4 \times 1000=4000 \mathrm{~m}, d=0.2 \mathrm{~m}$
$f=0.01, V=2 \mathrm{~m} / \mathrm{sec}, H=5$ meter
Head loss due to friction in the pipe,

$$
\begin{aligned}
h_{f} & =\frac{f L V^{2}}{2 g d} \\
& =\frac{0.01 \times 4000 \times(2)^{2}}{2 \times 9.81 \times 0.2}=40.77 \mathrm{~m} \text { of water }
\end{aligned}
$$

Now total pressure (absolute discharge pressure) to be supplied by the pump at exit $=$ Pressure loss by pipe + Head pressure of tank + Atmospheric pressure head Total pressure, $\quad p=\rho g h_{f}+\rho g H+\rho g h_{a t m}$

$$
\begin{aligned}
p & =\rho g\left[h_{f}+H+h_{\text {atm }}\right] \quad \text { Pressure head, } \frac{p}{\rho g}=H \Rightarrow p=H \rho g \\
& =1000 \times 9.81[40.77+5+10.3]
\end{aligned}
$$

$$
=5.5 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}=5.5 \mathrm{bar}
$$

MCQ 1.51
GATE ME 2004 TWO MARK

A heat engine having an efficiency of 70% is used to drive a refrigerator having a coefficient of performance of 5 . The energy absorbed from low temperature reservoir by the refrigerator for each kJ of energy absorbed from high temperature source by the engine is
(A) 0.14 kJ
(B) 0.71 kJ
(C) 3.5 kJ
(D) 7.1 kJ

SOL 1.51 Option (C) is correct.

Given : $(C O P)_{\text {refrigerator }}=5,(\eta)_{\text {H.E. }}=70 \%=0.7$

$$
\begin{align*}
(C O P)_{r e f .} & =\frac{Q_{3}}{W}=5 \tag{i}\\
(\eta)_{\text {H.E. }} & =\frac{W}{Q_{1}}=0.7 \tag{ii}
\end{align*}
$$

By multiplying equation (i) \& (ii),

$$
\frac{Q_{3}}{W} \times \frac{W}{Q_{1}}=5 \times 0.7 \Rightarrow \frac{Q_{3}}{Q_{1}}=3.5
$$

Hence, Energy absorbed $\left(Q_{3}\right)$ from low temperature reservoir by the refrigerator for each $k J$ of energy absorbed $\left(Q_{1}\right)$ from high temperature source by the engine $=3.5 \mathrm{~kJ}$

MCQ 1.52 A solar collector receiving solar radiation at the rate of $0.6 \mathrm{~kW} / \mathrm{m}^{2}$ transforms it TWO MARK to the internal energy of a fluid at an overall efficiency of 50%. The fluid heated to 250 K is used to run a heat engine which rejects heat at 315 K . If the heat engine is to deliver 2.5 kW power, the minimum area of the solar collector required would be
(A) $83.33 \mathrm{~m}^{2}$
(B) $16.66 \mathrm{~m}^{2}$
(C) $39.68 \mathrm{~m}^{2}$
(D) $79.36 \mathrm{~m}^{2}$

SOL 1.52 Option (A) is correct.

Solar collector receiving solar radiation at the rate of $0.6 \mathrm{~kW} / \mathrm{m}^{2}$. This radiation is stored in the form of internal energy. Internal energy of fluid after absorbing
Solar radiation, $\Delta U=\frac{1}{2} \times 0.6 \quad$ Efficiency of absorbing radiation is 50%

$$
\begin{aligned}
& =0.3 \mathrm{~kW} / \mathrm{m}^{2} \\
\eta_{\text {Engine }} & =1-\frac{T_{2}}{T_{1}}=\frac{W_{\text {net }}}{Q_{1}} \\
Q_{1} & =\frac{W_{\text {net }} \times T_{1}}{T_{1}-T_{2}}=\frac{2.5 \times 350}{350-315}=25 \mathrm{~kW}
\end{aligned}
$$

Let, A is the minimum area of the solar collector.
So,

$$
\begin{aligned}
Q_{1} & =A \times \Delta U=A \times 0.3 \mathrm{~kW} / \mathrm{m}^{2} \\
A & =\frac{Q_{1}}{0.3}=\frac{25}{0.3}=\frac{250}{3}=83.33 \mathrm{~m}^{2}
\end{aligned}
$$

MCQ 1.53 The pressure gauges G_{1} and G_{2} installedon the system show pressure of $p_{G 1}=5.00$ TWO MARK

Q. 15 .
(A) 1.01 bar
(B) 2.01 bar
(C) 5.00 bar
(D) 7.01 bar

SOL 1.53 Option (D) is correct.
Given : $p_{G_{1}}=5.00$ bar, $p_{G_{2}}=1.00 \mathrm{bar}, p_{\text {atm }}=1.01$ bar
Absolute pressure of $G_{2}=$ Atmospheric pressure + Gauge pressure

$$
=1.01+1.00=2.01 \mathrm{bar}
$$

Absolute pressure of $G_{1}=p_{G_{1}}+p_{a b s\left(G_{2}\right)}=5.00+2.01=7.01 \mathrm{bar}$
-̄̈́tè Me 2004 A steel billet of 2000 kg mass is to be cooled from 1250 K to 450 K . The heat TWO MARK
released during this process is to be used as a source of energy. The ambient temperature is 303 K and specific heat of steel is $0.5 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$. The available energy of this billet is
(A) 490.44 MJ
(B) 30.95 MJ
(C) 10.35 MJ
(D) 0.10 MJ

SOL 1.54 Option (A) is correct.
Given : $m=2000 \mathrm{~kg}, T_{1}=1250 \mathrm{~K}, T_{2}=450 \mathrm{~K}, T_{0}=303 \mathrm{~K}, c=0.5 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$

$$
Q_{1}=\text { Available Energy }+ \text { Unavailable energy }
$$

$$
\begin{equation*}
A . E .=Q_{1}-U . E . \tag{i}
\end{equation*}
$$

And

$$
\begin{aligned}
Q_{1} & =m c \Delta T \\
& =2000 \times 0.5 \times 10^{3} \times(1250-450) \\
Q_{1} & =800 \times 10^{6}=800 \text { MJoule }
\end{aligned}
$$

We know

$$
\begin{align*}
U . E . & =T_{0}(\Delta s) \tag{ii}\\
\Delta S & =m c \ln \frac{T_{1}}{T_{2}}=2000 \times 0.5 \times 10^{3} \ln \frac{1250}{450} \\
& =10^{6} \ln \frac{1250}{450}=1.021 \times 10^{6} \mathrm{~J} / \mathrm{kg}
\end{align*}
$$

Now, Substitute the value of Q_{1} and U.E. in equation (i),

$$
\begin{aligned}
\text { A.E. } & =800 \times 10^{6}-303 \times 1.021 \times 10^{6} \\
& =10^{6} \times[800-309.363] \\
& =490.637 \times 10^{6}=490.637 \simeq 490.44 \mathrm{MJ}
\end{aligned}
$$

MCQ 1.55 A stainless steel tube ($k_{s}=19 \mathrm{~W} / \mathrm{mK}$) of 2 cm ID and 5 cm OD is insulated with TWO MARK 3 cm thick asbestos ($k_{a}=0.2 \mathrm{~W} / \mathrm{m} \mathrm{K}$). If the temperature difference between the innermost and outermost surfaces is $600^{\circ} \mathrm{C}$, the heat transfer rate per unit length is
(A) $0.94 \mathrm{~W} / \mathrm{m}$
(B) $9.44 \mathrm{~W} / \mathrm{m}$
(C) $944.72 \mathrm{~W} / \mathrm{m}$
(D) $9447.21 \mathrm{~W} / \mathrm{m}$

SOL 1.55 Option (C) is correct.

Let Length of the tube $=l$
Given : $r_{1}=\frac{d_{1}}{2}=2 / 2 \mathrm{~cm}=1 \mathrm{~cm}, r_{2}=\frac{5}{2} \mathrm{~cm}=2.5 \mathrm{~cm}$

Radius of asbestos surface, $\quad r_{3}=\frac{d_{2}}{2}+3=2.5+3=5.5 \mathrm{~cm}$
$k_{s}=19 \mathrm{~W} / \mathrm{mK}, k_{a}=0.2 \mathrm{~W} / \mathrm{mK}$
And $\quad T_{1}-T_{2}=600^{\circ} \mathrm{C}$
From the given diagram heat is transferred from r_{1} to $r_{2} \&$ from r_{2} to r_{3}. So Equivalent thermal resistance,

$$
\begin{align*}
& \Sigma R=\frac{1}{2 \pi k_{s} l} \ln \left(\frac{r_{2}}{r_{1}}\right)+\frac{1}{2 \pi k_{a} l} \ln \left(\frac{r_{3}}{r_{2}}\right) \\
& \quad \text { For hollow cylinder } R_{t}=\frac{\log _{e}\left(r_{2} / r_{1}\right)}{2 \pi k l} \\
& \Sigma R \times l=\frac{1}{2 \pi k_{s}} \ln \left(\frac{r_{2}}{r_{1}}\right)+\frac{1}{2 \pi k_{a}} \ln \left(\frac{r_{3}}{r_{2}}\right) \\
&=\frac{1}{2 \times 3.14 \times 19} \ln \left(\frac{2.5}{1}\right)+\frac{1}{2 \times 3.14 \times 0.2} \ln \left(\frac{5.5}{2.5}\right) \\
&=\frac{0.916}{119.32}+\frac{0.788}{1.256}=0.00767+0.627=0.635 \mathrm{mK} / \mathrm{W} \quad \ldots(\mathrm{i}) \tag{i}
\end{align*}
$$

Heat transfer per unit length,

$$
Q=\frac{T_{1}-T_{2}}{(\Sigma R \times l)}=\frac{600}{0.635}=944.88 \simeq 944.72 \mathrm{~W} / \mathrm{m}
$$

MCQ 1.56
GATE ME 2004 TWO MARK

A spherical thermocouple junction of diameter 0.706 mm is to be used for the measurement of temperature of a gas stream. The convective heat transfer coefficient on the bead surface is $400 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$. Thermo-physical properties of thermocouple material are $k=20 \mathrm{~W} / \mathrm{mK}, c=400 \mathrm{~J} / \mathrm{kg} \mathrm{K}$ and $\rho=8500 \mathrm{~kg} / \mathrm{m}^{3}$. If the thermocouple initially at $30^{\circ} \mathrm{C}$ is placed in a hot stream of $300^{\circ} \mathrm{C}$, then time taken by the bead to reach $298^{\circ} \mathrm{C}$, is
(A) 2.35 s
(B) 4.9 s
(C) 14.7 s
(D) 29.4 s

SOL 1.56 Option (B) is correct.
Given : $h=400 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}, k=20 \mathrm{~W} / \mathrm{mK}, c=400 \mathrm{~J} / \mathrm{kg} \mathrm{K}, \rho=8500 \mathrm{~kg} / \mathrm{m}^{3}$
$T_{i}=30^{\circ} \mathrm{C}, D=0.706 \mathrm{~mm}, T_{a}=300^{\circ} \mathrm{C}, T=298^{\circ} \mathrm{C}$
Biot Number, $\quad B_{i}=\frac{h l}{k}$
And

$$
\begin{align*}
l & =\frac{\text { Volume }}{\text { Surface Area }}=\frac{\frac{4}{3} \pi R^{3}}{4 \pi R^{2}}=\frac{\frac{1}{6} \pi D^{3}}{\pi D^{2}} \tag{i}\\
& =\frac{D}{6}=\frac{0.706 \times 10^{-3}}{6}=1.176 \times 10^{-4} \mathrm{~m}
\end{align*}
$$

From equation (i), we have

$$
\begin{aligned}
& B i=\frac{h l}{k}=\frac{400 \times 1.176 \times 10^{-4}}{20}=0.0023 \\
& B i<0.1
\end{aligned}
$$

The value of Biot Number is less than one. So the lumped parameter solution for transient conduction can be conveniently stated as

$$
\frac{T-T_{a}}{T_{i}-T_{a}}=e^{-\left(\frac{h A t}{\rho c \nu}\right)}=e^{-\left(\frac{h t}{\rho c l}\right)} \quad \frac{\nu}{A}=l
$$

$$
\begin{aligned}
\frac{298-300}{30-300} & =\exp \left(\frac{-400 t}{8500 \times 400 \times 1.176 \times 10^{-4}}\right) \\
\frac{-2}{-270} & =e^{-t} \\
\frac{2}{270} & =e^{-t}
\end{aligned}
$$

Take natural logarithm both sides, we get

$$
\begin{aligned}
\ln \left(\frac{2}{270}\right) & =-t \\
t & =4.90 \mathrm{sec}
\end{aligned}
$$

MCQ 1.57 In a condenser, water enters at $30^{\circ} \mathrm{C}$ and flows at the rate $1500 \mathrm{~kg} / \mathrm{hr}$. The condensing

GATE ME 2004 TWO MARK steam is at a temperature of $120^{\circ} \mathrm{C}$ and cooling water leaves the condenser at $80^{\circ} \mathrm{C}$. Specific heat of water is $4.187 \mathrm{~kJ} / \mathrm{kgK}$. If the overall heat transfer coefficient is $2000 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$, then heat transfer area is
(A) $0.707 \mathrm{~m}^{2}$
(B) $7.07 \mathrm{~m}^{2}$
(C) $70.7 \mathrm{~m}^{2}$
(D) $141.4 \mathrm{~m}^{2}$

SOL 1.57 Option (A) is correct.
Figure for condensation is given below:

Given : $t_{c 1}=30^{\circ} \mathrm{C}, \frac{d m}{d t}=\dot{m}=1500 \mathrm{~kg} / \mathrm{hr}=\frac{1500}{3600} \mathrm{~kg} / \mathrm{sec}=0.4167 \mathrm{~kg} / \mathrm{sec}$
$t_{h 2}=t_{h 1}=120^{\circ} \mathrm{C}, t_{c 2} t_{c 2}=80^{\circ} \mathrm{C}, c_{w}=4.187 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}, U=2000 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$
Hence, $\quad \theta_{1}=t_{h 1}-t_{c 1}=120-30=90^{\circ} \mathrm{C}$
And

$$
\theta_{2}=t_{h 2}-t_{c 2}=120-80=40^{\circ} \mathrm{C}
$$

So, Log mean temperature difference (LMTD) is,

$$
\theta_{m}=\frac{\theta_{1}-\theta_{2}}{\ln \left(\frac{\theta_{1}}{\theta_{2}}\right)}=\frac{90-40}{\ln \left(\frac{90}{40}\right)}=61.66^{\circ} \mathrm{C}
$$

Energy transferred is given by,

$$
\begin{aligned}
Q & =\dot{m} c_{w} \Delta T=U A \theta_{m} \\
A & =\frac{\dot{m} c_{w} \Delta T}{U \theta_{m}}
\end{aligned}
$$

$$
=\frac{0.4167 \times 4.187 \times 1000 \times 50}{2000 \times 61.66}=0.707 \mathrm{~m}^{2}
$$

MCQ 1.58
GATE ME 2004 TWO MARK

During a Morse test on a 4 cylinder engine, the following measurements of brake power were taken at constant speed.
All cylinders firing 3037 kW
Number 1 cylinder not firing
2102 kW
Number 2 cylinder not firing
2102 kW
Number 3 cylinder not firing
2100 kW
Number 4 cylinder not firing
2098 kW
The mechanical efficiency of the engine is
(A) 91.53%
(B) 85.07%
(C) 81.07%
(D) 61.22%

SOL 1.58 Option (C) is correct.
When all cylinders are firing then, power is $3037 \mathrm{~kW}=$ Brake Power
Power supplied by cylinders (Indieated power) is given below :

Cylinder No.	Power supplied (I.P.)
1.	I.P. ${ }_{1}=3037-2102=935 \mathrm{~kW}$
2.	U. I.P $_{2}=3037-2102=935 \mathrm{~kW}$
3.	I.P. $_{3}=3037-2100=937 \mathrm{~kW}$
4.	I.P. ${ }_{4}=3037-2098=939 \mathrm{~kW}$

$$
\begin{aligned}
I_{\text {I.P. } \text { Total }} & =\text { I.P.P. } 1+\text { I.P. }_{2}+{\text { I.P. }{ }_{3}}+\text { I.P. }_{\cdot 4} \\
& =935+935+937+939=3746 \mathrm{~kW}
\end{aligned}
$$

And,

$$
\eta_{\text {mech }}=\frac{B . P .}{I . P .}=\frac{3037}{3746}=0.8107 \text { or } 81.07 \%
$$

MCQ 1.59
GATE ME 2004 TWO MARK

An engine working on air standard Otto cycle has a cylinder diameter of 10 cm and stroke length of 15 cm . The ratio of specific heats for air is 1.4 . If the clearance volume is 196.3 cc and the heat supplied per kg of air per cycle is $1800 \mathrm{~kJ} / \mathrm{kg}$, the work output per cycle per kg of air is
(A) 879.1 kJ
(B) 890.2 kJ
(C) 895.3 kJ
(D) 973.5 kJ

SOL 1.59 Option (D) is correct.
Given : $D=10 \mathrm{~cm}=0.1$ meter, $L=15 \mathrm{~cm}=0.15$ meter
$\gamma=\frac{c_{p}}{c_{v}}=1.4, \nu_{c}=196.3 \mathrm{cc}, Q=1800 \mathrm{~kJ} / \mathrm{kg}$

$$
\begin{aligned}
\nu_{s} & =A \times L=\frac{\pi}{4} D^{2} \times L \\
& =\frac{\pi}{4} \times(10)^{2} \times 15=\frac{1500 \pi}{4}=1177.5 \mathrm{cc}
\end{aligned}
$$

And Compression ratio, $\quad r=\frac{\nu_{T}}{\nu_{c}}=\frac{\nu_{c}+\nu_{s}}{\nu_{c}}$

$$
=\frac{196.3+1177.5}{196.3}=6.998 \simeq 7
$$

Cycle efficiency,

We know that,

$$
\begin{aligned}
\eta_{\text {Otto }} & =1-\frac{1}{(r)^{\gamma-1}}=1-\frac{1}{(7)^{1.4-1}} \\
& =1-\frac{1}{2.1779}=1-0.4591=0.5409 \\
\eta_{\text {Otto }} & =54.09 \%
\end{aligned}
$$

$$
\eta=\frac{\text { Work output }}{\text { Heat Supplied }}
$$

$$
\begin{aligned}
\text { Work output } & =\eta \times \text { Heat supplied } \\
& =0.5409 \times 1800=973.62 \mathrm{~kJ} \simeq 973.5 \mathrm{~kJ}
\end{aligned}
$$

MCQ 1.60 TWO MARK

At a hydro electric power plant site, available head and flow rate are 24.5 m and $10.1 \mathrm{~m}^{3} / \mathrm{s}$ respectively. If the turbine to be installed is required to run at 4.0 revolution per second (rps) with an overall efficiency of 90%, the suitable type of turbine for this site is
(A) Francis
(B) Kaplan
(C) Pelton
Option (A) is correct.
(D) Propeller

SOL 1.60
Given : $H=24.5 \mathrm{~m}, Q=10.1 \mathrm{~m}^{3} / \mathrm{sec}, \eta_{0}=90 \%, N=4 \mathrm{rps}=4 \times 60=240 \mathrm{rpm}$

$$
\begin{aligned}
\eta_{0} & =\frac{\text { Shaft Power in } \mathrm{kW}}{\text { Water Power in kW }}=\frac{P}{\left(\frac{\rho \times g \times Q \times H}{1000}\right)} \\
P & =\frac{\eta_{0} \times \rho \times g \times Q \times H}{1000} \\
& =\frac{0.90 \times 1000 \times 9.81 \times 10.1 \times 24.5}{1000} \\
& =2184.74 \mathrm{~kW} \quad \rho_{\text {water }}=1000 \mathrm{~kg} / \mathrm{m}^{3}
\end{aligned}
$$

For turbine Specific speed,

$$
N_{S}=\frac{N \sqrt{P}}{H^{5 / 4}}=\frac{240 \sqrt{2184.74}}{(24.5)^{5 / 4}}=205.80 \mathrm{rpm}
$$

Hence,

$$
51<N_{S}<255 \text { for francis turbine. }
$$

MCQ 1.61
GATE ME 2004 TWO MARK

Dew point temperature of air at one atmospheric pressure (1.013 bar) is $18^{\circ} \mathrm{C}$. The air dry bulb temperature is $30^{\circ} \mathrm{C}$. The saturation pressure of water at $18^{\circ} \mathrm{C}$ and $30^{\circ} \mathrm{C}$ are 0.02062 bar and 0.04241 bar respectively. The specific heat of air and water vapour respectively are 1.005 and $1.88 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$ and the latent heat of vaporization of water at $0^{\circ} \mathrm{C}$ is $2500 \mathrm{~kJ} / \mathrm{kg}$. The specific humidity $(\mathrm{kg} / \mathrm{kg}$ of dry air) and enthalpy ($\mathrm{kJ} / \mathrm{kg}$ or dry air) of this moist air respectively, are
(A) $0.01051,52.64$
(B) $0.01291,63.15$
(C) $0.01481,78.60$
(D) $0.01532,81.40$

SOL 1.61 Option (B) is correct.
Given : $t_{d p}=18^{\circ} \mathrm{C}=(273+18) \mathrm{K}=291 \mathrm{~K}, p=p_{\text {atm }}=1.013 \mathrm{bar}$
$t_{d b}=30^{\circ} \mathrm{C}=(273+30) \mathrm{K}=303 \mathrm{~K}$
$p_{v}=0.02062$ bar (for water vapour at dew point).
$c_{\text {air }}=1.005 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}, c_{\text {water }}=1.88 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$
Latent heat of vaporization of water at $0^{\circ} \mathrm{C}$.

$$
h_{f g d p}=2500 \mathrm{~kJ} / \mathrm{kg}
$$

Specific humidity,

$$
\begin{aligned}
W & =\frac{0.622 \times p_{v}}{p-p_{v}}=\frac{0.622 \times 0.02062}{1.013-0.02062} \\
& =\frac{0.01282}{0.99238}=0.01291 \mathrm{~kg} / \mathrm{kg} \text { of dry air }
\end{aligned}
$$

Enthalpy of moist air is given by,

$$
\begin{aligned}
h & =1.022 t_{d b}+W\left(h_{f g d p}+2.3 t_{d p}\right) \mathrm{kJ} / \mathrm{kg} \\
h & =1.022 \times 30+0.01291[2500+2.3 \times 18] \\
& =30.66+0.01291 \times 2541.4 \\
& =63.46 \mathrm{~kJ} / \mathrm{kg} \simeq 63.15 \mathrm{~kJ} / \mathrm{Kg}
\end{aligned}
$$

MCQ 1.62
GATE ME 2004 TWO MARK

A R-12 refrigerant reciprocating compressor operates between the condensing temperature of $30^{\circ} \mathrm{C}$ and evaporator temperature of $-20^{\circ} \mathrm{C}$. The clearance volume ratio of the compressor is 0.03 . Specific heat ratio of the vapour is 1.15 and the specific volume at the suction is $0.1089 \mathrm{~m}^{3} / \mathrm{kg}$. Other properties at various states are given in the figure. To realize 2 tons of refrigeration, the actual volume displacement rate considering the effect of clearance is

(A) $6.35 \times 10^{-3} \mathrm{~m}^{3} / \mathrm{s}$
(B) $63.5 \times 10^{-3} \mathrm{~m}^{3} / \mathrm{s}$
(C) $635 \times 10^{-3} \mathrm{~m}^{3} / \mathrm{s}$
(D) $4.88 \times 10^{-3} \mathrm{~m}^{3} / \mathrm{s}$

SOL 1.62 Option (A) is correct.
Given : $C=0.03, \quad n=1.15$, Specific volume at suction $=0.1089 \mathrm{~m}^{3} / \mathrm{kg}$

Net refrigeration effect $=2$ ton
$1 \mathrm{TR}=1000 \times 335 \mathrm{~kJ}$ in 24 hr

$$
=\frac{2 \times 1000 \times 335}{24 \times 60 \times 60}=7.75 \mathrm{~kJ} / \mathrm{sec}
$$

Let net mass flow rate $=\dot{m}$
Net refrigeration effect $=\dot{m}\left(h_{1}-h_{4}\right)$
Substitute the values from equation (i), and from the $p-h$ curve,

$$
\begin{aligned}
7.75 & =\dot{m}(176-65) \\
m & =\frac{7.75}{111}=0.06981 \mathrm{~kg} / \mathrm{sec}
\end{aligned}
$$

Specific volume, $\quad \frac{\nu}{\dot{m}}=0.1089$

$$
\begin{aligned}
\nu & =0.1089 \times 0.06981=0.00760 \\
& =7.60 \times 10^{-3} \mathrm{~m}^{3} / \mathrm{sec}
\end{aligned}
$$

We know that volumetric efficiency,

$$
\eta_{v}=1+C-C\left(\frac{p_{2}}{p_{1}}\right)^{\frac{1}{n}}
$$

Where, p_{1} is the suction pressure and p_{2} is the discharge pressure.

$$
\begin{aligned}
& =\mathbb{1}+0.03-0.03 \times\left(\frac{7.45}{1.50}\right)^{\frac{1}{1.15}} \\
& =1.03-0.12089=0.909
\end{aligned}
$$

Now actual volume displacement rate is,

$$
\begin{aligned}
\nu_{\text {actual }} & =\nu \times \eta_{v}=7.60 \times 10^{-3} \times 0.909 \\
& =6.90 \times 10^{-3} \simeq 6.35 \times 10^{-3} \mathrm{~m}^{3} / \mathrm{sec}
\end{aligned}
$$

MCQ 1.63
GATE ME 2004 TWO MARK

GO and NO-GO plug gauges are to be designed for a hole $20.000_{+0.010}^{+0.050} \mathrm{~mm}$. Gauge tolerances can be taken as 10% of the hole tolerance. Following ISO system of gauge design, sizes of GO and NO-GO gauge will be respectively
(A) 20.010 mm and 20.050 mm
(B) 20.014 mm and 20.046 mm
(C) 20.006 mm and 20.054 mm
(D) 20.014 mm and 20.054 mm

SOL 1.63 Option (B) is correct.

$$
\text { For hole size }=20.000_{+0.010}^{+0.050} \mathrm{~mm}
$$

Maximum hole size $=20.000+0.050=20.050 \mathrm{~mm}$
Minimum hole size $=20.000+0.010=20.010$
So, \quad Hole tolerance $=$ Maximum hole size - Minimum hole size

$$
=20.050-20.010=0.040 \mathrm{~mm}
$$

Gauge tolerance can be 10% of the hole tolerance (Given).
So, \quad Gauge tolerance $=10 \%$ of 0.040

$$
=\frac{10}{100} \times 0.040=0.0040 \mathrm{~mm}
$$

$$
\begin{aligned}
\text { Size of Go Gauge } & =\text { Minimum hole size }+ \text { Gauge tolerance } \\
& =20.010+0.0040=20.014 \mathrm{~mm} \\
\text { Size of NO-GO Gauge } & =\text { Maximum hole size }- \text { Gauge tolerance } \\
& =20.050-0.004=20.046 \mathrm{~mm}
\end{aligned}
$$

MCQ 1.64 A standard machine tool and an automatic machine tool are being compared for

GATE ME 2004 TWO MARK
the production of a component. Following data refers to the two machines.

	Standard Machine Tool	Automatic Machine Tool
Setup time	30 min	2 hours
Machining time per piece	22 min	5 min
Machine rate	Rs. 200 per hour	Rs. 800 per hour

The break even production batch size above which the automatic machine tool will be economical to use, will be
(A) 4
(C) 24
(1)
(B) 5
(D) 225

SOL 1.64 Option (D) is correct.
Let, The standard machine tool produce x_{1} number of components.
For standard machine tool,
Total cost $=$ Fixed cost + Variable cost \times Number. of components

$$
(\mathrm{TC})_{S M T}=\left[\frac{30}{60}+\frac{22}{60} \times x_{1}\right] \times 200
$$

$$
=\frac{30}{60} \times 200+\frac{22}{60} \times x_{1} \times 200
$$

$$
\begin{equation*}
=100+\frac{220}{3} x_{1} \tag{i}
\end{equation*}
$$

If automatic machine tool produce x_{2} Number of components, then the total cost for automatic machine tool is

$$
\begin{align*}
(\mathrm{TC})_{A M T} & =\left(2+\frac{5}{60} x_{2}\right) 800 \\
& =1600+\frac{200}{3} x_{2} \tag{ii}
\end{align*}
$$

Let, at the breakeven production batch size is x and at breakeven point.

$$
\begin{aligned}
(\mathrm{TC})_{S M T} & =(\mathrm{TC})_{A M T} \\
100+\frac{220 x}{3} & =1600+\frac{200 x}{3} \\
\frac{220 x}{3}-\frac{200 x}{3} & =1600-100 \\
\frac{20 x}{3} & =1500
\end{aligned}
$$

$$
\begin{aligned}
& x=\frac{1500 \times 3}{20} \\
& x=225
\end{aligned}
$$

So, breakeven production batch size is 225 .

MCQ 1.65
GATE ME 2004 TWO MARK

10 mm diameter holes are to be punched in a steel sheet of 3 mm thickness. Shear strength of the material is $400 \mathrm{~N} / \mathrm{mm}^{2}$ and penetration is 40%. Shear provided on the punch is 2 mm . The blanking force during the operation will be
(A) 22.6 kN
(B) 37.7 kN
(C) 61.6 kN
(D) 94.3 kN

SOL 1.65 Option (A) is correct.
Given : $d=10 \mathrm{~mm}, t=3 \mathrm{~mm}, \tau_{s}=400 \mathrm{~N} / \mathrm{mm}^{2}, t_{1}=2 \mathrm{~mm}, p=40 \%=0.4$
We know that, when shear is applied on the punch, the blanking force is given by,

$$
F_{B}=\pi d t\left(\frac{t \times p}{t_{1}}\right) \times \tau_{s} \quad \text { Where } t \times p=\text { Punch travel }
$$

Substitute the values, we get

$$
F_{B}=3.14 \times 10 \times 3\left(\frac{3 \times 0.4}{2}\right) \times 400
$$

$$
=94.2 \times 0.6 \times 400=22.6 \mathrm{kN}
$$

MCQ 1.66 Through holes of 10 mm diameter are to be drilled in a steel plate of 20 mm
(A) 4 seconds
(B) 25 seconds
(C) 100 seconds
(D) 110 seconds

SOL 1.66 Option (B) is correct
Given : $D=10 \mathrm{~mm}, t=20 \mathrm{~mm}, N=300 \mathrm{rpm}, f=0.2 \mathrm{~mm} / \mathrm{rev}$.
Point angle of drill, $\quad 2 \alpha_{p}=120^{\circ} \quad \Rightarrow \alpha_{p}=60^{\circ}$

$$
\text { Drill over-travel }=2 \mathrm{~mm}
$$

We know that, break through distance,

$$
A=\frac{D}{2 \tan \alpha_{p}}=\frac{10}{2 \tan 60^{\circ}}=2.89 \mathrm{~mm}
$$

Total length travelled by the tool,

$$
\begin{aligned}
L & =t+A+2 \\
& =20+2.89+2=24.89 \mathrm{~mm}
\end{aligned}
$$

So, time for drilling,

$$
\begin{aligned}
t & =\frac{L}{f \cdot N}=\frac{24.89}{0.2 \times 300}=0.415 \mathrm{~min} \\
& =0.415 \times 60 \mathrm{sec}=24.9 \simeq 25 \mathrm{sec}
\end{aligned}
$$

MCQ 1.67
GATE ME 2004 TWO MARK

In a 2-D CAD package, clockwise circular arc of radius 5 , specified from $P_{1}(15,10)$ to $P_{2}(10,15)$ will have its centre at
(A) $(10,10)$
(B) $(15,10)$
(C) $(15,15)$
(D) $(10,15)$

SOL 1.67 Option (C) is correct

From the figure, the centre of circular arc with radius 5 is

$$
\begin{aligned}
& {[15,(10+5)]=[15,15]} \\
& {[(10+5), 15]=[15,15]}
\end{aligned}
$$

From point P_{1}
From point P_{2}

MCQ 1.68 TWO MARK

Gray cast iron blocks $200 \times 100 \times 10 \mathrm{~mm}$ are to be cast in sand moulds. Shrinkage allowance for pattern making is 1%. The ratio of the volume of pattern to that of the casting will be
(A) 0.97
(C) 1.01

SOL 1.68 Option (D) is correct.
Given : Dimension of block $=200 \times 100 \times 10 \mathrm{~mm}$
Shrinkage allowance, $\quad X=1 \%$
We know that, since metal shrinks on solidification and contracts further on cooling to room temperature, linear dimensions of patterns are increased in respect of those of the finished casting to be obtained.
So,

$$
v_{c}=200 \times 100 \times 10=2 \times 10^{5} \mathrm{~mm}^{2}
$$

Shrinkage allowance along length,

$$
S_{L}=L X=200 \times 0.01=2 \mathrm{~mm}
$$

Shrinkage allowance along breadth,

$$
S_{B}=100 \times 0.01=1 \mathrm{~mm}
$$

or Shrinkage allowance along height,

$$
S_{H}=10 \times 0.01=0.1 \mathrm{~mm}
$$

Volume of pattern will be

$$
\begin{aligned}
v_{p} & =\left[\left(L+S_{L}\right)\left(B+S_{B}\right)\left(S+S_{H}\right)\right] \mathrm{mm}^{3} \\
& =202 \times 101 \times 10.01 \mathrm{~mm}^{3}=2.06 \times 10^{5} \mathrm{~mm}^{3}
\end{aligned}
$$

So, $\quad \frac{\text { Volume of Pattern } v_{p}}{\text { Volume of Casting } v_{c}}=\frac{2.06 \times 10^{5}}{2 \times 10^{5}}=1.03$

MCQ 1.69 In an orthogonal cutting test on mild steel, the following data were obtained

GATE ME 2004 TWO MARK

Cutting speed : $\quad 40 \mathrm{~m} / \mathrm{min}$
Depth of cut : 0.3 mm
Tool rake angle : $+5^{\circ}$
Chip thickness : 1.5 mm
Cutting force : 900 N
Thrust force : 450 N
Using Merchant's analysis, the friction angle during the machining will be
(A) 26.6°
(B) 31.5°
(C) 45°
(D) 63.4°

SOL 1.69 Option (B) is correct.
Given : $V=40 \mathrm{~m} / \mathrm{min}, d=0.3 \mathrm{~mm}, \alpha=5^{\circ}$
$t=1.5 \mathrm{~mm}, \quad F_{c}=900 \mathrm{~N}, F_{t}=450 \mathrm{~N}$
We know from the merchant's analysis

$$
\mu=\frac{F}{N}=\frac{F_{c} \sin \alpha+F_{t} \cos \alpha}{F_{c} \cos \alpha-F_{t} \sin \alpha}
$$

Where $\mathrm{F}=$ Frictional resistance of the tool acting on the chip.
$\mathrm{N}=$ Force at the tool chip interface acting normal to the cutting face of the tool.

$$
=\frac{528.74}{860.63}=0.614
$$

Now, Frictional angle, $\quad \beta=\tan ^{-1} \mu=\tan ^{-1}(0.614)=31.5^{\circ}$
MCQ 1.70 In a rolling process, sheet of 25 mm thickness is rolled to 20 mm thickness. Roll is TWO MARK
(A) 5 mm
(B) 39 mm
(C) 78 mm
(D) 120 mm

SOL 1.70 Option (B) is correct.
Given : $t_{i}=25 \mathrm{~mm}, t_{f}=20 \mathrm{~mm}, D=600 \mathrm{~mm}, N=100 \mathrm{rpm}$
Let, Angle substended by the deformation zone at the roll centre is θ in radian and it is given by the relation.

$$
\begin{aligned}
\theta(\text { radian }) & =\sqrt{\frac{t_{i}-t_{f}}{R}} \\
& =\sqrt{\frac{25-20}{300}}=\sqrt{0.0166}=0.129 \text { radian }
\end{aligned}
$$

Roll strip contact length is

$$
L=\theta \times R
$$

$$
\text { Angle }=\frac{\operatorname{Arc}}{R}
$$

MCQ 1.71 In a machining operation, doubling the cutting speed reduces the tool life to $\frac{1}{8}$ th

GATE ME 2004 TWO MARK of the original value. The exponent n in Taylor's tool life equation $V T^{n}=C$, is
(A) $\frac{1}{8}$
(B) $\frac{1}{4}$
(C) $\frac{1}{3}$
(D) $\frac{1}{2}$

SOL 1.71 Option (C) is correct.
Given : $V T^{n}=C$
Let V and T are the initial cutting speed $\&$ tool life respectively.
Case (I) : The relation between cutting speed and tool life is,

$$
\begin{equation*}
V T^{n}=C \tag{i}
\end{equation*}
$$

Case (II) : In this case doubling the cutting speed and tool life reduces to $1 / 8^{\text {th }}$ of original values.
So,

$$
\begin{equation*}
(2 V) \times\left(\frac{T}{8}\right)^{n}=C \tag{ii}
\end{equation*}
$$

On dividing equation (i) by equation (ii),

$$
\begin{aligned}
\frac{V T^{n}}{2 V\left(\frac{T}{8}\right)^{n}} & =1 \\
T^{n} & =2\left(\frac{T}{8}\right)^{n} \\
\frac{1}{2} & =\left(\frac{1}{8}\right)^{n} \\
\left(\frac{1}{2}\right)^{1} & =\left(\frac{1}{2}\right)^{3 n}
\end{aligned}
$$

Compare powers both the sides,

$$
1=3 n \quad \Rightarrow n=\frac{1}{3}
$$

MCQ 1.72 A soldering operation was work-sampled over two days (16 hours) during which an employee soldered 108 joints. Actual working time was 90% of the total time and the performance rating was estimated to be 120 per cent. If the contract provides allowance of 20 percent of the time available, the standard time for the operation would be
(A) 8 min
(B) 8.9 min
(C) 10 min
(D) 12 min

SOL 1.72 Option (D) is correct.
Given :

$$
\text { Total time } \begin{aligned}
T & =16 \text { hours } \\
& =16 \times 60=960 \mathrm{~min}
\end{aligned}
$$

Actual working time was 90% of total time
So, Actual time, $T_{\text {actual }}=90 \%$ of 960

$$
=\frac{90}{100} \times 960, T_{\text {actual }}=864 \mathrm{~min}
$$

Performance rating was 120 percent.
So, \quad Normal time, $T_{\text {normal }}=120 \%$ of 864

$$
\begin{aligned}
T_{\text {normal }} & =\frac{120}{100} \times 864 \\
& =1036.8 \mathrm{~min}
\end{aligned}
$$

Allowance is 20% of the total available time.

$$
\text { So total standard time } \begin{aligned}
T_{\text {standard }} & =\frac{T_{\text {normal }}}{\left(1-\frac{20}{100}\right)} \\
& =\frac{1036.8}{1-0.2}=\frac{1036.8}{0.8} \\
& =1296 \mathrm{~min}
\end{aligned}
$$

Number of joints soldered, $N=108$
Hence,

$$
\text { Standard time for operation }=\frac{1296}{108}
$$

$$
=12 \mathrm{~min}
$$

MCQ 1.73 GATE ME 2004 TWO MARK

An electronic equipment manufacturer has decided to add a component subassembly operation that can produce 80 units during a regular 8-hours shift. This operation consist of three activities as below

Activity		
M. Mechanical assembly	Standard time (min)	
E. Electric wiring	12	
T. Test	16	

For line balancing the number of work stations required for the activities M, E and T would respectively be
(A) $2,3,1$
(B) $3,2,1$
(C) $2,4,2$
(D) $2,1,3$

SOL 1.73 Option (A) is correct.
Given :
Number of units produced in a day $=80$ units
Working hours in a day $=8$ hours
Now, Time taken to produce one unit is,

$$
\begin{aligned}
T & =\frac{8}{80} \times 60 \\
& =6 \mathrm{~min}
\end{aligned}
$$

Activity	Standard time (min)	No. of work stations $(S . T / T)$

M. Mechanical assembly	12	$12 / 6=2$
E. Electric wiring	16	$16 / 6=2.666=3$
T. Test	3	$3 / 6=0.5=1$

Number of work stations are the whole numbers, not the fractions.
So, number of work stations required for the activities M, E and T would be 2,3 and 1 , respectively.

MCQ 1.74 TWO MARK

A maintenance service facility has Poisson arrival rates, negative exponential service time and operates on a 'first come first served' queue discipline. Breakdowns occur on an average of 3 per day with a range of zero to eight. The maintenance crew can service an average of 6 machines per day with a range of zero to seven. The mean waiting time for an item to be serviced would be
(A) $\frac{1}{6}$ day
(B) $\frac{1}{3}$ day
(C) 1 day
(D) 3 day

SOL 1.74 Option (A) is correct.
Given :

> Mean arrival rate $\lambda=3$ per day
> Mean service rate $\mu=6$ per day

We know that, for first come first serve queue.
Mean waiting time of an arrival,

$$
\begin{aligned}
& t=\frac{\lambda}{\mu(\mu-\lambda)} \\
& t=\frac{3}{6(6-3)}=\frac{1}{6} \text { day }
\end{aligned}
$$

MCQ 1.75
GATE ME 2004 TWO MARK

A company has an annual demand of 1000 units, ordering cost of Rs. 100/ order and carrying cost of Rs.100/unit/year. If the stock-out cost are estimated to be nearly Rs. 400 each time the company runs out-of-stock, then safety stock justified by the carrying cost will be
(A) 4
(B) 20
(C) 40
(D) 100

SOL 1.75 Option (C) is correct.
Given : $D=1000$ units, $C_{o}=100 /$ order,$C_{h}=100$ unit/year $C_{s}=400$ Rs.
We know that, optimum level of stock out will be,

$$
\begin{aligned}
\text { S.O } & =\sqrt{\frac{2 D C_{o}}{C_{h}}} \times \sqrt{\frac{C_{s}}{C_{h}+C_{s}}} \\
\text { S.O } & =\sqrt{\frac{2 \times 1000 \times 100}{100}} \times \sqrt{\frac{400}{100+400}} \\
& =44.72 \times 0.895 \\
& =40
\end{aligned}
$$

MCQ 1.76 A company produces two types of toys : P and Q. Production time of Q is twice

GATE ME 2004 TWO MARK that of P and the company has a maximum of 2000 time units per day. The supply of raw material is just sufficient to produce 1500 toys (of any type) per day. Toy type Q requires an electric switch which is available @ 600 pieces per day only. The company makes a profit of Rs. 3 and Rs. 5 on type P and Q respectively. For maximization of profits, the daily production quantities of P and Q toys should respectively be
(A) 1000,500
(B) 500, 1000
(C) 800, 600
(D) 1000, 1000

SOL 1.76 Option (A) is correct.
Solve this problem, by the linear programming model.
We have to make the constraints from the given conditions.
For production conditions

$$
\begin{equation*}
P+2 Q \leq 2000 \tag{i}
\end{equation*}
$$

For raw material

$$
\begin{equation*}
P+Q \leq 1500 \tag{ii}
\end{equation*}
$$

For electric switch

$$
\begin{equation*}
Q \leq 600 \tag{iii}
\end{equation*}
$$

For maximization of profit, objective function
$Z=3 P+5 Q$
From the equations (i), (ii) \& (iii), drawa graph for toy P and Q

Line (i) and line (ii) intersects at point A, we have to calculate the intersection point.

$$
\begin{aligned}
P+2 Q & =2000 \\
P+Q & =1500
\end{aligned}
$$

After solving there equations, we get $A(1000,500)$
For point B,

$$
\begin{aligned}
P+2 Q & =2000 \\
Q & =600
\end{aligned}
$$

$$
P=2000-1200=800
$$

So, $B(800,600)$
Here shaded area shows the area bounded by the three line equations (common area)
This shaded area have five vertices.

	Vertices	Profit $Z=3 P+5 Q$
(i)	$0(0,0)$	$Z=0$
(ii)	$A(1000,500)$	$Z=3000+2500=5500$
(iii)	$B(800,600)$	$Z=2400+3000=5400$
(iv)	$C(0,600)$	$Z=3000$
(v)	$D(1500,0)$	$Z=4500$

So, for maximization of profit

$$
\begin{aligned}
& P=1000 \\
& Q=500
\end{aligned}
$$

> from point(ii)

MCQ 1.77 Match the following

GATE ME 2004 TWO MARK

Type of Mechanism \square

P. Scott-Russel Mechanism
Q. Geneva Mechanism
R. Off-set slider-crank Mechanism
S. Scotch Yoke Mechanism
(A) \quad P-2 \quad Q-3 \quad R-1 $\quad \mathrm{S}-4$
(B) P-3 \quad Q-2 \quad R-4 $\quad \mathrm{S}-1$
(C) P-4 \quad Q-1 \quad R-2 \quad S-3
(D) P-4 \quad Q-3 \quad R-1 \quad S-2

SOL 1.77 Option (C) is correct.

Types of Mechanisms

P. Scott-Russel Mechanism
Q. Geneva Mechanism
R. Off-set slider-crank Mechanism
S. Scotch Yoke Mechanism

So, correct pairs are, P-4, Q-1, R-2, S-3

MCQ 1.78 Match the following

Type of gears

Motion Achieved

4. Straight Line Motion
5. Intermittent Motion
6. Quick Return Mechanism
7. Simple Harmonic Motion

Arrangement of shafts

P. Bevel gears
Q. Worm gears
R. Herringbone gears
S. Hypoid gears

(A)	P-4	Q-2	R-1	S-3
(B)	P-2	Q-3	R-4	S-1
(C)	P-3	Q-2	R-1	S-4
(D)	P-1	Q-3	R-4	S-2

SOL 1.78 Option (B) is correct.

Type of Gears
P. Bevel gears
Q. Worm gears
R. Herringbone gears
S. Hypoid gears

1. Non-parallel off-set shafts
2. Non-parallel intersecting shafts
3. Non-parallel, non-intersecting shafts
4. Parallel shafts

So, correct pairs are P-2, Q-3, R-4, S-1.
MCQ 1.79 Match the following with respect to spatial mechanisms.

GATE ME 2004 TWO MARK

Types of Joint
P. Revolute
Q. Cylindrical
R. Spherical
(A) P-1 $\mathrm{Q}-3 \quad \mathrm{R}-3$
(B) P-5 \quad Q-4 $\quad \mathrm{R}-3$
(C) P-2 \quad Q-3 $\quad \mathrm{R}-1$
(D) P-4 Q-5 R-3

Arrangement of shafts

2. Non-parallel intersecting shafts
3. Non-parallel, non-intersecting shafts
4. Parallel shafts

Non-parallel off-set shafts

SOL 1.79 Option (C) is correct.
P. Revolute

Degree of constraints

2. Five
Q. Cylindrical
3. Four
R. Spherical
4. Three

So, correct pairs are P-2, Q-3, R-1
MCQ 1.80 Match List-I with List-II and select the correct answer using the codes given below GATE ME 2004 the lists :

List-I

P. Reciprocating pump
Q. Axial flow pump
R. Microhydel plant
S. Backward curved vanes

List-II

1. Plant with power output below 100 kW
2. Plant with power output between 100 kW to 1 MW
3. Positive displacement
4. Draft tube
5. High flow rate, low pressure ratio
6. Centrifugal pump impeller

Codes :

	P	Q	R	S
(A)	3	5	6	2
(B)	3	5	2	6
(C)	3	5	1	6
(D)	4	5	1	6

SOL 1.80 Option (B) is correct.

List-I

P. Reciprocating pump
Q. Axial flow pump
R. Microhydel plant
3. Positive Displacement
5. High Flow rate, low pressure ratio
2. Plant with power output between 100 kW to 1 MW
S. Backward curved vanes
6. Centrifugal pump impeller

So, correct pairs are P-3, Q-5, R-2, S-6
MCQ 1.81 Match the following

GATE ME 2004 TWO MARK

Feature to be inspected
P. Pitch and Angle errors of screw thread
Q. Flatness error of a surface
R. Alignment error of a machine slideway
S. Profile of a cam

Instrument

1. Auto Collimator
2. Optical Interferometer
3. Dividing Head and Dial Gauge
4. Spirit Level
5. Sine bar
6. Tool maker's Microscope
(A) P-6 \quad Q-2 \quad R-4 \quad S-6
(B) P-5 \quad Q-2 \quad R-1 \quad S-6
(C) P-6 \quad Q-4 \quad R-1 $\quad \mathrm{S}-3$
(D) P-1 \quad Q-4 \quad R-5 \quad S-2

SOL 1.81 Option (B) is correct.

Feature to be inspected

P. Pitch and Angle errors of screw thread
Q. Flatness error of a surface
R. Alignment error of a machine slideway
S. Profile of a cam

So, correct pairs are, P-5, Q-2, R-1, S-6
MCQ 1.82 Match the following

GATE ME 2004 TWO MARK

Product

P. Molded luggage
Q. Packaging containers for Liquid
R. Long structural shapes
S. Collapsible tubes
(1)

SOL 1.82 Option (B) is correct.

Product
P. Molded luggage
Q. Packaging containers for Liquid
R. Long structural shapes
S. Collapsible tubes

So, correct pairs are, P-4 Q-5 R-2 S-3

MCQ 1.83 Typical machining operations are to be performed on hard-to-machine materials by using the processes listed below. Choose the best set of Operation-Process combinations

Operation

P. Deburring (internal surface)
Q. Die sinking
R. Fine hole drilling in thin sheets
S. Tool sharpening

Process

1. Plasma Arc Machining
2. Abrasive Flow Machining
3. Electric Discharge Machining
4. Ultrasonic Machining
5. Laser beam Machining

6. Electrochemical Grinding

(A)	P-1	Q-5	R-3	S-4
(B)	P-1	Q-4	$\mathrm{R}-1$	$\mathrm{~S}-2$
(C)	P-5	Q-1	$\mathrm{R}-2$	$\mathrm{~S}-6$
(D)	P-2	Q-3	$\mathrm{R}-5$	$\mathrm{~S}-6$

SOL 1.83 Option (D) is correct.

Operation

P. Deburring (internal surface)
Q. Die sinking
R. Fine hole drilling in thin sheets
S. Tool sharpening

Process

2. Abrasive Flow Machining
3. Electric Discharge Machining
4. Laser beam Machining
5. Electrochemical Grinding

MCQ 1.84 From the lists given below choose the most appropriate set of heat treatment process and the corresponding process characteristics

Process

P. Tempering
Q. Austempering
R. Martempering

Characteristics

— 2. 2. Austenite is converted into bainite
3. Cementite is converted into globular structure
4. Both hardness and brittleness are reduced
5. Carbon is absorbed into the metal
(A) P-3 $\mathrm{Q}-1 \quad \mathrm{R}-5$
(B) P-4 $\mathrm{Q}-3 \quad \mathrm{R}-2$
(C) \quad P-4 \quad Q-1 $\quad \mathrm{R}-2$
(D) $\quad \mathrm{P}-1 \quad \mathrm{Q}-5 \quad \mathrm{R}-4$

SOL 1.84 Option (C) is correct.

Process

P. Tempering
Q. Austempering
R. Martempering

Characteristics

4. Both hardness and brittleness are reduced
5. Austenite is converted into bainite
6. Austenite is converted into martensite

So, correct pairs are, P-4, Q-1, R-2

Data for Q. 85 and 86 are given below. Solve the problems and choose correct answers.

A steel beam of breadth 120 mm and height 750 mm is loaded as shown in the
figure. Assume $E_{\text {steel }}=200 \mathrm{GPa}$.

MCQ 1.85 The beam is subjected to a maximum bending moment of
(A) $3375 \mathrm{kN}-\mathrm{m}$
(B) $4750 \mathrm{kN}-\mathrm{m}$
(C) $6750 \mathrm{kN}-\mathrm{m}$
(D) $8750 \mathrm{kN}-\mathrm{m}$

TWO MARK

SOL 1.85 Option (A) is correct.
Given : $b=120 \mathrm{~mm}, h=750 \mathrm{~mm}, E_{\text {steel }}=200 \mathrm{GPa}=200 \times 10^{3} \mathrm{~N} / \mathrm{mm}^{2}$,
$W=120 \mathrm{kN} / \mathrm{m}, L=15 \mathrm{~m}$
It is a uniformly distributed load.
We know that for a uniformly distributed load, maximum bending moment at centre is given by,

Substitute the values, we get

$$
B . M .=\frac{W L^{2}}{8}
$$

$$
B . M .=\frac{120 \times 15 \times 15}{8}=3375 \mathrm{kN}-\mathrm{m}
$$

MCQ 1.86 The value of maximum deflection of the beam is

GATE ME 2004 TWO MARK
(A) 93.75 mm
(B) 83.75 mm
(C) 73.75 mm
(D) 63.75 mm

SOL 1.86 Option (A) is correct.

We know that maximum deflection at the centre of uniformly distributed load is given by,

$$
\delta_{\max }=\frac{5}{384} \times \frac{W L^{4}}{E I}
$$

For rectangular cross-section,

$$
\begin{aligned}
I & =\frac{b h^{3}}{12}=\frac{(120) \times(750)^{3}}{12} \\
& =4.21875 \times 10^{9} \mathrm{~mm}^{4}=4.21875 \times 10^{-3} \mathrm{~m}^{4}
\end{aligned}
$$

$$
\text { So, } \quad \begin{aligned}
\delta_{\max } & =\frac{5}{384} \times \frac{120 \times 10^{3} \times(15)^{4}}{200 \times 10^{9} \times 4.21875 \times 10^{-3}} \\
& =\frac{5}{384} \times 7200 \times 10^{-3}=0.09375 \mathrm{~m}=93.75 \mathrm{~mm}
\end{aligned}
$$

Data for Q. 87 and 88 are given below. Solve the problems and choose correct answer.

A compacting machine shown in the figure below is used to create a desired thrust force by using a rack and pinion arrangement. The input gear is mounted on the motor shaft. The gears have involute teeth of 2 mm module.

MCQ 1.87 If the drive efficiency is 80%, the torque required on the input shaft to create 1000 GATE ME 2004 N output thrust is TWO MARK
(A) 20 Nm
(B) 25 Nm
(C) 32 Nm
(D) 50 Nm

SOL 1.87 Option (B) is correct.

Let, Z is the number of teeth and motor rotates with an angular velocity ω_{1} in clockwise direction \& develops a torque T_{1}.
Due to the rotation of motor, the gear 2 rotates in anti-clockwise direction \& gear 3 rotates in clock wise direction with the same angular speed.
Let, T_{2} is the torque developed by gear.
Now, for two equal size big gears,
Module

$$
\begin{aligned}
& m=\frac{D}{Z}=\frac{(\text { Pitch circle diameter })}{(\text { No.of teeths })} \\
& D=m Z=2 \times 80=160 \mathrm{~mm}
\end{aligned}
$$

(Due to rotation of gear $2 \&$ gear 3 an equal force (F) is generated in the downward direction because teeth are same for both the gears)
For equilibrium condition, we have
Downward force $=$ upward force

$$
\begin{aligned}
F+F & =1000 \\
F & =500 \mathrm{~N} \\
\eta & =\frac{\text { Power Output }}{\text { Power Input }}=\frac{2 \times T_{2} \omega_{2}}{T_{1} \omega_{1}}
\end{aligned}
$$

And
Output power is generated by the two gears

$$
\begin{equation*}
\eta=\frac{2 \times\left(F \times \frac{D}{2}\right) \omega_{2}}{T_{1} \omega_{1}} \tag{i}
\end{equation*}
$$

We know velocity ratio is given by

$$
\frac{N_{1}}{N_{2}}=\frac{\omega_{1}}{\omega_{2}}=\frac{Z_{2}}{Z_{1}} \quad \omega=\frac{2 \pi N}{60}
$$

From equation (i),

$$
\begin{aligned}
\eta & =\frac{2 \times\left(F \times \frac{D}{2}\right)}{T_{1}} \times \frac{Z_{1}}{Z_{2}} \\
T_{1} & =\frac{F \times D}{\eta} \times\left(\frac{Z_{1}}{Z_{2}}\right)
\end{aligned}
$$

$$
=\frac{500 \times 0.160}{0.8} \times \frac{20}{80}=25 \mathrm{~N}-\mathrm{m}
$$

MCQ 1.88 GATE ME 2004 TWO MARK

If the pressure angle of the rack is 20°, then force acting along the line of action between the rack and the gear teeth is
(A) 250 N
(B) 342 N
(C) 532 N
(D) 600 N

SOL 1.88 Option (C) is correct.

Given pressure angle $\phi=20^{\circ}, F_{T}=500 \mathrm{~N}$ from previous question.
From the given figure we easily see that force action along the line of action is F. From the triangle $A B C$, \qquad

$$
\begin{aligned}
\cos \phi & =\frac{F_{T}}{F} \\
F & =\frac{F_{T}}{\cos \phi}=\frac{500}{\cos 20^{\circ}}=532 \mathrm{~N}
\end{aligned}
$$

Data for Q. 89 and 90 are given below. Solve the problem and choose correct answers.
Consider a steam power plant using a reheat cycle as shown. Steam leaves the boiler and enters the turbine at $4 \mathrm{MPa}, 350^{\circ} \mathrm{C}\left(h_{3}=3095 \mathrm{~kJ} / \mathrm{kg}\right)$. After expansion in the turbine to $400 \mathrm{kPa}\left(h_{4}=2609 \mathrm{~kJ} / \mathrm{kg}\right)$, and then expanded in a low pressure turbine to $10 \mathrm{kPa}\left(h_{6}=2165 \mathrm{~kJ} / \mathrm{kg}\right)$. The specific volume of liquid handled by the pump can be assumed to be

MCQ 1.89 The thermal efficiency of the plant neglecting pump work is
GATE ME 2004 TWO MARK
(A) 15.8%
(B) 41.1%
(C) 48.5%
(D) 58.6%

SOL 1.89 Option (B) is correct.
Given : $h_{1}=29.3 \mathrm{~kJ} / \mathrm{kg}, h_{3}=3095 \mathrm{~kJ} / \mathrm{kg}, h_{4}=2609 \mathrm{~kJ} / \mathrm{kg}, h_{5}=3170 \mathrm{~kJ} / \mathrm{kg}$ $h_{6}=2165 \mathrm{~kJ} / \mathrm{kg}$
Heat supplied to the plant,

$$
\begin{aligned}
Q_{S} & =\left(h_{3}-h_{1}\right)+\left(h_{5}-h_{4}\right) \quad \text { At b } \\
& =(3095-29.3)+(3170-2609)=3626.7 \mathrm{~kJ}
\end{aligned}
$$

At boiler \& reheater

Work output from the plant,

$$
\begin{array}{rlr}
W_{T} & =\left(h_{3}-h_{4}\right)+\left(h_{5}-h_{6}\right) & \\
& =(3095-2609)+(3170-2165)=1491 \mathrm{~kJ} & \\
\text { Now, } \quad \eta_{\text {thermal }} & =\frac{W_{T}-W_{p}}{Q_{s}}=\frac{W_{T}}{Q_{s}} & \text { Given, } W_{p}=0 \\
& =\frac{1491}{3626.7}=0.411=41.1 \% &
\end{array}
$$

MCQ 1.90 The enthalpy at the pump discharge $\left(h_{2}\right)$ is
GATE ME 2004 TWO MARK
(A) $0.33 \mathrm{~kJ} / \mathrm{kg}$
(B) $3.33 \mathrm{~kJ} / \mathrm{kg}$
(C) $4.0 \mathrm{~kJ} / \mathrm{k}$
(D) $33.3 \mathrm{~kJ} / \mathrm{kg}$

SOL 1.90 Option (D) is correct.
From the figure, we have enthalpy at exit of the pump must be greater than at inlet of pump because the pump supplies energy to the fluid.

$$
h_{2}>h_{1}
$$

So, from the given four options only one option is greater than h_{1}

$$
h_{2}=33.3 \mathrm{~kJ} / \mathrm{kg}
$$

Answer Sheet									
1.	(C)	19.	(C)	37.	(A)	55.	(C)	73.	(A)
2.	(C)	20.	(C)	38.	(D)	56.	(B)	74.	(A)
3.	(B)	21.	(A)	39.	(C)	57.	(A)	75.	(C)
4.	(A)	22.	(C)	40.	(A)	58.	(C)	76.	(A)
5.	(A)	23.	(A)	41.	(C)	59.	(D)	77.	(C)
6.	(D)	24.	(A)	42.	(B)	60.	(A)	78.	(B)
7.	(C)	25.	(D)	43.	(A)	61.	(B)	79.	(C)
8.	(D)	26.	(B)	44.	(B)	62.	(A)	80.	(B)
9.	(C)	27.	(C)	45.	(D)	63.	(B)	81.	(B)
10.	(B)	28.	(C)	46.	(A)	64.	(D)	82.	(B)
11.	(A)	29.	(B)	47.	(C)	65.	(A)	83.	(D)
12.	(C)	30.	(C)	48.	(D)	66.	(B)	84.	(C)
13.	(A)	31.	(C)	49.	(C)	67.	(C)	85.	(A)
14.	(B)	32.	(D)	50.	(B)	68.	(D)	86.	(A)
15.	(C)	33.	(B)		(C) \square	69.	(B)	87.	(B)
16.	(B)	34.	(D)	52.	(A)	70.	(B)	88.	(C)
17.	(B)	35.	(A)	53.	(D) \square	71.	(C)	89.	(B)
18.	(D)	36.	(A)	54.	(A)	72.	(D)	90.	(D)

GATE Multiple Choice Questions For Mechanical Engineering

By NODIA and Company

Available in Three Volumes

Features:

- The book is categorized into chapter and the chapter are sub-divided into units
- Unit organization for each chapter is very constructive and covers the complete syllabus
- Each unit contains an average of 40 questions
- The questions match to the level of GATE examination
- Solutions are well-explained, tricky and consume less time. Solutions are presented in such a way that it enhances you fundamentals and problem solving skills
- There are a variety of problems on each topic
- Engineering Mathematics is also included in the book

Contents

VOLUME-1 Applied Mechanics and Design

UNIT 1. Engineering Mechanics

1.1 Equilibrium of forces
1.2 Structure
1.3 Friction
1.4 Virtual work
1.5 Kinematics of particle
1.6 Kinetics of particle
1.7 Plane kinematics of rigid bodies
1.8 Plane kinetics of rigid bodies

UNIT 2. Strength of Material

2.1 Stress and strain

2.2 Axial loading
2.3 Torsion
2.4 Shear force and bending moment
2.5 Transformation of stress and strain
2.6 Design of beams and shafts
2.7 Deflection of beams and shafts
2.8 Column
2.9 Energy methods

UNIT 3. Machine Design

3.1 Design for static and dynamic loading
3.2 Design of joints
3.3 Design of shaft and shaft components
3.4 Design of spur gears
3.5 Design of bearings
3.6 Design of clutch and brakes

UNIT 4. Theory of Machine

4.1 Analysis of plane mechanism
4.2 Velocity and acceleration
4.3 Dynamic analysis of slider-crank and cams
4.4 Gear-trains
4.5 Flywheel
4.6 vibration

VOLUME-2

Fluid Mechanics and Thermal Sciences

UNIT 5. Fluid Mechanics

5.1 Basic concepts and properties of fluids
5.2 Pressure and fluid statics
5.3 Fluid kinematics and Bernoulli Equation
5.4 Flow analysis using control volume
5.5 Flow analysis using differential method
5.6 Internal flow
5.7 External flow
5.8 Open channel flow
5.9 Turbomachinary

UNIT 6. Heat Transfer

6.1 Basic concepts and modes of Heat transfer
6.2 Fundamentals of conduction
6.3 Steady heat conduction
6.4 Transient heat conduction
6.5 Fundamentals of convection
6.6 Free convection
6.7 Forced convection
6.8 Fundamentals of thermal radiation
6.9 Radiation Heat transfer
6.10 Heat exchangers.

UNIT 7. Thermodynamics

7.1 Basic concepts and Energy analysis
7.2 Properties of pure substances
7.3 Energy analysis of closed system
7.4 Mass and energy analysis of control volume
7.5 Second law of thermodynamics
7.6 Entropy
7.7 Gas power cycles
7.8 Vapour and combined power cycles
7.9 Refrigeration and air conditioning

VOLUME-3 Manufacturing and Industrial Engineering

UNIT 8. Engineering Materials

8.1 Structure and properties of engineering materials, heat treatment, stress-strain diagrams for engineering materials

UNIT 9. Metal Casting:

Design of patterns, moulds and cores; solidification and cooling; riser and gating design, design considerations.

UNIT 10. Forming:

Plastic deformation and yield criteria; fundamentals of hot and cold working processes; load estimation for bulk (forging, rolling, extrusion, drawing) and sheet (shearing, deep drawing, bending) metal forming processes; principles of powder metallurgy.

UNIT 11. Joining:

Physics of welding, brazing and soldering; adhesive bonding; design considerations in welding.

UNIT 12. Machining and Machine Tool Operations:

Mechanics of machining, single and multi-point cutting tools, tool geometry and materials, tool life and wear; economics of machining; principles of non-traditional machining processes; principles of work holding, principles of design of jigs and fixtures

UNIT 13. Metrology and Inspection:

Limits, fits and tolerances; linear and angular measurements; comparators; gauge design; interferometry; form and finish measurement; alignment and testing methods; tolerance analysis in manufacturing and assembly.

UNIT 14. Computer Integrated Manufacturing:

Basic concepts of CAD/CAM and their integration tools.

UNIT 15. Production Planning and Control:

Forecasting models, aggregate production planning, scheduling, materials requirement planning

UNIT 16. Inventory Control:

Deterministic and probabilistic models; safety stock inventory control systems.

UNIT 17. Operations Research:

Linear programming, simplex and duplex method, transportation, assignment, network flow models, simple queuing models, PERT and CPM.

UNIT 18. Engineering Mathematics:

18.1 Linear Algebra

18.2 Differential Calculus

18.3 Integral Calculus

18.4 Differential Equation
18.5 Complex Variable
18.6 Probability \& Statistics
18.7 Numerical Methods

