## ME GATE-03

MCQ $1.1 \quad \lim _{x \rightarrow 0} \frac{\sin ^{2} x}{x}$ is equal to
GATE ME 2003 ONE MARK
(A) 0
(B) $\infty$
(C) 1
(D) -1

SOL 1.1 Option (A) is correct
Let,

$$
f(x)=\lim _{x \rightarrow 0} \frac{\sin ^{2} x}{x}=\lim _{x \rightarrow 0} \frac{\sin ^{2} x}{x} \times \frac{x}{x}
$$

$$
\begin{aligned}
& =\lim _{x \rightarrow 0}\left(\frac{\sin x}{x}\right)^{2} \times x \\
& =(1)^{2} \times 0=0
\end{aligned}
$$

$$
\lim _{x \rightarrow 0} \frac{\sin x}{x}=1
$$

## Alternate:

Let

$$
\begin{aligned}
f(x) & =\lim _{x \rightarrow 0} \frac{\sin ^{2} x}{x} \\
f(x) & =\lim _{x \rightarrow 0} \frac{2 \sin x \cos x}{1} \\
& =\lim _{x \rightarrow 0} \frac{\sin 2 x}{1}=\frac{\sin 0}{1}=0
\end{aligned}
$$

$\left[\frac{0}{0}\right.$ form $]$
Apply L-Hospital rule

MCQ 1.2 The accuracy of Simpson's rule quadrature for a step size $h$ is
GATE ME 2003
ONE MARK
(A) $O\left(h^{2}\right)$
(B) $O\left(h^{3}\right)$
(C) $O\left(h^{4}\right)$
(D) $O\left(h^{5}\right)$

SOL 1.2 Option (D) is correct.
Accuracy of Simpson's rule quadrature is $O\left(h^{5}\right)$
$\begin{array}{ll}\text { MCQ 1.3 For the matrix } & {\left[\begin{array}{ll}4 & 1 \\ 1 & 4\end{array}\right] \text { the eigen values are }} \\ \text { GATE ME 2003 }\end{array}$ ONE MARK
(A) 3 and -3
(B) -3 and -5
(C) 3 and 5
(D) 5 and 0

SOL 1.3 Option (C) is correct.
Let,

$$
A=\left[\begin{array}{ll}
4 & 1 \\
1 & 4
\end{array}\right]
$$

The characteristic equation for the eigen value is given by,

$$
\begin{aligned}
|A-\lambda I| & =0 \\
\left|\left[\begin{array}{ll}
4 & 1 \\
1 & 4
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right| & =0 \\
\left|\begin{array}{rr}
4-\lambda & 1 \\
1 & 4-\lambda
\end{array}\right| & =0 \\
(4-\lambda)(4-\lambda)-1 & =0 \\
(4-\lambda)^{2}-1 & =0 \\
\lambda^{2}-8 \lambda+15 & =0
\end{aligned}
$$

On solving above equation, we get

$$
\lambda=5,3
$$

MCQ 1.4 The second moment of a circular area about the diameter is given by ( D is the GATE ME 2003 diameter). ONE MARK
(A) $\frac{\pi D^{4}}{4}$

(B) $\frac{\pi D^{4}}{16}$
(C) $\frac{\pi D^{4}}{32}$

(D) $\frac{\pi D^{4}}{64}$

SOL 1.4 Option (D) is correct.
We know that, moment of inertia is defined as the second moment of a plane area about an axis perpendicular to the area.
Polar moment of inertia perpendicular to the plane of paper,

$$
J \text { or } I_{P}=\frac{\pi D^{4}}{32}
$$

By the "perpendicular axis" theorem,

$$
\begin{aligned}
I_{X X}+I_{Y Y} & =I_{P} \\
2 I_{X X} & =I_{P} \\
I_{X X} & =\frac{I_{P}}{2}=\frac{\pi D^{4}}{64}=I_{Y Y}
\end{aligned}
$$

MCQ 1.5 A concentrated load of $P$ acts on a simply supported beam of span $L$ at a distance

GATE ME 2003 ONE MARK
$L / 3$ from the left support. The bending moment at the point of application of the load is given by
(A) $\frac{P L}{3}$
(B) $\frac{2 P L}{3}$
(C) $\frac{P L}{9}$
(D) $\frac{2 P L}{9}$

SOL 1.5 Option (D) is correct.
We know that, the simplest form of the simply supported beams is the beam supported on rollers at ends. The simply supported beam and the $F B D$ shown in
the Figure.


Where, $R_{A} \& R_{B}$ are the reactions acting at the ends of the beam.
In equilibrium condition of forces,

$$
\begin{equation*}
P=R_{A}+R_{B} \tag{i}
\end{equation*}
$$

Taking the moment about point $A$,

$$
\begin{aligned}
R_{B} \times L & =P \times \frac{L}{3} \\
R_{B} & =\frac{P}{3}
\end{aligned}
$$

From equation (i),

$$
R_{A}=P-R_{B}=P-\frac{P}{3}=\frac{2 P}{3}
$$

Now bending moment at the point of application of the load

MCQ 1.6
GATE ME 2003 ONE MARK

$$
\begin{aligned}
& M=R_{A} \times \frac{L}{3}=\frac{2 P}{3} \times \frac{L}{3}=\frac{2 P L}{9} \\
& M=R_{B} \times \frac{2 L}{3}=\frac{2 P L}{9}
\end{aligned}
$$

Or,
Two identical circular rods of same diameter and same length are subjected to same magnitude of axial tensile force. One of the rod is made out of mild steel having the modulus of elasticity of 206 GPa . The other rod is made out of cast iron having the modulus of elasticity of 100 GPa . Assume both the materials to be homogeneous and isotropic and the axial force causes the same amount of uniform stress in both the rods. The stresses developed are within the proportional limit of the respective materials. Which of the following observations is correct?
(A) Both rods elongate by the same amount
(B) Mild steel rod elongates more than the cast iron rod
(C) Cast iron rod elongates more than the mild steel rods
(D) As the stresses are equal strains are also equal in both the rods

SOL 1.6 Option (C) is correct.
Given : $L_{s}=L_{i}, E_{s}=206 \mathrm{GPa}, E_{i}=100 \mathrm{GPa}, P_{s}=P_{i}, D_{s}=D_{i}, \Rightarrow A_{s}=A_{i}$
Where subscript $s$ is for steel and $i$ is for iron rod.
We know that elongation is given by,

$$
\Delta L=\frac{P L}{A E}
$$

Now, for steel or iron rod

$$
\frac{\Delta L_{s}}{\Delta L_{i}}=\frac{P_{s} L_{s}}{A_{s} E_{s}} \times \frac{A_{i} E_{i}}{P_{i} L_{i}}=\frac{E_{i}}{E_{s}}
$$

Substitute the values, we get

$$
\frac{\Delta L_{s}}{\Delta L_{i}}=\frac{100}{206}=0.485<1
$$

Or, $\quad \Delta L_{s}<\Delta L_{i} \Rightarrow \Delta L_{i}>\Delta L_{s}$
So, cast iron rod elongates more than the mild steel rod.

MCQ 1.7
GATE ME 2003 ONE MARK

The beams, one having square cross section and another circular cross-section, are subjected to the same amount of bending moment. If the cross sectional area as well as the material of both the beams are same then
(A) maximum bending stress developed in both the beams is same
(B) the circular beam experience more bending stress than the square one
(C) the square beam experience more bending stress than the circular one
(D) as the material is same, both the beams will experience same deformation.

SOL 1.7 Option (B) is correct.


Let,

$$
\begin{aligned}
& a=\text { Side of square cross-section } \\
& d=\text { diameter of circular cross-section }
\end{aligned}
$$

Using subscripts for the square and $c$ for the circular cross section.
Given :

$$
\begin{aligned}
M_{s} & =M_{c} \\
A_{c} & =A_{s}
\end{aligned}
$$

So,

$$
\begin{equation*}
\frac{\pi}{4} d^{2}=a^{2} \tag{i}
\end{equation*}
$$

From the bending equation,

$$
\frac{M}{I}=\frac{\sigma}{y}=\frac{E}{R} \Rightarrow \sigma=\frac{M}{I} \times y
$$

Where,

$$
\begin{aligned}
& y=\text { Distance from the neutral axis to the external fibre. } \\
& \sigma=\text { Bending stress }
\end{aligned}
$$

For square cross-section bending stress,

$$
\begin{equation*}
\sigma_{s}=\frac{M_{s}}{\frac{a^{4}}{12}} \times \frac{a}{2}=\frac{6 M_{s}}{a^{3}} \tag{ii}
\end{equation*}
$$

And for circular cross-section,

$$
\begin{equation*}
\sigma_{c}=\frac{M_{c}}{\frac{\pi}{64} d^{4}} \times \frac{d}{2}=\frac{32 M_{c}}{d^{3}} \tag{iii}
\end{equation*}
$$

On dividing equation (iii) by equation (ii), we get

$$
\frac{\sigma_{c}}{\sigma_{s}}=\frac{32 M_{c}}{d^{3}} \times \frac{a^{3}}{6 M_{s}}=\frac{16}{3} \frac{a^{3}}{d^{3}}
$$

$$
M_{c}=M_{s} \ldots(\mathrm{iv})
$$

From equation (i),

$$
\begin{aligned}
\left(\frac{\pi}{4} d^{2}\right)^{3 / 2} & =\left(a^{2}\right)^{3 / 2}=a^{3} \\
\frac{a^{3}}{d^{3}} & =\left(\frac{\pi}{4}\right)^{3 / 2}=0.695
\end{aligned}
$$

Substitute this value in equation (iv), we get

$$
\begin{aligned}
& \frac{\sigma_{c}}{\sigma_{s}}=\frac{16}{3} \times 0.695=3.706 \\
& \frac{\sigma_{c}}{\sigma_{s}}>1 \Rightarrow \sigma_{c}>\sigma_{s}
\end{aligned}
$$

So, Circular beam experience more bending stress than the square section.
MCQ 1.8 The mechanism used in a shaping machine is
GATE ME 2003 (A) a closed 4-bar chain having 4 revolute pairs
ONE MARK
(B) a closed 6 -bar chain having 6 revolute pairs
(C) a closed 4 -bar chain having 2 revolute and 2 sliding pairs
(D) an inversion of the single stider-cramk chain

SOL 1.8 Option (D) is correct.
A single slider crank chain is a modification of the basic four bar chain. It is find, that four inversions of a single slider crank chain are possible. From these four inversions, crank and slotted lever quick return motion mechanism is used in shaping machines, slotting machines and in rotary internal combustion engines.

MCQ 1.9 The lengths of the links of a 4-bar linkage with revolute pairs are $p, q, r$, and $s$ units. given that $p<q<r<s$. Which of these links should be the fixed one, for obtaining a "double crank" mechanism ?
(A) link of length $p$
(B) link of length $q$
(C) link of length $r$
(D) link of length $s$

SOL 1.9 Option (A) is correct.
Given $p<q<r<s$
"Double crank" mechanism occurs, when the shortest link is fixed. From the given pairs $p$ is the shortest link. So, link of length $p$ should be fixed.

MCQ 1.10
GATE ME 2003 ONE MARK

Consider the arrangement shown in the figure below where $J$ is the combined polar mass moment of inertia of the disc and the shafts. $k_{1}, k_{2}, k_{3}$ are the torsional stiffness of the respective shafts. The natural frequency of torsional oscillation of the disc is given by

(A) $\sqrt{\frac{k_{1}+k_{2}+k_{3}}{J}}$
(B) $\sqrt{\frac{k_{1} k_{2}+k_{2} k_{3}+k_{3} k_{1}}{J\left(k_{1}+k_{2}\right)}}$
(C) $\sqrt{\frac{k_{1}+k_{2}+k_{3}}{J\left(k_{1} k_{2}+k_{2} k_{3}+k_{3} k_{1}\right)}}$
(D) $\sqrt{\frac{k_{1} k_{2}+k_{2} k_{3}+k_{3} k_{1}}{J\left(k_{2}+k_{3}\right)}}$

SOL 1.10 Option (B) is correct.
Here $k_{1} \& k_{2}$ are in series combination \& $k_{3}$ is in parallel combination with this series combination.
So,

$$
k_{e q}=\frac{k_{1} \times k_{2}}{k_{1}+k_{2}}+k_{3}=\frac{k_{1} k_{2}+k_{2} k_{3}+k_{1} k_{3}}{k_{1}+k_{2}}
$$

Natural frequency of the torsional oscillation of the disc, $\omega_{n}=\sqrt{\frac{k_{e q}}{J}}$
Substitute the value of $k_{e q}$, we get

$$
\omega_{n}=\sqrt{\frac{k_{1} k_{2}+k_{2} k_{3}+k_{1} k_{3}}{J\left(k_{1}+k_{2}\right)}}
$$

MCQ 1.11 Maximum shear stress developed on the surface of a solid circular shaft under pure torsion is 240 MPa . If the shaft diameter is doubled then the maximum shear stress developed corresponding to the same torque will be
(A) 120 MPa
(B) 60 MPa
(C) 30 MPa
(D) 15 MPa

SOL 1.11 Option (C) is correct.
Given: $\quad \tau_{1}=\tau_{\max }=240 \mathrm{MPa}$
Let, diameter of solid shaft $d_{1}=d$, And Final diameter $d_{2}=2 d$
(Given)
From the Torsional Formula,

$$
\frac{T}{J}=\frac{\tau}{r} \Rightarrow T=\frac{\tau}{r} \times J
$$

Where, $J=$ polar moment of inertia
Given that torque is same,
So,

$$
\begin{array}{rlr}
\frac{\tau_{1}}{r_{1}} \times J_{1} & =\frac{\tau_{2}}{r_{2}} \times J_{2} & \\
\frac{2 \tau_{1}}{d_{1}} \times J_{1} & =\frac{2 \tau_{2}}{d_{2}} \times J_{2} & J=\frac{\pi}{32} d^{4} \\
\frac{\tau_{1}}{d_{1}} \times \frac{\pi}{32} d_{1}^{4} & =\frac{\tau_{2}}{d_{2}} \times \frac{\pi}{32} d_{2}^{4} &
\end{array}
$$

$$
\tau_{1} \times d_{1}^{3}=\tau_{2} \times d_{2}^{3} \Rightarrow \tau_{2}=\tau_{1} \times \frac{d_{1}^{3}}{d_{2}^{3}}
$$

Substitute the values, we get

$$
\tau_{2}=240 \times\left(\frac{d}{2 d}\right)^{3}=240 \times \frac{1}{8}=30 \mathrm{MPa}
$$

## Alternate method

From the Torsional Formula,

$$
\tau=\frac{T r}{J}
$$

$$
r=\frac{d}{2} \& J=\frac{\pi}{32} d^{4}
$$

So, maximum shear stress,

$$
\tau_{\max }=\frac{16 T}{\pi d^{3}}=240 \mathrm{MPa}
$$

Given Torque is same \& Shaft diameter is doubled then,

$$
\tau_{\max }^{\prime}=\frac{16 T}{\pi(2 d)^{3}}=\frac{16 T}{8 \pi d^{3}}=\frac{\tau_{\max }}{8}=\frac{240}{8}=30 \mathrm{MPa}
$$

MCQ 1.12 A wire rope is designated as $6 \times 19$ standard hoisting. The numbers $6 \times 19$ ONE MARK
represent
(A) diameter in millimeter $\times$ length inmeter
(B) diameter in centimeter $\times$ length in meter
(C) number of strands $\times$ numbers of wires in each strand
(D) number of wires in each strand $x$ number of strands

SOL 1.12 Option (C) is correct.
The wire ropes are designated by the number of strands multiplied by the number of wires in each strand. Therefore,

$$
6 \times 19=\text { Number of strands } \times \text { Number of wires in each strand. }
$$

MCQ 1.13 A cylindrical body of cross-sectional area $A$, height $H$ and density $\rho_{s}$, is immersed GATE ME 2003 to a depth $h$ in a liquid of density $\rho$, and tied to the bottom with a string. The ONE MARK tension in the string is

(A) $\rho g h A$
(B) $\left(\rho_{s}-\rho\right) g h A$
(C) $\left(\rho-\rho_{s}\right) g h A$
(D) $\left(\rho h-\rho_{s} H\right) g A$

SOL 1.13 Option (D) is correct.
Given :
Cross section area of body $=A$
Height of body $=H$
Density of body $=\rho_{s}$
Density of liquid $=\rho$
Tension in the string $=T$
We have to make the FBD of the block.
$B=$ Buoyancy force


From the principal of buoyancy,

| Downward force | $=$ Buoyancy force | $m=\rho \nu$ |  |
| ---: | :--- | ---: | :--- |
| $T+m g$ | $=\rho h A g$ |  |  |
| $T+\rho_{s} \nu g$ | $=\rho h A g$ |  |  |
| $T+\rho_{s} A H g$ | $=\rho h A g$ | $\& \nu=A \times H$ |  |
| $T$ | $=\rho h A g-\rho_{s} A H g=A g\left(\rho h-\rho_{s} H\right)$ |  |  |

MCQ 1.14
GATE ME 2003 ONE MARK

A $2 \mathrm{~kW}, 40$ liters water heater is switched on for 20 minutes. The heat capacity $c_{p}$ for water is $4.2 \mathrm{~kJ} / \mathrm{kgK}$. Assuming all the electrical energy has gone into heating the water, increase of the water temperature in degree centigrade is
(A) 2.7
(B) 4.0
(C) 14.3
(D) 25.25

SOL 1.14 Option (C) is correct.
Given : $p=2 \mathrm{~kW}=2 \times 10^{3} \mathrm{~W}, t=20$ minutes $=20 \times 60 \mathrm{sec}, c_{p}=4.2 \mathrm{~kJ} / \mathrm{kgK}$
Heat supplied, $\quad Q=$ Power $\times$ Time

$$
=2 \times 10^{3} \times 20 \times 60=24 \times 10^{5} \text { Joule }
$$

And Specific heat at constant pressure,

$$
\begin{aligned}
Q & =m c_{p} \Delta T \\
\Delta T & =\frac{24 \times 10^{5}}{40 \times 4.2 \times 1000}=\frac{24 \times 100}{40 \times 4.2}=14.3^{\circ} \mathrm{C}
\end{aligned}
$$

MCQ 1.15 An industrial heat pump operates between the temperatures of $27^{\circ} \mathrm{C}$ and $-13^{\circ} \mathrm{C}$.

GATE ME 2003 ONE MARK

The rates of heat addition and heat rejection are 750 W and 1000 W , respectively. The COP for the heat pump is
(A) 7.5
(B) 6.5
(C) 4.0
(D) 3.0

SOL 1.15 Option (C) is correct.
Given : $T_{1}=27^{\circ} \mathrm{C}=(27+273) \mathrm{K}=300 \mathrm{~K}, T_{2}=-13{ }^{\circ} \mathrm{C}=(-13+273) \mathrm{K}=260 \mathrm{~K}$
$Q_{1}=1000 \mathrm{~W}, Q_{2}=750 \mathrm{~W}$


So,

$$
(C O P)_{\text {H.P. }}=\frac{Q_{1}}{Q_{1}-Q_{2}}=\frac{1000}{1000-750}=4
$$

Alternate Method
From energy balance

$$
\begin{aligned}
W_{i n}+Q_{2} & =Q_{1} \\
W_{i n} & =Q_{1}-Q_{2}=1000-750=250 \mathrm{~W}
\end{aligned}
$$

And $\quad(C O P)_{H . P .}=\frac{\text { Desired effect }}{W_{i n}}=\frac{Q_{1}}{W_{\text {in }}}=\frac{1000}{250}=4$
MCQ 1.16 A plate having $10 \mathrm{~cm}^{2}$ area each side is hanging in the middle of a room of $100 \mathrm{~m}^{2}$

GATE ME 2003 ONE MARK total surface area. The plate temperature and emissivity are respectively 800 K and 0.6. The temperature and emissivity values for the surfaces of the room are 300 K and 0.3 respectively. Boltzmann's constant $\sigma=5.67 \times 10^{-8} \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}^{4}$. The total heat loss from the two surfaces of the plate is
(A) 13.66 W
(B) 27.32 W
(C) 27.87 W
(D) 13.66 MW

SOL 1.16 Option (B) is correct.


Given, for plate :
$A_{1}=10 \mathrm{~cm}^{2}=10 \times\left(10^{-2}\right)^{2} \mathrm{~m}^{2}=10^{-3} \mathrm{~m}^{2}, T_{1}=800 \mathrm{~K}, \varepsilon_{1}=0.6$
For Room :
$A_{2}=100 \mathrm{~m}^{2}, T_{2}=300 \mathrm{~K}, \varepsilon_{2}=0.3$
And $\sigma=5.67 \times 10^{-8} \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}^{4}$
Total heat loss from one surface of the plate is given by,

$$
\left(Q_{12}\right)=\frac{E_{b 1}-E_{b 2}}{\frac{\left(1-\varepsilon_{1}\right)}{A_{1} \varepsilon_{1}}+\frac{1}{A_{1} F_{12}}+\frac{\left(1-\varepsilon_{2}\right)}{A_{2} \varepsilon_{2}}}
$$

If small body is enclosed by a large enclosure, then $F_{12}=1$ and from Stefan's Boltzman law $E_{b}=\sigma T^{4}$. So we-get

$$
\begin{aligned}
\left(Q_{12}\right) & =\frac{\sigma\left(T_{1}^{4}-T_{2}^{4}\right)}{\frac{1-\varepsilon_{1}}{A_{1} \varepsilon_{1}}+\frac{1}{A_{1}}+\frac{1-\varepsilon_{2}}{A_{2} \varepsilon_{2}}} \\
& =\frac{5.67 \times 10^{-8}\left[(800)^{4}-(300)^{4}\right]}{\frac{1-0.6}{10^{-3} \times 0.6}+\frac{1}{10^{-3}}+\frac{1-0.3}{100 \times 0.3}} \\
& =\frac{22.765 \times 10^{3}}{666.66+1000+0.0233}=13.66 \mathrm{~W}
\end{aligned}
$$

$Q_{12}$ is the heat loss by one surface of the plate. So, heat loss from the two surfaces is given by, $\quad Q_{n e t}=2 \times Q_{12}=2 \times 13.66=27.32 \mathrm{~W}$

MCQ 1.17 For air with a relative humidity of $80 \%$
GATE ME 2003 (A) the dry bulb temperature is less than the wet bulb temperature
ONE MARK
(B) the dew point temperature is less than wet bulb temperature
(C) the dew point and wet bulb temperature are equal
(D) the dry bulb and dew point temperature are equal

SOL 1.17 Option (B) is correct.
We know that for saturated air, the relative humidity is $100 \%$ and the dry bulb temperature, wet bulb temperature and dew point temperature is same. But when air is not saturated, dew point temperature is always less than the wet bulb
temperature.

$$
\mathrm{DPT}<\mathrm{WBT}
$$

MCQ 1.18
GATE ME 2003 ONE MARK

For a spark ignition engine, the equivalence ratio $(\phi)$ of mixture entering the combustion chamber has values
(A) $\phi<1$ for idling and $\phi>1$ for peak power conditions
(B) $\phi>1$ for both idling and peak power conditions
(C) $\phi>1$ for idling and $\phi<1$ for peak power conditions
(D) $\phi<1$ for both idling and peak power conditions

SOL 1.18 Option (B) is correct.
Equivalence Ratio or Fuel Air Ratio $\left(\frac{F}{A}\right)$

$$
\phi=\frac{\text { Actual Fuel - Air ratio }}{\text { stoichiometric Fuel air Ratio }}
$$

$$
=\frac{\left(\frac{F}{A}\right)_{\text {actual }}}{\left(\frac{F}{A}\right)_{\text {stoichiometric }}}
$$

If $\phi=1, \Rightarrow$ stoichiometric (Chemically correct) Mixture.
If $\phi>1, \Rightarrow$ rich mixture.
If $\phi<1, \Rightarrow$ lean mixture.
Now, we can see from these three conditions that $\phi>1$, for both idling \& peak power conditions, so rich mixture is necessary.

MCQ 1.19 A diesel engine is usually more efficient than a spark ignition engine because
GATE ME 2003 ONE MARK
(B) the air standard efficiency of diesel cycle is higher than the Otto cycle, at a fixed compression ratio
(C) the compression ratio of a diesel engine is higher than that of an SI engine
(D) self ignition temperature of diesel is higher than that of gasoline

SOL 1.19 Option (C) is correct.
The compression ratio of diesel engine ranges between 14 to 25 where as for S.I, engine between 6 to 12 . Diesel Engine gives more power but efficiency of diesel engine is less than compare to the S.I. engine for same compression ratio.

MCQ 1.20 In Ranking cycle, regeneration results in higher efficiency because
(A) pressure inside the boiler increases
(B) heat is added before steam enters the low pressure turbine
(C) average temperature of heat addition in the boiler increases
(D) total work delivered by the turbine increases

SOL 1.20
Option (C) is correct.


Fig: $T-s$ curve of simple Rankine cycle
From the observation of the $T-s$ diagram of the rankine cycle, it reveals that heat is transferred to the working fluid during process $2-2^{\prime}$ at a relatively low temperature. This lowers the average heat addition temperature and thus the cycle efficiency.
To remove this remedy, we look for the ways to raise the temperature of the liquid leaving the pump (called the feed water ) before it enters the boiler. One possibility is to transfer heat to the feed water from the expanding steam in a counter flow heat exchanger built into the turbine, that is, to use regeneration.
A practical regeneration process in steam power plant is accomplished by extracting steam from the turbine at various points. This steam is used to heat the feed water and the device where the feed water is heated by regeneration is called feed water heater. So, regeneration improves cycle efficiency by increasing the average temperature of heat addition in the boiler.

MCQ 1.21 Considering the variation of static pressure and absolute velocity in an impulse ONE MARK steam turbine, across one row of moving blades
(A) both pressure and velocity decreases
(B) pressure decreases but velocity increases
(C) pressure remains constant, while velocity increases
(D) pressure remains constant, while velocity decreases

SOL 1.21 Option (D) is correct.


Easily shows that the diagram that static pressure remains constant, while velocity decreases.

MCQ 1.22 During heat treatment of steel, the hardness of various structures in increasing ONE MARK order is
(A) martensite, fine pearlite, coarse pearlite, spherodite
(B) fine pearlite, Martensite, spherodite, coarse pearlite
(C) martensite, coarse pearlite, fine pearlite, spherodite
(D) spherodite, coarse pearlite, fine pearlite, martensite

SOL 1.22 Option (D) is correct.
Steel can be cooled from the high temperature region at a rate so high that the austenite does not have sufficient time to decompose into sorbite or troostite. In this case the austenite is transformed into martensite. Martensite is ferromagnetic, very hard \& brittle.


So hardness is increasing in the order,
Spherodite $\rightarrow$ Coarse Pearlite $\rightarrow$ Fine Pearlite $\rightarrow$ Martensite
MCQ 1.23 Hardness of green sand mould increases with
GATE ME 2003 ONE MARK
(A) increase in moisture content beyond 6 percent
(B) increase in permeability
(C) decrease in permeability
(D) increase in both moisture content and permeability

SOL 1.23 Option (C) is correct.
Permeability or porosity of the moulding sand is the measure of its ability to permit air to flow through it.
So, hardness of green sand mould increases by restricted the air permitted in the sand i.e. decrease its permeability.

MCQ 1.24 In Oxyacetylene gas welding, temperature at the inner cone of the flame is around
GATE ME 2003 ONE MARK
(A) $3500^{\circ} \mathrm{C}$
(B) $3200^{\circ} \mathrm{C}$
(C) $2900^{\circ} \mathrm{C}$
(D) $2550^{\circ} \mathrm{C}$

SOL 1.24 Option (B) is correct.
In OAW, Acetylene $\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)$ produces higher temperature (in the range of $3200^{\circ} \mathrm{C}$ )than other gases, (which produce a flame temperature in the range of $2500^{\circ} \mathrm{C}$ ) because it contains more available carbon and releases heat when its components $(\mathrm{C} \& \mathrm{H})$ dissociate to combine with $\mathrm{O}_{2}$ and burn.

MCQ 1.25 Cold working of steel is defined as working
GATE ME 2003 (A) at its recrystallisation temperature
ONE MARK
(B) above its recrystallisation temperature
(C) below its recrystallisation temperature
(D) at two thirds of the melting temperature of the metal

SOL 1.25 Option (C) is correct.
Cold forming or cold working can be defined as the plastic deforming of metals and alloys under conditions of temperature and strain rate.
Theoretically, the working temperature for cold working is below the recrystallization temperature of the metal/alloy (which is about one-half the absolute melting temperature.)

MCQ 1.26 Quality screw threads are produced by
GATE ME 2003 (A) thread milling
ONE MARK
(B) thread chasing
(C) thread cutting with single point tool
(D) thread casting

SOL 1.26 Option (D) is correct.
Quality screw threads are produced by only thread casting.
Quality screw threads are made by die-casting and permanent mould casting are very accurate and of high finish, if properly made.

MCQ 1.27 As tool and work are not in contact in EDM process
GATE ME 2003 (A) no relative motion occurs between them
ONE MARK
(B) no wear of tool occurs
(C) no power is consumed during metal cūtting
(D) no force between tool and work occurs

SOL 1.27 Option (D) is correct.
In EDM, the thermal energy is employed to melt and vaporize tiny particles of work-material by concentrating the heat energy on a small area of the work-piece. A powerful spark, such as at the terminals of an automobile battery, will cause pitting or erosion of the metal at both anode \& cathode. No force occurs between tool \& work.

MCQ 1.28 The dimensional limits on a shaft of $25 h 7$ are
GATE ME 2003 ONE MARK
(A) $25.000,25.021 \mathrm{~mm}$
(B) $25.000,24.979 \mathrm{~mm}$
(C) $25.000,25.007 \mathrm{~mm}$
(D) $25.000,24.993 \mathrm{~mm}$

SOL 1.28 Option (B) is correct.
Since 25 mm lies in the diameter step $18 \& 30 \mathrm{~mm}$, therefore the geometric mean diameter,

$$
D=\sqrt{18 \times 30}=23.24 \mathrm{~mm}
$$

We know that standard tolerance unit,

$$
\begin{aligned}
i(\text { microns }) & =0.45 \sqrt[3]{D}+0.001 D \\
i & =0.45 \sqrt[3]{23.24}+0.001 \times 23.24=1.31 \text { microns }
\end{aligned}
$$

Standard tolerance for hole ' $h$ ' of grade 7 (IT7),

$$
I T 7=16 i=16 \times 1.31=20.96 \text { microns }
$$

Hence, lower limit for shaft $=$ Upper limit of shaft - Tolerance

$$
=25-20.96 \times 10^{-3} \mathrm{~mm}=24.979 \mathrm{~mm}
$$

MCQ 1.29
GATE ME 2003 ONE MARK

When a cylinder is located in a Vee-block, the number of degrees of freedom which are arrested is
(A) 2
(B) 4
(C) 7
(D) 8

SOL 1.29 Option (B) is correct.


We clearly see from the figure that cylinder can either revolve about $x$-axis or slide along $x$-axis \& all the motions are restricted.
Hence, Number of degrees of freedom $=2 \&$ movability includes the six degrees of freedom of the device as a whole, as the ground link were not fixed. So, 4 degrees of freedom are constrained or arrested.

MCQ 1.30 The symbol used for Transport in work study is
GATE ME 2003
ONE MARK
(A) $\Rightarrow$
(B) T
(C) $\square$
(D) $\nabla$

SOL 1.30 Option (A) is correct.
The symbol used for transport in work study is given by, $\Rightarrow$
MCQ 1.31 Consider the system of simultaneous equations
GATE ME 2003 TWO MARK

$$
\begin{array}{r}
x+2 y+z=6 \\
2 x+y+2 z=6 \\
x+y+z=5
\end{array}
$$

This system has
(A) unique solution
(B) infinite number of solutions
(C) no solution
(D) exactly two solutions

SOL 1.31 Option (C) is correct.
Given : $\quad x+2 y+z=6$

$$
\begin{array}{r}
2 x+y+2 z=6 \\
x+y+z=5
\end{array}
$$

Comparing to $A x=B$, we get

$$
A=\left[\begin{array}{lll}
1 & 2 & 1 \\
2 & 1 & 2 \\
1 & 1 & 1
\end{array}\right], B=\left[\begin{array}{l}
6 \\
6 \\
5
\end{array}\right]
$$

Write the system of simultaneous equations in the form of Augmented matrix,

$$
[A: B]=\left[\begin{array}{ccccc}
1 & 2 & 1 & : & 6 \\
2 & 1 & 2 & : & 6 \\
1 & 1 & 1 & : & 5
\end{array}\right]
$$

Applying $R_{2} \rightarrow R_{2}-2 R_{1}$ and $R_{3} \rightarrow 2 R_{3}-R_{2}$

$$
=\left[\begin{array}{rrrrr}
1 & 2 & 1 & : & 6 \\
0 & -3 & 0 & : & -6 \\
0 & 1 & 0 & : & 4
\end{array}\right]
$$

Applying $R_{3} \rightarrow 3 R_{3}+R_{2}$

$$
=\left[\begin{array}{rrrrr}
1 & 2 & 1 & : & 6 \\
0 & -3 & 0 & : & -6 \\
0 & 0 & 0 & : & 6
\end{array}\right]
$$

It is a echelon form of matrix.
Since $\rho[A]=2$ and $\rho[A: B]=3$

$$
\rho[A] \neq \rho[A: B]
$$

So, the system has no solution and system is inconsistent.
MCQ 1.32 The area enclosed between the parabola $y=x^{2}$ and the straight line $y=x$ is

GATE ME 2003 TWO MARK
(A) $1 / 8$
(B) $1 / 6$
(C) $1 / 3$
(D) $1 / 2$

SOL 1.32 Option (B) is correct.
Given : $y=x^{2} \& y=x$.
The shaded area is show the area, which is bounded by the both curves (common area)


On solving given equation, we get the intersection points as,

$$
y=x^{2} \text { put } y=x
$$

$$
\begin{aligned}
x & =x^{2} \\
x^{2}-x & =0 \\
x(x-1) & =0 \\
x & =0,1
\end{aligned}
$$

Then from $y=x$
For

$$
x=0 \Rightarrow y=0
$$

\&

$$
x=1 \Rightarrow y=1
$$

We can see that curve $y=x^{2}$ and $y=x$ intersects at point $(0,0)$ and $(1,1)$
So, the area bounded by both the curves is

$$
\begin{aligned}
A & =\int_{x=0}^{x=1} \int_{y=x}^{y=x^{2}} d y d x \\
& =\int_{x=0}^{x=1} d x \int_{y=x}^{y=x^{2}} d y=\int_{x=0}^{x=1} d x[y]_{x}^{x^{2}}
\end{aligned}
$$

After substituting the limit, we have

$$
=\int_{x=0}^{x=1}\left(x^{2}-x\right)
$$

Integrating the equation, we get

$$
=\left[\frac{x^{3}}{3}-\frac{x^{2}}{2}\right]_{0}=\frac{1}{3}-\frac{1}{2}=-\frac{1}{6}
$$

$$
=\frac{1}{6} \text { unit }^{2} \quad \text { Area is never negative }
$$

MCQ 1.33 The solution of the differential equation $\frac{d y}{d x}+y^{2}=0$ is
(A) $y=\frac{1}{x+c}$
(B) $y=\frac{-x^{3}}{3}+c$
(C) $c e^{x}$
(D) unsolvable as equation is non-linear

SOL 1.33 Option (A) is correct.

$$
\begin{aligned}
\frac{d y}{d x}+y^{2} & =0 \\
\frac{d y}{d x} & =-y^{2} \\
-\frac{d y}{y^{2}} & =d x
\end{aligned}
$$

Integrating both the sides, we have

$$
\begin{aligned}
-\int \frac{d y}{y^{2}} & =\int d x \\
y^{-1} & =x+c \\
\frac{1}{y} & =x+c \quad \Rightarrow y=\frac{1}{x+c}
\end{aligned}
$$

MCQ 1.34 The vector field is $\boldsymbol{F}=x \boldsymbol{i}-y \boldsymbol{j}$ (where $\boldsymbol{i}$ and $\boldsymbol{j}$ are unit vector) is
GATE ME 2003 (A) divergence free, but not irrotational
TWO MARK
(B) irrotational, but not divergence free
(C) divergence free and irrotational
(D) neither divergence free nor irrational

SOL 1.34 Option (C) is correct.
Given: $\quad \boldsymbol{F}=x \boldsymbol{i}-y \boldsymbol{j}$
First Check divergency, for divergence,
Grade $\boldsymbol{F}=\nabla \cdot \boldsymbol{F}$

$$
=\left[\frac{\partial}{\partial x} \boldsymbol{i}+\frac{\partial}{\partial y} \boldsymbol{j}+\frac{\partial}{\partial z} \boldsymbol{k}\right] \cdot[x \boldsymbol{i}-y \boldsymbol{j}]=1-1=0
$$

So we can say that $\boldsymbol{F}$ is divergence free.
Now we checking the irrationality. For irritation the curl $\boldsymbol{F}=0$

$$
\text { Curl } \begin{aligned}
\boldsymbol{F} & =\nabla \times \boldsymbol{F} \\
& =\left[\frac{\partial}{\partial x} \boldsymbol{i}+\frac{\partial}{\partial y} \boldsymbol{j}+\frac{\partial}{\partial z} \boldsymbol{k}\right] \times[x \boldsymbol{i}-y \boldsymbol{j}] \\
& =\left[\begin{array}{ccc}
\boldsymbol{i} & \boldsymbol{j} & \boldsymbol{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
x & -y & 0
\end{array}\right] \frac{\ominus \boldsymbol{i}[0-0]-\boldsymbol{j}[0-0]+\boldsymbol{k}[0-0]=0}{}
\end{aligned}
$$

So, vector field is irrotational. We can sāy that the vector field is divergence free and irrotational.

MCQ 1.35 Laplace transform of the function $\sin \omega t$ is
GATE ME 2003 TWO MARK
(A) $\frac{s}{s^{2}+\omega^{2}}$
(B) $\frac{\omega}{s^{2}+\omega^{2}}$
(C) $\frac{s}{s^{2}-\omega^{2}}$
(D) $\frac{\omega}{s^{2}-\omega^{2}}$

SOL 1.35 Option (B) is correct.
Let $\quad f(t)=\sin \omega t$
From the definition of Laplace transformation

$$
\begin{aligned}
\mathcal{L}[F(t)] & =\int_{0}^{\infty} e^{-s t} f(t) d t=\int_{0}^{\infty} e^{-s t} \sin \omega t d t \\
& =\int_{0}^{\infty} e^{-s t}\left(\frac{e^{i \omega t}-e^{-i \omega t}}{2 i}\right) d t \quad \sin \omega t=\frac{e^{i \omega t}-e^{-i \omega t}}{2 i} \\
& =\frac{1}{2 i} \int_{0}^{\infty}\left(e^{-s t} e^{i \omega t}-e^{-s t} e^{-i \omega t}\right) d t=\frac{1}{2 i} \int_{0}^{\infty}\left[e^{(-s+i \omega) t}-e^{-(s+i \omega) t}\right] d t
\end{aligned}
$$

On integrating above equation, we get

$$
=\frac{1}{2 i}\left[\frac{e^{(-s+i \omega) t}}{-s+i \omega}-\frac{e^{-(s+i \omega) t}}{-(s+i \omega)}\right]_{0}^{\infty}=\frac{1}{2 i}\left[\frac{e^{(-s+i \omega) t}}{-s+i \omega}+\frac{e^{-(s+i \omega) t}}{(s+i \omega)}\right]_{0}^{\infty}
$$

Substitute the limits, we get

$$
\begin{aligned}
& =\frac{1}{2 i}\left[0+0-\left(\frac{e^{0}}{(-s+i \omega)}+\frac{e^{-0}}{s+i \omega}\right)\right] \\
& =-\frac{1}{2 i}\left[\frac{s+i \omega+i \omega-s}{(-s+i \omega)(s+i \omega)}\right] \\
& =-\frac{1}{2 i} \times \frac{2 i \omega}{(i \omega)^{2}-s^{2}}=\frac{-\omega}{-\omega^{2}-s^{2}}=\frac{\omega}{\omega^{2}+s^{2}}
\end{aligned}
$$

## Alternate :

From the definition of Laplace transformation

$$
\mathcal{L}[F(t)]=\int_{0}^{\infty} e^{-s t} \sin \omega t d t
$$

We know $\int e^{a t} \sin b t d t=\frac{e^{a t}}{a^{2}+b^{2}}[a \sin b t-b \cos b t]$
Then, $\quad \mathcal{L}[\sin \omega t]=\left[\frac{e^{-s t}}{s^{2}+\omega^{2}}(-s \sin \omega t-\omega \cos \omega t)\right]_{0}^{\infty}$

$$
=\left[\frac{e^{-\infty}}{s^{2}+\omega^{2}}(-s \sin \infty-\omega \cos \infty)\right]-\left[\frac{e^{-0}}{s^{2}+\omega^{2}}(-s \sin 0-\omega \cos 0)\right]
$$

$$
=0-\frac{1}{s^{2}+\omega^{2}}[0-\omega]=-\frac{1}{s^{2}+\omega^{2}}(-\omega)
$$

$$
\mathcal{L}[\sin \omega t]=\frac{\omega}{s^{2}+\omega^{2}}
$$

MCQ 1.36
GATE ME 2003 TWO MARK

A box contains 5 black and 5 red balls. Two balls are randomly picked one after another form the box, without replacement. The probability for balls being red is
(A) $1 / 90$
(B) $1 / 2$
(C) $19 / 90$
(D) $2 / 9$

SOL 1.36 Option (D) is correct.
Given : black balls $=5$, Red balls $=5$, Total balls $=10$
Here, two balls are picked from the box randomly one after the other without replacement. So the probability of both the balls are red is

$$
\begin{aligned}
P & =\frac{{ }^{5} C_{0} \times{ }^{5} C_{2}}{{ }^{10} C_{2}} \\
& =\frac{\frac{5!}{0!\times 5!} \times \frac{5!}{3!2!}}{\frac{10!}{3!2!}}=\frac{1 \times 10}{45}=\frac{10}{45}=\frac{2}{9}
\end{aligned}
$$

## Alternate method

Given: Black balls $=5$,
Red balls $=5$
Total balls $=10$
The probability of drawing a red bell,

$$
P_{1}=\frac{5}{10}=\frac{1}{2}
$$

Ball is not replaced, then box contains 9 balls.
So, probability of drawing the next red ball from the box.

$$
P_{2}=\frac{4}{9}
$$

Hence, probability for both the balls being red is,

$$
\begin{aligned}
P & =P_{1} \times P_{2} \\
P & =\frac{1}{2} \times \frac{4}{9}=\frac{2}{9}
\end{aligned}
$$

MCQ 1.37 A truss consists of horizontal members (AC,CD, DB and EF) and vertical members (CE and DF) having length $l$ each. The members $\mathrm{AE}, \mathrm{DE}$ and BF are inclined at $45^{\circ}$ to the horizontal. For the uniformly distributed load " $p$ " per unit length on the member EF of the truss shown in figure given below, the force in the member CD is


SOL 1.37 Option (A) is correct.
Given : $A C=C D=D B=E F=C E=D F=l$
At the member $E F$ uniform distributed load is acting, the U.D.L. is given as " $p$ " per unit length.
So, the total load acting on the element EF of length $l$

$$
=\text { Lord per unit length } \times \text { Total length of element }
$$

$=p \times l=p l$


This force acting at the mid point of $E F$.
We made the $F B D$ of the object. At $A \& B$ reactions are acting because of the
roller supports, in the upward direction.
In equilibrium condition,
Upward force = Downward forces

$$
\begin{equation*}
R_{a}+R_{b}=p l \tag{i}
\end{equation*}
$$

And take the moment about point $A$,

$$
\begin{aligned}
p l \times\left(l+\frac{l}{2}\right) & =R_{b}(l+l+l) \\
p l \times \frac{3}{2} l & =R_{b} \times 3 l \Rightarrow R_{b}=\frac{p l}{2}
\end{aligned}
$$

Substitute the value of $R_{b}$ in equation (i), we get

$$
\begin{aligned}
R_{a}+\frac{p l}{2} & =p l \\
R_{a} & =p l-\frac{p l}{2}=\frac{p l}{2}
\end{aligned}
$$

$$
\text { So, } \quad R_{a}=R_{b}=\frac{p l}{2}
$$

At point $A$ we use the principal of resolution of forces in the $y$-direction, $\sum F_{y}=0$

$$
\begin{aligned}
F_{A E} \sin 45^{\circ} & =R_{a}=\frac{p l}{2} \\
F_{A E} & =\frac{p l}{2} \times \frac{1}{\sin 45^{\circ}}=\frac{p l}{2} \times \sqrt{2}=\frac{p l}{\sqrt{2}}
\end{aligned}
$$

$$
F_{A C}=F_{A E} \cos 45^{\circ}=\frac{p l}{\sqrt{2}} \times \frac{1}{\sqrt{2}}=\frac{p l}{2}
$$

At $C$, No external force is acting. So,

$$
F_{A C}=\frac{p l}{2}=F_{C D}
$$

MCQ 1.38
GATE ME 2003 ONE MARK

A bullet of mass " $m$ " travels at a very high velocity $v$ (as shown in the figure) and gets embedded inside the block of mass " $M$ " initially at rest on a rough horizontal floor. The block with the bullet is seen to move a distance " $s$ " along the floor. Assuming $\mu$ to be the coefficient of kinetic friction between the block and the floor and " $g$ " the acceleration due to gravity what is the velocity $v$ of the bullet ?

(A) $\frac{M+m}{m} \sqrt{2 \mu g s}$
(B) $\frac{M-m}{m} \sqrt{2 \mu g s}$
(C) $\frac{\mu(M+m)}{m} \sqrt{2 \mu g s}$
(D) $\frac{M}{m} \sqrt{2 \mu g s}$

SOL 1.38 Option (A) is correct.
Given: $\quad$ Mass of bullet $=m$
Mass of block $=M$
Velocity of bullet $=v$

Coefficient of Kinematic friction $=\mu$
Let, Velocity of system (Block + bullet) after striking the bullet $=u$
We have to make the FBD of the box after the bullet strikes,


Friction Force (Retardation) $=F_{r}$
By Applying principal of conservation of linear momentum, $\frac{d P}{d t}=0$ or $P=m V$ $=\mathrm{cons} \tan \mathrm{t}$.
So,

$$
\begin{align*}
m v & =(M+m) u \\
u & =\frac{m v}{M+m} \tag{i}
\end{align*}
$$

And, from the FBD the vertical force (reaction force),

$$
\begin{aligned}
R_{N} & =(M+m) g \\
F_{\Gamma} & =\mu R_{N}=\mu(M+m) g
\end{aligned}
$$

Frictional retardation

$$
\begin{equation*}
a=\frac{-F_{r}}{(m+M)} \neq \frac{-\mu(M+m) g}{M+m}=-\mu g \tag{ii}
\end{equation*}
$$

Negative sign show the retardation of the system (acceleration in opposite direction). From the Newton's third law of motion,

$$
\begin{aligned}
V_{f}^{2} & =u^{2}+2 a s \\
V_{f} & =\text { Final velocity of system (block }+ \text { bullet })=0 \\
u^{2}+2 a s & =0 \\
u^{2} & =-2 a s \\
u^{2} & =-2 \times(-\mu g) \times s=2 \mu g s \quad \text { From equation (ii) }
\end{aligned}
$$

Substitute the value of $u$ from equation (i), we get

$$
\begin{aligned}
\left(\frac{m v}{M+m}\right)^{2} & =2 \mu g s \\
\frac{m^{2} v^{2}}{(M+m)^{2}} & =2 \mu g s \\
v^{2} & =\frac{2 \mu g s(M+m)^{2}}{m^{2}} \\
v & =\sqrt{2 \mu g s} \times\left(\frac{M+m}{m}\right)=\frac{M+m}{m} \sqrt{2 \mu g s}
\end{aligned}
$$

MCQ 1.39 TWO MARK

A simply supported laterally loaded beam was found to deflect more than a specified value. Which of the following measures will reduce the deflection?
(A) Increase the area moment of inertia
(B) Increase the span of the beam
(C) Select a different material having lesser modulus of elasticity
(D) Magnitude of the load to be increased

SOL 1.39 Option (A) is correct.
We know, differential equation of flexure for the beam is,

$$
E I \frac{d^{2} y}{d x^{2}}=M \quad \Rightarrow \frac{d^{2} y}{d x^{2}}=\frac{M}{E I}
$$

Integrating both sides,

$$
\frac{d y}{d x}=\frac{1}{E I} \int M d x=\frac{1}{E I} M x+c_{1}
$$

Again integrating,

$$
\begin{equation*}
y=\frac{1}{E I}\left(\frac{M x^{2}}{2}\right)+c_{1} x+c_{2} \tag{i}
\end{equation*}
$$

Where, $y$ gives the deflection at the given point.
It is easily shown from the equation (i), If we increase the value of $E \& I$, then deflection reduces.

MCQ 1.40 GATE ME 2003 TWO MARK

A shaft subjected to torsion experiences a pure shear stress $\tau$ on the surface. The maximum principal stress on the surface which is at $45^{\circ}$ to the axis will have a value
(A) $\tau \cos 45^{\circ}$
(C) $\tau \cos ^{2} 45^{\circ}$
(B) $2 \tau \cos 45^{\circ}$

Option (D) is correct.
Given figure shows stresses on an element subjected to pure shear.


Let consider a element to which shear stress have been applied to the sides $A B$ and $D C$.
Complementary stress of equal value but of opposite effect are then setup on sides $A D$ and $B C$ in order to prevent rotation of the element. So, applied and complementary shears are represented by symbol $\tau_{x y}$.
Consider the equilibrium of portion $P B C$. Resolving normal to $P C$ assuming unit depth.

$$
\begin{aligned}
\sigma_{\theta} \times P C & =\tau_{x y} \times B C \sin \theta+\tau_{x y} \times P B \cos \theta \\
& =\tau_{x y} \times P C \cos \theta+\tau_{x y} \times P C \sin \theta \cos \theta \\
& =\tau_{x y}(2 \sin \theta \cos \theta) \times P C \\
\sigma_{\theta} & =2 \tau_{x y} \sin \theta \cos \theta
\end{aligned}
$$

The maximum value of $\sigma_{\theta}$ is $\tau_{x y}$ when $\theta=45^{\circ}$.

$$
\sigma_{\theta}=2 \tau \sin 45^{\circ} \cos 45^{\circ}
$$

$$
\text { Given }\left(\tau_{x y}=\tau\right)
$$

MCQ 1.41
GATE ME 2003 TWO MARK

For a certain engine having an average speed of 1200 rpm , a flywheel approximated as a solid disc, is required for keeping the fluctuation of speed within $2 \%$ about the average speed. The fluctuation of kinetic energy per cycle is found to be 2 kJ . What is the least possible mass of the flywheel if its diameter is not to exceed 1 m ?
(A) 40 kg
(B) 51 kg
(C) 62 kg
(D) 73 kg

SOL 1.41 Option (B) is correct.
Given $N=1200 \mathrm{rpm}, \Delta E=2 \mathrm{~kJ}=2000 \mathrm{~J}, D=1 \mathrm{~m}, C_{s}=0.02$
Mean angular speed of engine,

$$
\begin{aligned}
\omega & =\frac{2 \pi N}{60} \\
& =\frac{2 \times 3.14 \times 1200}{60} \\
& =125.66 \mathrm{rad} / \mathrm{sec}
\end{aligned}
$$

Fluctuation of energy of the flywheel is given by,

$$
\begin{align*}
\Delta E & =I \omega^{2} C_{s}=\frac{1}{2} m R^{2} \omega^{2} C_{s} \\
m & =\frac{2 \Delta E}{R^{2} \omega^{2} C_{s}} \tag{i}
\end{align*}
$$

For solid disc $I=\frac{m R^{2}}{2}$

Substitute the values in equation (i),

$$
\begin{aligned}
& =\frac{2 \times 2000}{\left(\frac{1}{2}\right)^{2} \times(125.66)^{2} \times 0.02} \\
& =\frac{4 \times 2 \times 2000}{(125.66)^{2} \times 0.02}=50.66 \mathrm{~kg} \simeq 51 \mathrm{~kg}
\end{aligned}
$$

MCQ 1.42
GATE ME 2003 TWO MARK

A flexible rotor-shaft system comprises of a 10 kg rotor disc placed in the middle of a mass-less shaft of diameter 30 mm and length 500 mm between bearings (shaft is being taken mass-less as the equivalent mass of the shaft is included in the rotor mass) mounted at the ends. The bearings are assumed to simulate simply supported boundary conditions. The shaft is made of steel for which the value of E $2.1 \times 10^{11} \mathrm{~Pa}$. What is the critical speed of rotation of the shaft?
(A) 60 Hz
(B) 90 Hz
(C) 135 Hz
(D) 180 Hz

SOL 1.42 Option (B) is correct.

Given $m=10 \mathrm{~kg}, d=30 \mathrm{~mm}=0.03 \mathrm{~m}, l=500 \mathrm{~mm}=0.5 \mathrm{~m}, E_{\text {shaft }}=2.1 \times 10^{11} \mathrm{~Pa}$


We know that, static deflection due to 10 kg of Mass at the centre is given by,

$$
\begin{equation*}
\delta=\frac{W l^{3}}{48 E I}=\frac{m g l^{3}}{48 E I} \tag{i}
\end{equation*}
$$

The moment of inertia of the shaft,

$$
\begin{equation*}
I=\frac{\pi}{64} d^{4}=\frac{\pi}{64}(0.03)^{4}=3.974 \times 10^{-8} \mathrm{~m}^{4} \tag{ii}
\end{equation*}
$$

Substitute values in equation (i), we get

$$
\begin{aligned}
\delta & =\frac{10 \times 9.81 \times(0.5)^{3}}{48 \times 2.1 \times 10^{11} \times 3.974 \times 10^{-8}} \\
& =\frac{12.2625}{400.58 \times 10^{3}}=3.06 \times 10^{-5} \mathrm{~m}
\end{aligned}
$$

If $\omega_{c}$ is the critical or whirling speed in r.p.s. then,

$$
\begin{aligned}
\omega_{c} & =\sqrt{\frac{g}{\delta}} \Leftrightarrow 2 \pi f_{c} \models \sqrt{\frac{g}{\delta}} \\
f_{c} & =\frac{1}{2 \pi} \sqrt{\frac{g}{\delta}}=\frac{1}{2 \times 3.14} \sqrt{\frac{9.81}{3.06 \times 10^{-5}}} \\
& =\frac{1}{6.28} \sqrt{\frac{9.81}{30.6 \times 10^{-6}}}=90.16 \mathrm{~Hz} \simeq 90 \mathrm{~Hz}
\end{aligned}
$$

MCQ 1.43 Square key of side " $d / 4$ " each and length ' $l$ ' is used to transmit torque " $T$ " from TWO MARK the shaft of diameter " $d$ " to the hub of a pulley. Assuming the length of the key to be equal to the thickness of pulley, the average shear stress developed in the key is given by
(A) $\frac{4 T}{l d}$
(B) $\frac{16 T}{l d^{2}}$
(C) $\frac{8 T}{l d^{2}}$
(D) $\frac{16 T}{\pi d^{3}}$

SOL 1.43 Option (C) is correct.
Given : Diameter of shaft $=d$
Torque transmitted $=T$
Length of the key $=l$
We know that, width and thickness of a square key are equal.
i.e. $\quad w=t=\frac{d}{4}$

Force acting on circumference of shaft

$$
F=\frac{T}{r}=\frac{2 T}{d}
$$

$$
(r=d / 2)
$$

Shearing Area, $\quad A=$ width $\times$ length $=\frac{d}{4} \times l=\frac{d l}{4}$
Average shear stress, $\quad \tau=\frac{\text { Force }}{\text { shearing Area }}=\frac{2 T / d}{d l / 4}=\frac{8 T}{l d^{2}}$

MCQ 1.44
GATE ME 2003 TWO MARK

In a band brake the ratio of tight side band tension to the tension on the slack side is 3 . If the angle of overlap of band on the drum is $180^{\circ}$, the coefficient of friction required between drum and the band is
(A) 0.20
(B) 0.25
(C) 0.30
(D) 0.35

SOL 1.44 Option (D) is correct.
Let, $\quad T_{1} \rightarrow$ Tension in the tight side of the band,
$T_{2} \rightarrow$ Tension in the slack side of the band
$\theta \rightarrow$ Angle of lap of the band on the drum
Given : $\frac{T_{1}}{T_{2}}=3, \theta=180^{\circ}=\frac{\pi}{180} \times 180=\pi$ radian
For band brake, the limiting ratio of the tension is given by the relation,

$$
\begin{aligned}
\frac{T_{1}}{T_{2}} & =e^{\mu \theta} \text { or } 2.3 \log \left(\frac{T_{1}}{T_{2}}\right)=\mu \theta \\
2.3 \times \log (3) & =\mu \times \pi \\
2.3 \times 0.477 \mathrm{I} & =\mu \times 3.14 \\
\mu & =\frac{1.09733}{3.14} \equiv 0.349 \simeq 0.35
\end{aligned}
$$

MCQ 1.45 TWO MARK

A water container is kept on a weighing balance. Water from a tap is falling vertically into the container with a volume flow rate of $Q$; the velocity of the water when it hits the water surface is $U$. At a particular instant of time the total mass of the container and water is $m$. The force registered by the weighing balance at this instant of time is
(A) $m g+\rho Q U$
(B) $m g+2 \rho Q U$
(C) $m g+\rho Q U^{2} / 2$
(D) $\rho Q U^{2} / 2$

SOL 1.45 Option (A) is correct.


Given :
Flow rate $=Q$
Velocity of water when it strikes the water surface $=U$
Total Mass (container + water) $=m$
Force on weighing balance due to water strike $=$ Change in momentum

$$
\begin{aligned}
\Delta P & =\text { Initial Momentum }- \text { Final momentum } \\
& =\rho Q U-\rho Q(0)=\rho Q U \quad \text { Final velocity is zero }
\end{aligned}
$$

Weighing balance also experience the weight of the container \& water.
So, Weight of container \& water $=m g$
Therefore, total force on weighing Balance $=\rho Q U+m g$

MCQ 1.46
GATE ME 2003 TWO MARK

In a counter flow heat exchanger, for the hot fluid the heat capacity $=2 \mathrm{~kJ} / \mathrm{kgK}$, mass flow rate $=5 \mathrm{~kg} / \mathrm{s}$, inlet temperature $=150^{\circ} \mathrm{C}$, outlet temperature $=100^{\circ} \mathrm{C}$ . For the cold fluid, heat capacity $=4 \mathrm{~kJ} / \mathrm{kgK}$, mass flow rate $=10 \mathrm{~kg} / \mathrm{s}$, inlet temperature $=20^{\circ} \mathrm{C}$. Neglecting heat transfer to the surroundings, the outlet temperature of the cold fluid in ${ }^{\circ} \mathrm{C}$ is
(A) 7.5
(B) 32.5
(C) 45.5
(D) 70.0

SOL 1.46 Option (B) is correct.


In counter flow, hot fluid enters at the point $1 \&$ exits at the point 2 or cold fluid enter at the point $2 \&$ exit at the point 1.
Given : for hot fluid,
$c_{h}=2 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}, \dot{m}_{h}=5 \mathrm{~kg} / \mathrm{sec}, t_{h 1}=150^{\circ} \mathrm{C}, t_{h 2}=100^{\circ} \mathrm{C}$
and for cold fluid,
$c_{c}=4 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}, \dot{m}_{c}=10 \mathrm{~kg} / \mathrm{sec}, t_{c 2}=20^{\circ} \mathrm{C}, t_{c 1}=$ ?
From the energy balance,
Heat transferred by the hot fluid $=$ Heat gain by the cold fluid

$$
\begin{aligned}
\dot{m}_{h} c_{h}\left(t_{h 1}-t_{h 2}\right) & =\dot{m}_{c} c_{c}\left(t_{c 1}-t_{c 2}\right) \\
5 \times 2 \times 10^{3}(150-100) & =10 \times 4 \times 10^{3}\left(t_{c 1}-20\right) \\
10^{4} \times 50 & =4 \times 10^{4}\left(t_{c 1}-20\right) \\
t_{c 1} & =\frac{130}{4}=32.5^{\circ} \mathrm{C}
\end{aligned}
$$

Hence, outlet temperature of the cold fluid,

$$
t_{c 1}=32.5^{\circ} \mathrm{C}
$$

MCQ 1.47
GATE ME 2003 TWO MARK

Air flows through a venturi and into atmosphere. Air density is $\rho$; atmospheric pressure is $p_{a}$; throat diameter is $D_{t}$; exit diameter is $D$ and exit velocity is $U$. The throat is connected to a cylinder containing a frictionless piston attached to a spring. The spring constant is $k$. The bottom surface of the piston is exposed to atmosphere. Due to the flow, the piston moves by distance $x$. Assuming incompressible frictionless flow, $x$ is

(A) $\left(\rho U^{2} / 2 k\right) \pi D_{s}^{2}$
(B) $\left(\rho U^{2} / 8 k\right)\left(\frac{D^{2}}{D_{t}^{2}}-1\right) \pi D_{s}^{2}$
(C) $\left(\rho U^{2} / 2 k\right)\left(\frac{D^{2}}{D_{t}^{2}}-1\right) \pi D_{s}^{2}$
(D) $\left(\rho U^{2} / 8 k\right)\left(\frac{D^{4}}{D_{t}^{4}}-1\right) \pi D_{s}^{2}$

SOL 1.47 Option (D) is correct.


First of all we have to take two section (1) \& (2)
By applying Bernoulli's equation at section (1) \& (2).

$$
\begin{align*}
\frac{p_{1}}{\rho g}+\frac{V_{1}^{2}}{2 g}+z_{1} & =\frac{p_{2}}{\rho g}+\frac{V_{2}^{2}}{2 g}+z_{2} \\
\frac{p_{1}}{\rho}+\frac{V_{1}^{2}}{2} & =\frac{p_{2}}{\rho}+\frac{V_{2}^{2}}{2} \\
p_{1}-p_{2} & =\frac{\rho}{2}\left(V_{2}^{2}-V_{1}^{2}\right) \tag{i}
\end{align*}
$$

$$
z_{1}=z_{2}
$$

Apply continuity equation, we get

$$
\begin{align*}
A_{1} V_{1} & =A_{2} V_{2} \\
\frac{\pi}{4} D_{t}^{2} V_{1} & =\frac{\pi}{4} D^{2} U \quad V_{2}=U . \text { Let at point (1) velocity }=V_{1} \\
V_{1} & =\left(\frac{D}{D_{t}}\right)^{2} \times U \tag{ii}
\end{align*}
$$

Substitute the value of $V_{1}$ from equation (ii) into the equation (i),

$$
\begin{equation*}
p_{1}-p_{2}=\frac{\rho}{2}\left[U^{2}-\left(\frac{D}{D_{t}}\right)^{4} U^{2}\right]=\frac{\rho}{2} U^{2}\left[1-\left(\frac{D}{D_{t}}\right)^{4}\right] \tag{iii}
\end{equation*}
$$

From the figure, we have
Spring force $=$ Pressureforce due to air
$\begin{array}{rlr}-k x & =A_{s}\left(p_{1}-p_{2}\right)=\frac{\pi}{4} D_{s}^{2} \times\left(p_{1}-p_{2}\right) & \\ & =\frac{\pi}{4} D_{s}^{2} \times \frac{\rho}{2} U^{2}\left[1-\left(\frac{D}{D_{t}}\right)^{4}\right] \quad \text { From equation (iii) }\end{array}$

$$
\begin{aligned}
k x & =\frac{\pi}{8} D_{s}^{2} \rho U^{2}\left[\left(\frac{D}{D_{t}}\right)^{4}-1\right] \\
x & =\frac{\rho U^{2}}{8 k}\left[\left(\frac{D}{D_{t}}\right)^{4}-1\right] \pi D_{s}^{2}
\end{aligned}
$$

MCQ 1.48 TWO MARK

Consider a laminar boundary layer over a heated flat plate. The free stream velocity is $U_{\infty}$. At some distance $x$ from the leading edge the velocity boundary layer thickness is $\delta_{v}$ and the thermal boundary layer thickness is $\delta_{T}$. If the Prandtl number is greater than 1, then
(A) $\delta_{v}>\delta_{T}$
(B) $\delta_{T}>\delta_{v}$
(C) $\delta_{v} \approx \delta_{T} \sim\left(U_{\infty} x\right)^{-1 / 2}$
(D) $\delta_{v} \approx \delta_{T} \sim x^{-1 / 2}$

SOL 1.48 Option (A) is correct.
The non-dimensional Prandtl Number for thermal boundary layer is given by,

$$
\frac{\delta_{v}}{\delta_{T}}=(\operatorname{Pr})^{1 / 3}
$$

(i) When $\operatorname{Pr}=1 \quad \delta_{v}=\delta_{T}$
(ii) When $\operatorname{Pr}>1 \quad \delta_{v}>\delta_{T}$
(iii) When $\operatorname{Pr}<1 \quad \delta_{v}<\delta_{T}$

So for $\operatorname{Pr}>1, \delta_{v}>\delta_{T}$

MCQ 1.49 Considering the relationship $T d s=d U+p d \nu$ between the entropy ( $s$ ), internal

GATE ME 2003 TWO MARK energy $(U)$, pressure $(p)$, temperature $(T)$ and volume $(\nu)$, which of the following statements is correct?
(A) It is applicable only for a reversible process
(B) For an irreversible process, $T d s>d U+p d \nu$
(C) It is valid only for an ideal gas
(D) It is equivalent to $I^{\text {st }}$ law, for a reversible process

SOL 1.49 Option (D) is correct.
The $T d s$ equation considering a pure, compressible system undergoing an internally reversible process.
From the first law of thermodynamics

$$
\begin{equation*}
(\delta Q)_{r e v .}=d U+(\delta W)_{r e v} \tag{i}
\end{equation*}
$$

By definition of simple compressible system, the work is

$$
(\delta W)_{\text {rev }}=p d \nu
$$

And entropy changes in the form of

$$
\begin{aligned}
d s & =\left(\frac{\delta Q}{T}\right)_{r e v} \\
(\delta Q)_{r e v} & =T d s
\end{aligned}
$$

From equation (i), we get

$$
\begin{aligned}
& T d s=d U+p d \nu \\
& \text { equivalent to the } I^{t} \text { Raw, for a reversible process. }
\end{aligned}
$$

MCQ 1.50
GATE ME 2003 TWO MARK

In a gas turbine, hot combustion products with the specific heats $c_{p}=0.98 \mathrm{~kJ} / \mathrm{kgK}$, and $c_{v}=0.7538 \mathrm{~kJ} / \mathrm{kgK}$ enters the turbine at $20 \mathrm{bar}, 1500 \mathrm{~K}$ exit at 1 bar. The isentropic efficiency of the turbine is 0.94 . The work developed by the turbine per kg of gas flow is
(A) $689.64 \mathrm{~kJ} / \mathrm{kg}$
(B) $794.66 \mathrm{~kJ} / \mathrm{kg}$
(C) $1009.72 \mathrm{~kJ} / \mathrm{kg}$
(D) $1312.00 \mathrm{~kJ} / \mathrm{kg}$

SOL 1.50 Option (A) is correct.


Given : $c_{p}=0.98 \mathrm{~kJ} / \mathrm{kgK}, \eta_{\text {isen }}=0.94, c_{v}=0.7538 \mathrm{~kJ} / \mathrm{kgK}, T_{3}=1500 \mathrm{~K}$
$p_{3}=20$ bar $=20 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}, p_{4}=1$ bar $=1 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$

$$
\gamma=\frac{c_{p}}{c_{v}}=\frac{0.98}{0.7538}=1.3
$$

Apply general Equation for the reversible adiabatic process between point 3 and 4 in $T$ - $s$ diagram,

And

$$
\begin{aligned}
\left(\frac{T_{3}}{T_{4}}\right) & =\left(\frac{p_{3}}{p_{4}}\right)^{\frac{\gamma-1}{\gamma}} \\
\frac{1500}{T_{4}} & =\left(\frac{20 \times 10^{5}}{1 \times 10^{5}}\right)^{\frac{1.3-1}{1.3}}=(20)^{\frac{0.3}{1.3}} \\
T_{4} & =\frac{1500}{(20)^{\frac{0.3}{1.3}}}=751.37 \mathrm{~K}
\end{aligned}
$$

$$
\begin{aligned}
\eta_{\text {isentropic }} & =\frac{\text { Actual output }}{\text { Ideal output }}=\frac{T_{3}-T_{4}^{\prime}}{T_{3}-T_{4}} \\
0.94 & =\frac{1500-T_{4}^{\prime}}{1500-751.37} \\
0.94 \times 748.63 & =1500-T_{4}^{\prime} \\
T_{4}^{\prime} & =1500-703.71=796.3 \mathrm{~K} \\
\text { he work, } \quad W_{t} & =c_{p}\left(T_{3}-T_{4}^{\prime}\right) \\
& =0.98(1500-796.3)=698.64 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

Turbine work,

MCQ 1.51 TWO MARK

An automobile engine operates at a fuel air ratio of 0.05 , volumetric efficiency of $90 \%$ and indicated thermal efficiency of $30 \%$. Given that the calorific value of the fuel is $45 \mathrm{MJ} / \mathrm{kg}$ and the density of airat intake is $1 \mathrm{~kg} / \mathrm{m}^{3}$, the indicated mean effective pressure for the engine is
(A) 6.075 bar
(B) 6.75 bar
(C) 67.5 bar
(D) 243 bar

SOL 1.51 Option (A) is correct.
Given : $\phi=\frac{F}{A}=\frac{m_{f}}{m_{a}}=0.05, \eta_{v}=90 \%=0.90, \eta_{\text {ith }}=30 \%=0.3$
$C V_{\text {fuel }}=45 \mathrm{MJ} / \mathrm{kg}, \rho_{\text {air }}=1 \mathrm{~kg} / \mathrm{m}^{3}$
We know that, volumetric efficiency is given by,

$$
\begin{align*}
\eta_{v} & =\frac{\text { Actual Volume }}{\text { Swept Volume }}=\frac{\nu_{a c}}{\nu_{s}} \\
\nu_{a c} & =\eta_{v} \nu_{s}=0.90 V_{s}  \tag{i}\\
m_{a} & =\rho_{a i r} \times \nu_{a c}=1 \times 0.9 \nu_{s}=0.9 \nu_{s} \\
m_{f} & =0.05 \times m_{a}=0.045 \nu_{s} \\
\eta_{i t h} & =\frac{I . P .}{m_{f} \times C V}=\frac{p_{i m} L A N}{m_{f} \times C V} \\
p_{i m} & =\frac{\eta_{i t h} \times m_{f} \times C V}{L A N} \\
& \frac{0.30 \times 0.045 \times \nu_{s} \times 45 \times 10^{6}}{\nu_{s}}=0.6075 \times 10^{6}
\end{align*} \quad \quad \quad \text { air } \quad \quad L A N=\nu_{s}
$$

$$
=6.075 \times 10^{5} \mathrm{~Pa}=6.075 \mathrm{bar}
$$

$$
1 \mathrm{bar}=10^{5} \mathrm{~Pa}
$$

MCQ 1.52 For an engine operating on air standard Otto cycle, the clearance volume is $10 \%$ TWO MARK of the swept volume. The specific heat ratio of air is 1.4. The air standard cycle efficiency is
(A) $38.3 \%$
(B) $39.8 \%$
(C) $60.2 \%$
(D) $61.7 \%$

SOL 1.52 Option (D) is correct.
Given:

$$
\begin{aligned}
& \nu_{c}=10 \% \text { of } \nu_{s}=0.1 \nu_{s} \\
& \frac{\nu_{s}}{\nu_{c}}=\frac{1}{0.1}=10
\end{aligned}
$$

And specific heat ratio $c_{p} / c_{v}=\gamma=1.4$
We know compression ratio,

$$
\begin{aligned}
r & =\frac{\nu_{T}}{\nu_{c}}=\frac{\nu_{c}+\nu_{s}}{\nu_{c}}=1+\frac{\nu_{s}}{\nu_{c}} \\
& =1+10=11
\end{aligned}
$$

Efficiency of Otto cycle,

$$
\begin{aligned}
\eta_{\text {Otto }} & =1-\frac{1}{(r)^{\gamma-1}}=1-\frac{1}{(11)^{1.4-1}} \\
& =1-\frac{1}{(11)^{0.4}} \equiv 1 \mathbb{Q}-3832=0.6168 \simeq 61.7 \%
\end{aligned}
$$

MCQ 1.53
GATE ME 2003 TWO MARK

A centrifugal pump running at 500 rpm and at its maximum efficiency is delivering a head of 30 m at a flow rate of 60 litres per minute. If the rpm is changed to 1000, then the head $H$ in metres and flow rate $Q$ in litres per minute at maximum efficiency are estimated to be
(A) $H=60, Q=120$
(B) $H=120, Q=120$
(C) $H=60, Q=480$
(D) $H=120, Q=30$

SOL 1.53 Option (B) is correct.
Given : $N_{1}=500 \mathrm{rpm}, H_{1}=30$ meter, $N_{2}=1000 \mathrm{rpm}, Q_{1}=60$ litres per minute From the general relation,

$$
\begin{aligned}
& U=\frac{\pi D N}{60}=\sqrt{2 g H} \\
& D N \propto \sqrt{H} \\
& \Rightarrow N \propto \frac{\sqrt{H}}{D}
\end{aligned}
$$

Centrifugal pump is used for both the cases. So $D_{1}=D_{2}$

$$
\begin{aligned}
N & \propto \sqrt{H} \\
\frac{H_{1}}{H_{2}} & =\frac{N_{1}^{2}}{N_{2}^{2}} \\
H_{2} & =\frac{N_{2}^{2}}{N_{1}^{2}} \times H_{1}=\frac{(1000)^{2}}{(500)^{2}} \times 30=120 \mathrm{~m}
\end{aligned}
$$

The specific speed will be constant for centrifugal pump \& relation is given by,

$$
\begin{aligned}
& N_{s}=\frac{N \sqrt{Q}}{H^{3 / 4}}=\text { Constant } \\
& \text { So, } \quad \begin{aligned}
\frac{N_{1} \sqrt{Q_{1}}}{H_{1}^{3 / 4}} & =\frac{N_{2} \sqrt{Q_{2}}}{H_{2}^{3 / 4}} \\
\sqrt{Q_{2}} & =\frac{N_{1}}{N_{2}} \times\left(\frac{H_{2}}{H_{1}}\right)^{3 / 4} \times \sqrt{Q_{1}}=\frac{500}{1000} \times\left(\frac{120}{30}\right)^{3 / 4} \times \sqrt{60} \\
& =\frac{1}{2} \times(2)^{3 / 2} \times \sqrt{60}
\end{aligned} \quad \text { For both cases }
\end{aligned}
$$

Squaring both sides

$$
Q_{2}=\frac{1}{4} \times 8 \times 60=120 \text { litre } / \mathrm{min}
$$

## Alternate :

From unit quantities
Unit speed
or

$$
\begin{aligned}
N_{u} & =\frac{N_{1}}{\sqrt{H_{1}}}=\frac{N_{2}}{\sqrt{H_{2}}} \\
& \frac{N_{1}}{\sqrt{H_{1}}}=\frac{N_{2}}{\sqrt{H_{2}}} \\
\sqrt{H_{2}}= & \frac{N_{2} \sqrt{H_{1}}}{N_{1}} \\
H_{2} & =\frac{N_{2}^{2} \times H_{1}}{N_{1}^{2}}=\frac{(1000)^{2} \times 30}{(500)^{2}} \\
H_{2} & =120 \mathrm{~m}
\end{aligned}
$$

Unit discharge
or

$$
\begin{aligned}
Q_{u} & =\frac{Q_{1}}{\sqrt{H_{1}}}=\frac{Q_{2}}{\sqrt{H_{2}}} \\
\frac{Q_{1}}{\sqrt{H_{1}}} & =\frac{Q_{2}}{\sqrt{H_{2}}} \\
Q_{2} & =\frac{Q_{1} \sqrt{H_{2}}}{\sqrt{H_{1}}}=\frac{60 \times \sqrt{120}}{\sqrt{30}} \\
Q_{2} & =120 \text { litre } / \mathrm{min}
\end{aligned}
$$

MCQ 1.54 Hardness of steel greatly improves with
(A) annealing
(B) cyaniding
(C) normalizing
(D) tempering

SOL 1.54 Option (B) is correct.
Hardness is greatly depend on the carbon content present in the steel.
Cyaniding is case-hardening with powered potassium cyanide or potassium ferrocyanide mixed with potassium bichromate, substituted for carbon. Cyaniding
produces a thin but very hard case in a very short time.
MCQ 1.55 With a solidification factor of $0.97 \times 10^{6} \mathrm{~s} / \mathrm{m}^{2}$, the solidification time (in seconds)

GATE ME 2003 TWO MARK for a spherical casting of 200 mm diameter is
(A) 539
(B) 1078
(C) 4311
(D) 3233

SOL 1.55 Option (B) is correct.
Given : $q=0.97 \times 10^{6} \mathrm{~s} / \mathrm{m}^{2}, D=200 \mathrm{~mm}=0.2 \mathrm{~m}$
From the caine's relation solidification time, $T=q\left(\frac{V}{A}\right)^{2}$
Volume

$$
V=\frac{4}{3} \pi R^{3}
$$

Surface Area

$$
A=4 \pi R^{2}
$$

So,

$$
\begin{aligned}
T & =0.97 \times 10^{6}\left(\frac{\frac{4}{3} \pi R^{3}}{4 \pi R^{2}}\right)^{2}=0.97 \times 10^{6}\left(\frac{R}{3}\right)^{2} \\
& =\frac{0.97}{9} \times 10^{6}\left(\frac{0.2}{2}\right)^{2}=1078 \mathrm{sec}
\end{aligned}
$$

MCQ 1.56 A shell of 100 mm diameter and 100 mm height with the corner radius of 0.4 mm
(A) 118 mm

(B) 161 mm
(C) 224 mm

$$
\text { (D) } 312 \mathrm{~mm}
$$

SOL 1.56 Option (C) is correct.
Given : $d=100 \mathrm{~mm}, h=100 \mathrm{~mm}, R=0.4 \mathrm{~mm}$


Here we see that $d>20 r$
If $d \geq 20 r$, blank diameter in cup drawing is given by,

$$
\begin{aligned}
D & =\sqrt{d^{2}+4 d h} \\
D & =\text { diameter of flat blank } \\
d & =\text { diameter of finished shell } \\
h & =\text { height of finished shell }
\end{aligned}
$$

Where,

Substitute the values, we get

$$
D=\sqrt{(100)^{2}+4 \times 100 \times 100}=\sqrt{50000}
$$

$$
=223.61 \mathrm{~mm} \simeq 224 \mathrm{~mm}
$$

MCQ 1.57 A brass billet is to be extruded from its initial diameter of 100 mm to a final

GATE ME 2003 TWO MARK diameter of 50 mm . The working temperature of $700^{\circ} \mathrm{C}$ and the extrusion constant is 250 MPa . The force required for extrusion is
(A) 5.44 MN
(B) 2.72 MN
(C) 1.36 MN
(D) 0.36 MN

SOL 1.57 Option (B) is correct.
Given : $d_{i}=100 \mathrm{~mm}, d_{f}=50 \mathrm{~mm}, T=700^{\circ} \mathrm{C}, k=250 \mathrm{MPa}$
Extrusion force is given by,

$$
\begin{aligned}
F_{e} & =k A_{i} \ln \left(\frac{A_{i}}{A_{f}}\right) \\
& =k \frac{\pi}{4} d_{i}^{2} \ln \left(\frac{\frac{\pi}{4} d_{i}^{2}}{\frac{\pi}{4} d_{f}^{2}}\right)=k \frac{\pi}{4} d_{i}^{2} \ln \left(\frac{d_{i}}{d_{f}}\right)^{2}
\end{aligned}
$$

Substitute the values, we get

$$
\begin{aligned}
F_{e} & =250 \times \frac{\pi}{4}(0.1)^{2} \ln \left(\frac{0.1}{0.05}\right)^{2} \\
& =1.96 \ln 4=2.717 \mathrm{MN} \simeq 2.72 \mathrm{MN}
\end{aligned}
$$

MCQ 1.58 A metal disc of 20 mm diameter is to be punched from a sheet of 2 mm thickness. The punch and the die clearance is $3 \%$. The required punch diameter is
(A) 19.88 mm
(B) 19.84 mm
(C) 20.06 mm
(D) 20.12 mm

SOL 1.58 Option (A) is correct.
Given : $D=20 \mathrm{~mm}, t=2 \mathrm{~mm}$, Punch or diameter clearance $=3 \%$
Required punch diameter will be,

$$
\begin{aligned}
d & =D-2 \times(3 \% \text { of thickness }) \\
& =20-2 \times \frac{3}{100} \times 2=19.88 \mathrm{~mm}
\end{aligned}
$$

MCQ 1.59
GATE ME 2003 TWO MARK

A batch of 10 cutting tools could produce 500 components while working at 50 rpm with a tool feed of $0.25 \mathrm{~mm} / \mathrm{rev}$ and depth of cut of 1 mm . A similar batch of 10 tools of the same specification could produce 122 components while working at 80 rpm with a feed of $0.25 \mathrm{~mm} / \mathrm{rev}$ and 1 mm depth of cut. How many components can be produced with one cutting tool at 60 rpm ?
(A) 29
(B) 31
(C) 37
(D) 42

SOL 1.59 Option (A) is correct.
Given : For case (I) :
$N=50 \mathrm{rpm}, f=0.25 \mathrm{~mm} /$ rev.,$d=1 \mathrm{~mm}$ Number of cutting tools $=10$

Number of components produce $=500$
So, Velocity $\quad V_{1}=N \times f=50 \times 0.25=12.5 \mathrm{~mm} / \mathrm{min}$.
For case (II) :
$N=80 \mathrm{rpm}, f=0.25 \mathrm{~mm} / \mathrm{rev} ., d=1 \mathrm{~mm}$
Number of cutting tools, $=10$
Number of components produce $=122$
So, Velocity $\quad V_{2}=N \times f=80 \times 0.25=20 \mathrm{~mm} / \mathrm{min}$
From the tool life equation between cutting speed \& tool life, $V T^{n}=C$,

$$
\begin{equation*}
V_{1} T_{1}^{n}=V_{2} T_{2}^{n} \quad \text { where } C=\text { constant } \tag{i}
\end{equation*}
$$

Tool life $=$ Number of components produce $\times$ Tool constant
For case (I), $\quad T_{1}=500 k \quad k=$ tool constant
For case (II), $\quad T_{2}=122 k$
From equation (i),
$12.5 \times(500 k)^{n}=20 \times(122 k)^{n}$

$$
\left(\frac{500 k}{122 k}\right)^{n}=\frac{20}{12.5}=1.6
$$

Taking log both the sides,

$$
\begin{aligned}
n \ln \left(\frac{500}{122}\right) & =\ln (1.6) \\
n(1.41) & =0.47 \\
n & =0.333
\end{aligned}
$$

Let the number of components produced be $n_{1}$ by one cutting tool at 60 r.p.m. So,
Tool life, $T_{3}=n_{1} k$
Velocity, $V_{3}=60 \times 0.25=15 \mathrm{~mm} / \mathrm{min} \quad$ feed remains same
Now, tool life $T_{1}$ if only 1 component is used,

$$
T_{1}^{\prime}=\frac{500 k}{10}
$$

So,
Substitute the values, we get

$$
\begin{aligned}
V_{1}\left(\frac{500 k}{10}\right)^{n} & =15\left(n_{1} k\right)^{n} \\
\left(\frac{50 k}{n_{1} k}\right)^{n} & =\frac{15}{12.5} \\
\frac{50}{n_{1}} & =(1.2)^{1 / 0.333}=1.73 \\
n_{1} & =\frac{50}{1.73}=28.90 \simeq 29
\end{aligned}
$$

MCQ 1.60
GATE ME 2003 TWO MARK

A thread nut of M16 ISO metric type, having 2 mm pitch with a pitch diameter of 14.701 mm is to be checked for its pitch diameter using two or three number of balls or rollers of the following sizes
(A) Rollers of $2 \mathrm{~mm} \varphi$
(B) Rollers of $1.155 \mathrm{~mm} \varphi$
(C) Balls of $2 \mathrm{~mm} \varphi$
(D) Balls of $1.155 \mathrm{~mm} \varphi$

SOL 1.60 Option (B) is correct.
Given : $p=2 \mathrm{~mm}, d=14.701 \mathrm{~mm}$
We know that, in case of ISO metric type threads,

$$
2 \theta=60^{\circ} \quad \Rightarrow \quad \theta=30^{\circ}
$$

And in case of threads, always rollers are used.
For best size of rollers, $\quad d=\frac{p}{2} \sec \theta$

$$
d=\frac{2}{2} \sec 30^{\circ}=1.155 \mathrm{~mm}
$$

Hence, rollers of 1.155 mm diameter ( $1.155 \phi$ ) is used.
MCQ 1.61 Two slip gauges of 10 mm width measuring 1.000 mm and 1.002 mm are kept side

GATE ME 2003 TWO MARK by side in contact with each other lengthwise. An optical flat is kept resting on the slip gauges as shown in the figure. Monochromatic light of wavelength 0.0058928 mm is used in the inspection. The total number of straight fringes that can be observed on both slip gauges is


Slip gauges
(A) 2

$1 \mathcal{B}_{(\mathrm{B})} 6$
(C) 8
(D) 13

SOL 1.61 Option (D) is correct.
The total number of straight fringes that can be observed on both slip gauges is 13 .
MCQ 1.62 A part shown in the figure is machined to the sizes given below
GATE ME 2003 TWO MARK

$P=35.00 \pm 0.08 \mathrm{~mm}, Q=12.00 \pm 0.02 \mathrm{~mm}, R=13.00_{-0.02}^{+0.04} \mathrm{~mm}$
With $100 \%$ confidence, the resultant dimension $W$ will have the specification
(A) $9.99 \pm 0.03 \mathrm{~mm}$
(B) $9.99 \pm 0.13 \mathrm{~mm}$
(C) $10.00 \pm 0.03 \mathrm{~mm}$
(D) $10.00 \pm 0.13 \mathrm{~mm}$

SOL 1.62 Option (A) is correct.

Given : $P=35.00 \pm 0.08 \mathrm{~mm}, Q=12.00 \pm 0.02 \mathrm{~mm}$

$$
R=13.00_{-0.02}^{+0.04} \mathrm{~mm}=13.01 \pm 0.03 \mathrm{~mm}
$$

From the given figure, we can say

$$
\begin{aligned}
P & =Q+W+R \\
W & =P-(Q+R) \\
W & =(35.00 \pm 0.08)-[(12.00 \pm 0.02)+(13.01 \pm 0.03)] \\
W & =(35-12-13.01)_{-0.08+0.02-0.03}^{+0.08-03} \\
& =9.99_{-0.03}^{+0.03}=9.99 \pm 0.03 \mathrm{~mm}
\end{aligned}
$$

MCQ 1.63
GATE ME 2003 TWO MARK

Two machines of the same production rate are available for use. On machine 1, the fixed cost is Rs. 100 and the variable cost is Rs. 2 per piece produced. The corresponding numbers for the machine 2 are Rs. 200 and Re. 1 respectively. For certain strategic reasons both the machines are to be used concurrently. The sales price of the first 800 units is Rs. 3.50 per unit and subsequently it is only Rs. 3.00 . The breakeven production rate for each machine is
(A) 75
(B) 100
(C) 150
(D) 600

SOL 1.63 Option (A) is correct. Given :
For machine M1 :

$$
\text { Fixed cost }=100 \text { Rs. }
$$

Variable cost $=2$ Rs. per piece
For machine M2 :
Fixed cost $=200$ Rs.
Variable cost $=1$ Rs. per piece
Let, $n$ number of units are produced per machine, when both the machines are to be used concurrently.
We know that,

$$
\text { Total cost }=\text { Fixed cost }+ \text { Variable cost } \times \text { Number of units }
$$

For M1
Total cost of production $=100+2 \times n$
For M2
Total cost of production $=200+n$
Hence,
Total cost of production on machine $M 1 \& M 2$ is

$$
\begin{aligned}
& =100+2 n+200+n \\
& =300+3 n
\end{aligned}
$$

We know, Breakeven point is the point, where total cost of production is equal to the total sales price.

Assuming that Number of units produced are less than 800 units and selling price is Rs. 3.50 per unit.
So at breakeven point,

$$
\begin{aligned}
300+3 n & =3.50(n+n) \\
300+3 n & =3.50 \times 2 n \\
300 & =4 n \\
n & =\frac{300}{4} \\
n & =75 \text { units }
\end{aligned}
$$

MCQ 1.64
GATE ME 2003 TWO MARK

A residential school stipulates the study hours as 8.00 pm to 10.30 pm . Warden makes random checks on a certain student 11 occasions a day during the study hours over a period of 10 days and observes that he is studying on 71 occasions. Using $95 \%$ confidence interval, the estimated minimum hours of his study during that 10 day period is
(A) 8.5 hours
(B) 13.9 hours
(C) 16.1 hours

(D) 18.4 hours

SOL 1.64 Option (C) is correct.
Warden checks the student 11 occasions a day during the study hours over a period of 10 days.


So, Total number of observations in 10 days.

$$
=11 \times 10=110 \text { observations }
$$

Study hours as 8.00 pm to 10.30 pm .
So, total study hours in 10 days

$$
\begin{aligned}
& =2.5 \times 10 \\
& =25 \text { hours }
\end{aligned}
$$

Number of occasions when student studying

$$
=71
$$

So, Probability of studying

$$
\begin{aligned}
P & =\frac{\text { No. of observations when student studying }}{\text { Total observations }} \\
& =\frac{71}{110}=0.645
\end{aligned}
$$

Hence,
Minimum hours of his study during 10 day period is

$$
\begin{aligned}
T & =P \times \text { Total study hours in } 10 \text { days } \\
& =0.645 \times 25 \\
& =16.1 \text { hours }
\end{aligned}
$$

MCQ 1.65 TWO MARK

The sale of cycles in a shop in four consecutive months are given as $70,68,82,95$. Exponentially smoothing average method with a smoothing factor of 0.4 is used in forecasting. The expected number of sales in the next month is
(A) 59
(B) 72
(C) 86
(D) 136

SOL 1.65 Option (B) is correct.
We know, from the exponential and smoothing average method, the exponential smoothed average $u_{(t+1)}$ which is the forecast for the next period $(t+1)$ is given by

$$
u_{(t+1)}=\alpha u_{t}+\alpha(1-\alpha) u_{t-1}+\ldots \ldots . \alpha(1-\alpha)^{n} u_{t-n}+\ldots \ldots . . \infty
$$

Now, for sales of the fifth month put $t=4$ in the above equation,
So,

$$
u_{5}=\alpha u_{4}+\alpha(1-\alpha) u_{3}+\alpha(1-\alpha)^{2} u_{2}+\alpha(1-\alpha)^{3} u_{1}
$$

where $u_{1}, u_{2}, u_{3}$ and $u_{4}$ are $70,68,82$, and 95 respectively and $\alpha=0.4$
Hence

$$
\begin{array}{lr}
u_{5}=0.4 \times 95+0.4(1-0.4) 82+0.4(1-0.4)^{2} \times 68 \\
& +0.4(1-0.4)^{3} \times 70 \\
u_{5}=38+19.68+9.792+6.048 & \\
u_{5}=73.52 &
\end{array}
$$

MCQ 1.66 TWO MARK

Market demand for springs is $8,00,000$ per annum. A company purchases these springs in lots and sells them. The cost of making a purchase order is Rs. 1200. The cost of storage of springs is Rs. 120 per stored piece per annum. The economic order quantity is
(A) 400
(C) 4,000


SOL 1.66 Option (C) is correct.
Given :

$$
\begin{aligned}
D & =800000 \text { per annum } \\
C_{o} & =1200 \text { Rs. } \\
C_{h} & =120 \text { per piece per annum }
\end{aligned}
$$

We know that,
Economic order quantity $(E O Q)=N=\sqrt{\frac{2 C_{o} D}{C_{h}}}$

$$
\begin{aligned}
N & =\sqrt{\frac{2 \times 1200 \times 800000}{120}} \\
& =\sqrt{16 \times 10^{6}} \\
& =4 \times 10^{3}=4000
\end{aligned}
$$

MCQ 1.67
GATE ME 2003 TWO MARK

A manufacturer produces two types of products, 1 and 2, at production levels of $x_{1}$ and $x_{2}$ respectively. The profit is given is $2 x_{1}+5 x_{2}$. The production constraints are

$$
\begin{array}{r}
x_{1}+3 x_{2} \leq 40 \\
3 x_{1}+x_{2} \leq 24 \\
x_{1}+x_{2} \leq 10 \\
x_{1}>0, x_{2}>0
\end{array}
$$

The maximum profit which can meet the constraints is
(A) 29
(B) 38
(C) 44
(D) 75

SOL 1.67 Option (A) is correct.
Given: Objective function,

$$
Z=2 x_{1}+5 x_{2}
$$

And

$$
\begin{aligned}
x_{1}+3 x_{2} & \leq 40 \\
3 x_{1}+x_{2} & \leq 24 \\
x_{1}+x_{2} & \leq 10 \\
x_{1} & >0 \\
x_{2} & >0
\end{aligned}
$$

First we have to make a graph from the given constraints. For draw the graph, substitute alternatively $x_{1} \& x_{2}$ equal to zero in each constraints to find the point on the $x_{1} \& x_{2}$ axis.
Now shaded area shows the common area. Note that the constraint $x_{1}+3 x_{2} \leq 40$ does not affect the solution space and it is the redundant constraint. Finding the coordinates of point $G$ by the equations.


Subtract these equations,

$$
\begin{aligned}
\left(3 x_{1}-x_{1}\right)+0 & =24-10 \\
2 x_{1} & =14 \Rightarrow x_{1}=7 \\
x_{2} & =10-x_{1}=10-7 \\
& =3
\end{aligned}
$$

So, point $G(7,3)$
So, maximum profit which can meet the constraints at $G(7,3)$ is

$$
\begin{aligned}
Z_{\max } & =2 \times 7+5 \times 3 \\
& =14+15 \\
& =29
\end{aligned}
$$

MCQ 1.68 A project consists of activities $A$ to $M$ shown in the net in the following figure with GATE ME 2003 the duration of the activities marked in days TWO MARK

D, 10


The project can be completed
(A) between 18,19 days
(B) between 20, 22 days
(C) between 24, 26 days
(D) between 60, 70 days

SOL 1.68 Option (C) is correct.
The various path and their duration are :-

| Path | Duration (days) |
| :---: | :---: |
| $A-D-L$ | $2+10+3=15$ |
| $A-E-G-L$ | $2+5+6+3=16$ |
| $A-E-H$ | $2+5+10=17$ |
| $B-H$ | $8+10=18$ |
| $C-F-K-M$ | $4+9+3+8=24$ |
| $C-F-H$ | $4+9+10=23$ |
| $A-E-K-M$ | $2+5+3+8=18$ |
| $B-G-L$ | $8+6+3=17$ |
| $B-K-M$ | $8+3+8=19$ |
| $C-F-G-L$ | $4+9+6+3=22$ |

Here maximum time along the path $C-F-K-M$. So, it is a critical path and project can be completed in 24 days.

MCQ 1.69
GATE ME 2003 TWO MARK

Match List-I with the List-II and select the correct answer using the codes given below the lists :

## List-I

P Curtis
Q Rateau
R Kaplan
S Francis

## List-II

1. Reaction steam turbine
2. Gas turbine
3. Velocity compounding
4. Pressure compounding
5. Impulse water turbine
6. Axial turbine
7. Mixed flow turbine
8. Centrifugal pump

## Codes :

|  | $\mathbf{P}$ | $\mathbf{Q}$ | $\mathbf{R}$ | $\mathbf{S}$ |
| :--- | :--- | :--- | :--- | :--- |
| (A) | 2 | 1 | 1 | 6 |
| (B) | 3 | 1 | 5 | 7 |
| (C) | 1 | 3 | 1 | 5 |
| (D) | 3 | 4 | 7 | 6 |

SOL 1.69 None of these is correct.

## List-I

P. Curtis
Q. Rateau
R. Kaplan
S. Francis

## List-II

3. Velocity compounding
4. Pressure compounding
5. Axial flow turbine
6. Mixed flow turbine

MCQ 1.70 Match the following

GATE ME 2003
TWO MARK

Working material
P. Aluminium
Q. Die steel
R. Copper wire
S. Titanium sheet

## ค号 Type of Joining

1. Submerged Arc Welding
2. Soldering
3. Thermit Welding
4. Atomic Hydrogen Welding
5. Gas Tungsten Arc Welding
6. Laser Beam Welding

| (A) | P-2 | Q-5 | $\mathrm{R}-1$ | $\mathrm{~S}-3$ |
| :--- | :--- | :--- | :--- | :--- |
| (B) | $\mathrm{P}-6$ | $\mathrm{Q}-3$ | $\mathrm{R}-4$ | $\mathrm{~S}-1$ |
| (C) | $\mathrm{P}-4$ | $\mathrm{Q}-1$ | $\mathrm{R}-6$ | $\mathrm{~S}-2$ |
| (D) | $\mathrm{P}-5$ | $\mathrm{Q}-4$ | $\mathrm{R}-2$ | $\mathrm{~S}-6$ |

SOL 1.70 Option (D) is correct.

Working material
P. Aluminium
Q. Die steel
R. Copper Wire

## Type of Joining

5. Gas Tungsten Arc Welding
6. Atomic Hydrogen Welding
7. Soldering
S. Titanium sheet
8. Laser Beam Welding

So, correct pairs are, $\mathrm{P}-5, \mathrm{Q}-4, \mathrm{R}-2, \mathrm{~S}-6$

## Data for Q. 71 \& 72 are given below. Solve the problems and choose correct answers.

A reel of mass " $m$ " and radius of gyration " $k$ " is rolling down smoothly from rest with one end of the thread wound on it held in the ceiling as depicated in the figure. Consider the thickness of thread and its mass negligible in comparison with the radius " $r$ " of the hub and the reel mass " $m$ ". Symbol " $g$ " represents the acceleration due to gravity.


MCQ 1.71
GATE ME 2003 TWO MARK

The linear acceleration of the reel is

SOL 1.71 Option (A) is correct.
Given : $\quad$ Mass of real $=m$
Radius of gyration $=k$
We have to make FBD of the system,


Where, $\quad T=$ Tension in the thread

$$
m g=\text { Weight of the system }
$$

Here the real is rolling down. So Angular acceleration ( $\alpha$ ) comes in the action From FBD, For vertical translation motion,

$$
\begin{equation*}
m g-T=m a \tag{i}
\end{equation*}
$$

\& for rotational motion,

$$
\begin{align*}
\Sigma M_{G} & =I_{G} \alpha \\
T \times r & =m k^{2} \times \frac{a}{r}  \tag{ii}\\
T & =\frac{m k^{2}}{r^{2}} \times a
\end{align*}
$$

$$
T \times r=m k^{2} \times \frac{a}{r} \quad I_{G}=m k^{2}, \alpha=a / r
$$

From equation (i) \& (ii) Substitute the value of $T$ in equation (i), we get

$$
\begin{align*}
m g-\frac{m k^{2}}{r^{2}} \times a & =m a \\
m g & =a\left[\frac{m k^{2}}{r^{2}}+m\right]  \tag{iii}\\
a & \left.=\frac{g r^{2}}{k^{2}+r^{2}}\right)
\end{align*}
$$

MCQ 1.72
GATE ME 2003 TWO MARK

SOL 1.72
The tension in
(A) $\frac{m g r^{2}}{\left(r^{2}+k^{2}\right)}$
(C) $\frac{m g k^{2}}{\left(r^{2}+k^{2}\right)}$


Option (C) is correct.
From previous question,

$$
T=m g-m a
$$

Substitute the value of $a$ from equation (iii), we get

$$
\begin{aligned}
T & =m g-m \times \frac{g r^{2}}{\left(k^{2}+r^{2}\right)} \\
& =\frac{m g\left(k^{2}+r^{2}\right)-m g r^{2}}{\left(k^{2}+r^{2}\right)}=\frac{m g k^{2}}{k^{2}+r^{2}}
\end{aligned}
$$

## Data for Q. 73 and 74 are given below. Solve the problems and choose correct answers.

The state of stress at a point " $P$ " in a two dimensional loading is such that the Mohr's circle is a point located at 175 MPa on the positive normal stress axis.

MCQ 1.73
GATE ME 2003 TWO MARK

The maximum and minimum principal stresses respectively from the Mohr's circle are
(A) $+175 \mathrm{MPa},-175 \mathrm{MPa}$
(B) $+175 \mathrm{MPa},+175 \mathrm{MPa}$
(C) $0,-175 \mathrm{MPa}$
(D) 0,0

SOL 1.73 Option (B) is correct.


Given, Mohr's circle is a point located at 175 MPa on the positive Normal stress (at point $P$ )
So, $\sigma_{1}=\sigma_{2}=175 \mathrm{MPa}$, and $\tau_{\text {max }}=0$
So, both maximum and minimum principal stresses are equal.
Alternate Method

$$
\sigma_{x}=175 \mathrm{MPa} \quad \sigma_{y}=175 \mathrm{MPa} \& \tau_{x y}=0
$$

Maximum principal stress

$$
\begin{aligned}
\sigma_{1} & =\frac{1}{2}\left[\left(\sigma_{x}+\sigma_{y}\right)+\sqrt{\left(\sigma_{x}-\sigma_{y}\right)+4 \tau_{x y}^{2}}\right] \\
\sigma_{1} & =\frac{1}{2}[(175+175)+\theta] \\
\sigma_{1} & =175 \mathrm{MPa}
\end{aligned}
$$

Minimum principal stress

$$
\begin{aligned}
\sigma_{2} & =\frac{1}{2}\left[\left(\sigma_{x}+\sigma_{y}\right)-\sqrt{\left(\sigma_{x}-\sigma_{y}\right)+4 \tau_{x y}^{2}}\right] \\
\sigma_{2} & =\frac{1}{2}[(175+175)-0] \\
\sigma_{2} & =175 \mathrm{MPa}
\end{aligned}
$$

MCQ 1.74 The directions of maximum and minimum principal stresses at the point " $P$ " from the Mohr's circle are
(A) $0,90^{\circ}$
(B) $90^{\circ}, 0$
(C) $45^{\circ}, 135^{\circ}$
(D) all directions

SOL 1.74 Option (D) is correct.
Mohr's circle is a point, and a point will move in every direction. So, the directions of maximum and minimum principal stresses at point $P$ is in all directions.
Every value of $\theta$ will give the same result of 175 MPa in all directions.

Data for Q. 75 and 76 are given below. Solve the problems and choose

## correct answers.

The circular disc shown in its plan view in the figure rotates in a plane parallel to the horizontal plane about the point O at a uniform angular velocity $\omega$. Two other points A and B are located on the line OZ at distances $r_{A}$ and $r_{B}$ from O respectively.


MCQ 1.75 The velocity of Point $B$ with respect to point $A$ is a vector of magnitude
(B) $\omega\left(r_{B}-r_{A}\right)$ and direction opposite to the direction of motion of point B
(C) $\omega\left(r_{B}-r_{A}\right)$ and direction same as the direction of motion of point $B$
(D) $\omega\left(r_{B}-r_{A}\right)$ and direction being fromo to Z

SOL 1.75 Option (C) is correct.
Given, the circular disc rotates about the point O at $a$ uniform angular velocity $\omega$.


Let $v_{A}$ is the linear velocity of point $\mathrm{A} \& v_{B}$ is the linear velocity of point B .
$v_{A}=\omega r_{A}$ and $v_{B}=\omega r_{B}$
Velocity of point B with respect to point A is given by,

$$
v_{B A}=v_{B}-v_{A}=\omega r_{B}-\omega r_{A}=\omega\left(r_{B}-r_{A}\right)
$$

From the given figure,

So,

$$
\begin{aligned}
r_{B} & >r_{A} \\
\omega r_{B} & >\omega r_{A} \\
v_{B} & >v_{A}
\end{aligned}
$$

Therefore, relative velocity $\omega\left(r_{B}-r_{A}\right)$ in the direction of point B .

MCQ 1.76 The acceleration of point $B$ with respect to point $A$ is a vector of magnitude
(A) 0
(B) $\omega\left(r_{B}-r_{A}\right)$ and direction same as the direction of motion of point B
(C) $\omega^{2}\left(r_{B}-r_{A}\right)$ and direction opposite to be direction of motion of point B
(D) $\omega^{2}\left(r_{B}-r_{A}\right)$ and direction being from Z to O

SOL 1.76 Option (D) is correct.
Acceleration of point B with respect to point A is given by,

$$
\begin{equation*}
a_{B A}=\omega v_{B A}=\omega \times \omega\left(r_{B}-r_{A}\right)=\omega^{2}\left(r_{B}-r_{A}\right) \tag{i}
\end{equation*}
$$

This equation (i) gives the value of centripetal acceleration which acts always towards the centre of rotation.
So, $a_{B A}$ acts towards to $O$ i.e. its direction from Z to O

## Data for Q. 77 and 78 are given below. Solve the problems and choose correct answer.

A uniform rigid cylinder bar of mass 10 kg , hinged at the left end is suspended with the help of spring and damper arrangement as shown in the figure where $k=2 \mathrm{kN} / \mathrm{m}$ , $c=500 \mathrm{Ns} / \mathrm{m}$ and the stiffness of the torsional spring $k_{\theta}$ is $1 \mathrm{kN} / \mathrm{m} / \mathrm{rad}$. Ignore the hinge dimensions.


MCQ 1.77 The undamped natural frequency of oscillations of the bar about the hinge point is
(A) $42.43 \mathrm{rad} / \mathrm{s}$
(B) $30 \mathrm{rad} / \mathrm{s}$
(C) $17.32 \mathrm{rad} / \mathrm{s}$
(D) $14.14 \mathrm{rad} / \mathrm{s}$

SOL 1.77 Option (A) is correct.


Given $m=10 \mathrm{~kg}, k=2 \mathrm{kN} / \mathrm{m}, c=500 \mathrm{Ns} / \mathrm{m}, k_{\theta}=1 \mathrm{kN} / \mathrm{m} / \mathrm{rad}$ $l_{1}=0.5 \mathrm{~m}, l_{2}=0.4 \mathrm{~m}$
Let, the rigid slender bar twist downward at the angle $\theta$. Now spring \& damper exert a force $k x_{1} \& c x_{2}$ on the rigid bar in the upward direction.
From similar triangle $O A B \& O C D$,

$$
\begin{gathered}
\tan \theta=\frac{x_{2}}{0.4}=\frac{x_{1}}{0.5} \\
\text { Let } \theta \text { be very very small, then } \tan \theta \simeq \theta,
\end{gathered}
$$

$$
\begin{align*}
\theta & =\frac{x_{2}}{0.4}=\frac{x_{1}}{0.5}  \tag{i}\\
x_{2} & =0.4 \theta \text { or } x_{1}=0.5 \theta
\end{align*}
$$

On differentiating the above equation, we get

$$
\begin{equation*}
\dot{x}_{2}=0.4 \dot{\theta} \text { or } \dot{x}_{1}=0.5 \dot{\theta} \tag{ii}
\end{equation*}
$$

We know, the moment of inertia of the bar hinged at the one end is,

$$
I=\frac{m l_{1}^{2}}{3}=\frac{10 \times(0.5)^{2}}{3}=0.833 \mathrm{~kg}-\mathrm{m}^{2}
$$

As no external force acting on the system. So, governing equation of motion from the Newton's law of motion is,

$$
\begin{align*}
I \ddot{\theta}+c \dot{x}_{2} l_{2}+k x_{1} l_{1}+k_{\theta} \theta & =0 \\
0.833 \ddot{\theta}+500 \times 0.4 \dot{x}_{2}+2000 \times(0.5) x_{1}+1000 \theta & =0 \\
0.833 \ddot{\theta}+200 \dot{x}_{2}+1000 x_{1}+1000 \theta & =0  \tag{iii}\\
0.833 \ddot{\theta}+200 \times 0.4 \dot{\theta}+1000 \times 0.5 \theta+1000 \theta & =0 \\
0.833 \ddot{\theta}+80 \dot{\theta}+1500 \theta & =0 \tag{iv}
\end{align*}
$$

On comparing equation (iv) with its general equation,

$$
I \ddot{\theta}+c \dot{\theta}+k \theta=0
$$

We get, $I=0.833, c=80, k=1500$
So, undamped natural frequency of oscillations is given by

$$
\omega_{n}=\sqrt{\frac{k}{I}}=\sqrt{\frac{1500}{0.833}}=\sqrt{1800.72}=42.43 \mathrm{rad} / \mathrm{sec}
$$

MCQ 1.78 The damping coefficient in the vibration equation is given by

GATE ME 2003 TWO MARK
(A) $500 \mathrm{Nms} / \mathrm{rad}$
(B) $500 \mathrm{~N} /(\mathrm{m} / \mathrm{s})$
(C) $80 \mathrm{Nms} / \mathrm{rad}$
(D) $80 \mathrm{~N} /(\mathrm{m} / \mathrm{s})$

SOL 1.78 Option (C) is correct.
From the previous part of the question
Damping coefficient, $\quad c=80 \mathrm{Nms} / \mathrm{rad}$

## Data for Q. 79-80 given below. Solve the problems and choose correct answers.

The overall gear ratio in a 2 stage speed reduction gear box (with all spur gears) is 12 . The input and output shafts of the gear box are collinear. The counter shaft which is parallel to the input and output shafts has a gear ( $Z_{2}$ teeth) and pinion ( $Z_{3}=15$ teeth) to mesh with pinion ( $Z_{1}=16$ teeth) on the input shaft and gear ( $Z_{4}$ teeth) on the output shaft respectively. It was decided to use a gear ratio of 4 with 3 module in the first stage and 4 module in the second stage.

MCQ $1.79 \quad Z_{2}$ and $Z_{4}$ are
GATE ME 2003
(A) 64 and 45
(C) 48 and 60
gate
(B) 45 and 64
D) 60 and 48

TWO MARK
SOL 1.79 Option (A) is correct.


Let $N_{1}, N_{2}, N_{3}$ and $N_{4}$ are the speeds of pinion 1, gear 2, pinion 3 and gear 4 respectively.
Given: $Z_{1}=16$ teeth, $Z_{3}=15$ teeth and $Z_{4}=$ ?, $Z_{2}=$ ?
Velocity ratio

$$
\frac{N_{1}}{N_{4}}=\frac{Z_{2} / Z_{1}}{Z_{3} / Z_{4}}
$$

$$
N \propto 1 / Z
$$

$$
\begin{equation*}
=\frac{Z_{2}}{Z_{1}} \times \frac{Z_{4}}{Z_{3}}=12 \tag{i}
\end{equation*}
$$

But for stage 1,

$$
\frac{N_{1}}{N_{2}}=\frac{Z_{2}}{Z_{1}}=4
$$

So,

$$
\begin{aligned}
4 \times \frac{Z_{4}}{Z_{3}^{3}} & =12 \\
\frac{Z_{4}}{Z_{3}} & =3, \quad \Rightarrow \quad Z_{4}=3 \times 15=45 \text { teeth }
\end{aligned}
$$

from eq. (i)

From equation (ii), $\quad Z_{2}=4 \times Z_{1}=4 \times 16=64$ teeth
MCQ 1.80 The centre distance in the second stage is
GATE ME 2003 TWO MARK
(A) 90 mm
(B) 120 mm
(C) 160 mm
(D) 240 mm

SOL 1.80 Option (B) is correct.
Let centre distance in the second stage is $D$.

But,

$$
\begin{aligned}
& D=R_{4}+R_{3}=\frac{D_{4}+D_{3}}{2} \\
& \frac{D_{4}}{Z_{4}}=\frac{D_{3}}{Z_{3}}=4 \\
& D_{4}=4 \times Z_{4}=4 \times 45=180 \\
& D_{3}=4 \times Z_{3} \equiv 4 \times 15=60 \\
& D=\frac{180+60}{2}=120 \mathrm{~mm} \\
&
\end{aligned}
$$

Or,

## Data for Q. $81 \& 82$ are given below. Solve the problems and choose correct answers.

A syringe with a frictionless plunger contains water and has at its end a 100 mm long needle of 1 mm diameter. The internal diameter of the syringe is 10 mm . Water density is $1000 \mathrm{~kg} / \mathrm{m}^{3}$. The plunger is pushed in at $10 \mathrm{~mm} / \mathrm{s}$ and the water comes out as a jet


MCQ 1.81 Assuming ideal flow, the force $F$ in newtons required on the plunger to push out
(A) 0
(B) 0.04
(C) 0.13
(D) 1.15

SOL 1.81 Option (B) is correct.


Given : $L=100 \mathrm{~mm}, d=1 \mathrm{~mm}, D=10 \mathrm{~mm}, V_{1}=10 \mathrm{~mm} / \mathrm{sec}$
We have to take the two sections of the system (1) \& (2).
Apply continuity equation on section (1) \& (2),

$$
\begin{array}{rlr}
A_{1} V_{1} & =A_{2} V_{2} & Q=A V, Q=\text { flow rate } \\
V_{2} & =\left(\frac{A_{1}}{A_{2}}\right) \times V_{1} & \\
& =\frac{\pi / 4(0.01)^{2}}{\pi / 4(0.001)^{2}} \times 0.010=1 \mathrm{~m} / \mathrm{sec} &
\end{array}
$$

Again applying the Bernoulli's equation at section (1) \& (2),

$$
\frac{p_{1}}{\rho g}+\frac{V_{1}^{2}}{2 g}+z_{1}=\frac{p_{2}}{\rho g}+\frac{V_{2}^{2}}{2 g}+z_{2}
$$

The syringe $\&$ the plunger is situated on the same plane so $z_{1}=z_{2}$,
Take

$$
\begin{aligned}
p_{2} & =0=\text { Atmospheric pressure (Outside the needle) } \\
\frac{p_{1}}{\rho g} & =\frac{V_{2}^{2}}{2 g} V_{1}^{2} \\
p_{1} & =\frac{\rho}{2}\left(V_{2}^{2}-V_{1}^{2}\right)=\frac{1000}{2}\left[(1)^{2}-(0.01)^{2}\right]=499.95 \mathrm{~N} / \mathrm{m}^{2}
\end{aligned}
$$

Force required on plunger,

$$
F=p_{1} \times A_{1}=499.95 \times \frac{\pi}{4}(0.01)^{2}=0.04 \mathrm{~N}
$$

MCQ 1.82
GATE ME 2003 TWO MARK

Neglect losses in the cylinder and assume fully developed laminar viscous flow throughout the needle; the Darcy friction factor is $64 /$ Re. Where Re is the Reynolds number. Given that the viscosity of water is $1.0 \times 10^{-3} \mathrm{~kg} / \mathrm{s}-\mathrm{m}$, the force $F$ in newtons required on the plunger is
(A) 0.13
(B) 0.16
(C) 0.3
(D) 4.4

SOL 1.82 Option (C) is correct.
Given : $f=\frac{64}{\mathrm{Re}}, \mu=1 \times 10^{-3} \mathrm{~kg} / \mathrm{s}-\mathrm{m}$

And

$$
\begin{aligned}
\operatorname{Re} & =\frac{\rho V d}{\mu}=\frac{\rho V_{2} d_{2}}{\mu} \\
& =\frac{1000 \times 1 \times 0.001}{1 \times 10^{-3}}=1000
\end{aligned}
$$

$$
f=\frac{64}{\mathrm{Re}}=\frac{64}{1000}=0.064
$$

From the help of $f$ we have to find Head loss in needle,

$$
\begin{aligned}
h_{f} & =\frac{f L V_{2}^{2}}{2 g d_{2}} \\
& =\frac{0.064 \times 0.1 \times(1)^{2}}{2 \times 9.81 \times 0.001}=0.3265 \mathrm{~m} \text { of water }
\end{aligned}
$$

Applying Bernoulli's equation at section (1) \& (2) with the head loss in account.

And

$$
\begin{aligned}
\frac{p_{1}}{\rho g}+\frac{V_{1}^{2}}{2 g}+z_{1} & =\frac{p_{2}}{\rho g}+\frac{V_{2}^{2}}{2 g}+z_{2}+h_{f} \\
z_{1} & =z_{2} \\
p_{2} & =0 \\
\frac{p_{1}}{\rho g} & =\left(\frac{V_{2}^{2}-V_{1}^{2}}{2 g}\right)+h_{f} \\
p_{1} & =\frac{\rho}{2}\left(V_{2}^{2}-V_{1}^{2}\right)+\rho g h_{f} \\
& =\frac{1000}{2}\left[(1)^{2}-(0.01)^{2}\right]+1000 \times 9.81 \times 0.3265 \\
& =499.95+3202.965=3702.915 \mathrm{~N} / \mathrm{m}^{2}
\end{aligned}
$$

At the same plane Atmospheric pressure

Force required on plunger,

$$
F=p_{1} \times A_{1}=3702.915 \times \frac{\pi}{4} \times(0.01)^{2}=0.3 \mathrm{~N}
$$

Data for Q. 83-84 are given below. Solve the problems and choose correct answers.

Heat is being transferred by convection from water at $48^{\circ} \mathrm{C}$ to a glass plate whose surface that is exposed to the water is at $40^{\circ} \mathrm{C}$. The thermal conductivity of water is $0.6 \mathrm{~W} / \mathrm{mK}$ and the thermal conductivity of glass is $1.2 \mathrm{~W} / \mathrm{mK}$. The spatial gradient of temperature in the water at the water-glass interface is $d T / d y=1 \times 10^{4} \mathrm{~K} / \mathrm{m}$.


MCQ 1.83
GATE ME 2003 TWO MARK

The value of the temperature gradient in the glass at the water-glass interface in $\mathrm{K} / \mathrm{m}$ is
(A) $-2 \times 10^{4}$
(B) 0.0
(C) $0.5 \times 10^{4}$
(D) $2 \times 10^{4}$

SOL 1.83 Option (C) is correct.
Given for water : $T_{w}=48^{\circ} \mathrm{C}, k_{w}=0.6 \mathrm{~W} / \mathrm{mK}$
And for glass : $T_{g}=40^{\circ} \mathrm{C}, k_{g}=1.2 \mathrm{~W} / \mathrm{mK}$

Spatial gradient $\quad\left(\frac{d T}{d y}\right)_{w}=1 \times 10^{4} \mathrm{~K} / \mathrm{m}$
Heat transfer takes place between the water and glass interface by the conduction and convection. Heat flux would be same for water and glass interface. So, applying the conduction equation for water and glass interface.

$$
\begin{array}{rlr}
k_{w}\left(\frac{d T}{d y}\right)_{w} & =k_{g}\left(\frac{d T}{d y}\right)_{g} & q=\frac{Q}{A}=\frac{-k A \frac{d T}{d x}}{A}=-k \frac{d T}{d x} \\
\left(\frac{d T}{d y}\right)_{g} & =\frac{k_{w}}{k_{g}}\left(\frac{d T}{d y}\right)_{w} \\
& =\frac{0.6}{1.2} \times 10^{4}=0.5 \times 10^{4} \mathrm{~K} / \mathrm{m} &
\end{array}
$$

MCQ 1.84 The heat transfer coefficient $h$ in $\mathrm{W} / \mathrm{m}^{2} \mathrm{~K}$ is
GATE ME 2003
(A) 0.0
(B) 4.8
(C) 6
(D) 750

SOL 1.84 Option (D) is correct.
From the equation of convection,
Heat flux, $\quad q=h\left[T_{w}-T_{g}\right]$
Where, $h=$ Heat transfer coefficient

$$
\begin{align*}
q & =k_{w}\left(\frac{d T}{d y}\right)_{w}=k_{g}\left(\frac{d T}{d y}\right)_{g}  \tag{i}\\
& =0.6 \times 10^{4}=6000 \mathrm{~W} / \mathrm{m}^{2}
\end{align*}
$$

Now from equation (i),

$$
\begin{aligned}
h & =\frac{q}{T_{w}-T_{g}} \\
& =\frac{6000}{48-40}=\frac{6000}{8}=750 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}
\end{aligned}
$$

## Data for Q. 85 \& 86 are given below. Solve the problems and choose correct answers.

Nitrogen gas (molecular weight 28) is enclosed in a cylinder by a piston, at the initial condition of $2 \mathrm{bar}, 298 \mathrm{~K}$ and $1 \mathrm{~m}^{3}$. In a particular process, the gas slowly expands under isothermal condition, until the volume becomes $2 \mathrm{~m}^{3}$. Heat exchange occurs with the atmosphere at 298 K during this process.

MCQ 1.85 The work interaction for the Nitrogen gas is
(A) 200 kJ
(B) 138.6 kJ
(C) 2 kJ
(D) -200 kJ

SOL 1.85 Option (B) is correct.

Given : $p_{1}=2$ bar $=2 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}, T_{1}=298 \mathrm{~K}=T_{2}, \nu_{1}=1 \mathrm{~m}^{3}, \nu_{2}=2 \mathrm{~m}^{3}$
The process is isothermal,
So,

$$
\begin{aligned}
W & =p_{1} \nu_{1} \ln \frac{p_{1}}{p_{2}}=p_{1} \nu_{1} \ln \left(\frac{\nu_{2}}{\nu_{1}}\right) \\
& =2 \times 10^{5} \times 1 \ln \left[\frac{2}{1}\right]=2 \times 0.6931 \times 10^{5} \\
& =10^{5} \times 1.3863=138.63 \mathrm{~kJ} \simeq 138.6 \mathrm{~kJ}
\end{aligned}
$$

MCQ 1.86
GATE ME 2003
TWO MARK

The entropy changes for the Universe during the process in $\mathrm{kJ} / \mathrm{K}$ is
(A) 0.4652
(B) 0.0067
(C) 0
(D) -0.6711

SOL 1.86 Option (A) is correct.
Entropy, $\quad \Delta S=\frac{\Delta Q}{T}$
From first law of thermodynamics,

$$
\Delta Q=\Delta U+\Delta W
$$

For isothermal process,

$$
\begin{aligned}
\Delta U & =0 \\
\Delta Q & =\Delta W
\end{aligned}
$$

From equation (i),

$$
\Delta S=\frac{\Delta W}{T}=\frac{138.63 \mathrm{~kJ}}{298 \mathrm{~K}}=0.4652 \mathrm{~kJ} / \mathrm{K}
$$

## Data for Q. 87 and 88 are given below. Solve the problems and choose correct answers.

A refrigerator based on ideal vapour compression cycle operates between the temperature limits of $-20^{\circ} \mathrm{C}$ and $40^{\circ} \mathrm{C}$. The refrigerant enters the condenser as saturated vapour and leaves as saturated liquid. The enthalpy and entropy values for saturated liquid and vapour at these temperatures are given in the table below.

| $\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$ | $h_{f}(\mathrm{~kJ} / \mathrm{kg})$ | $h_{g}(\mathrm{~kJ} / \mathrm{kg})$ | $s_{f}(\mathrm{~kJ} / \mathrm{kg} \mathrm{K})$ | $s_{g}(\mathrm{~kJ} / \mathrm{kg} \mathrm{K})$ |
| :--- | :--- | :--- | :--- | :--- |
| -20 | 20 | 180 | 0.07 | 0.7366 |
| 40 | 80 | 200 | 0.3 | 0.67 |

MCQ 1.87 If refrigerant circulation rate is $0.025 \mathrm{~kg} / \mathrm{s}$, the refrigeration effect is equal to
(A) 2.1 kW
(B) 2.5 kW
(C) 3.0 kW
(D) 4.0 kW

SOL 1.87 Option (A) is correct.


Given : $T_{1}=T_{4}=-20^{\circ} \mathrm{C}=(-20+273) \mathrm{K}=253 \mathrm{~K}, \dot{m}=0.025 \mathrm{~kg} / \mathrm{sec}$ $T_{2}=T_{3}=40^{\circ} \mathrm{C}=(40+273) \mathrm{K}=313 \mathrm{~K}$
From the given table,
At, $T_{2}=40^{\circ} \mathrm{C}, h_{2}=200 \mathrm{~kJ} / \mathrm{kg}$
And

$$
h_{3}=h_{4}=80 \mathrm{~kJ} / \mathrm{kg}
$$

From the given $T-s$ curve

$$
\begin{aligned}
& s_{1}=s_{2} \\
& s_{2}=s_{f}+x s_{f g}
\end{aligned}
$$

$x=$ Dryness fraction
$\left\{s_{2}\right.$ is taken 0.67 because $s_{2}$ at the temperature $40^{\circ} \mathrm{C} \&$ at 2 high temperature and pressure vapour refrigerant exist.\}

$$
\begin{aligned}
0.67 & =0.07+x(0.7366-0.07) \\
0.67-0.07 & =x \times 0.6666 \\
0.6 & =x \times 0.6666 \\
x & =\frac{0.6}{0.6666}=0.90
\end{aligned}
$$

And Enthalpy at point 1 is,

$$
\begin{aligned}
h_{1} & =h_{f}+x h_{f g}=h_{f}+x\left(h_{g}-h_{f}\right) \\
& =20+0.90(180-20)=164 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

Now refrigeration effect is produce in the evaporator.
Heat extracted from the evaporator or refrigerating effect,

$$
R_{E}=\dot{m}\left(h_{1}-h_{4}\right)=0.025(164-80)=2.1 \mathrm{~kW}
$$

MCQ 1.88 The COP of the refrigerator is
GATE ME 2003
(A) 2.0
(B) 2.33
(C) 5.0
(D) 6.0

SOL 1.88 Option (B) is correct.

$$
\begin{aligned}
(C O P)_{\text {refrigerator }} & =\frac{h_{1}-h_{4}}{h_{2}-h_{1}}=\frac{\text { Refrigerating effect }}{\text { Work done }} \\
& =\frac{164-80}{200-164}=\frac{84}{36}=2.33
\end{aligned}
$$

## Data for Q. 89-90 are given below. Solve the problems and choose correct answers.

A cylinder is turned on a lathe with orthogonal machining principle. Spindle rotates at 200 rpm . The axial feed rate is 0.25 mm per revolution. Depth of cut is 0.4 mm . The rake angle is $10^{\circ}$. In the analysis it is found that the shear angle is $27.75^{\circ}$.

MCQ 1.89 The thickness of the produced chip is

GATE ME 2003 TWO MARK
(A) 0.511 mm
(B) 0.528 mm
(C) 0.818 mm
(D) 0.846 mm

SOL 1.89 Option (A) is correct
Given : $N=200 \mathrm{rpm}, f=0.25 \mathrm{~mm} /$ revolution, $d=0.4 \mathrm{~mm}, \alpha=10^{\circ}, \phi=27.75^{\circ}$
Uncut chip thickness, $\quad t=f($ feed, $\mathrm{mm} / \mathrm{rev}$. $)=0.25 \mathrm{~mm} / \mathrm{rev}$.
Chip thickness ratio is given by,

$$
r=\frac{t}{t_{c}}=\frac{\sin \phi}{\cos (\phi-\alpha)}
$$

Where,

$$
t_{c}=\text { thickness of the produced chip. }
$$

So,

$$
t_{c}=\frac{t \times \cos (\phi-\alpha)}{\sin \phi}
$$

## Alternate :

$$
\Delta=\frac{\theta .25 \times \cos (27.75-10)}{\sin (27.75)}=0.511 \mathrm{~mm}
$$

We also find the value of $t_{c}$ by the general relation,

$$
\tan \phi=\frac{r \cos \alpha}{1-r \sin \alpha} \quad \text { where } r=\frac{t}{t_{c}}
$$

MCQ 1.90 GATE ME 2003 TWO MARK

In the above problem, the coefficient of friction at the chip tool interface obtained using Earnest and Merchant theory is
(A) 0.18
(B) 0.36
(C) 0.71
(D) 0.98

SOL 1.90 Option (D) is correct.
We know that angle of friction,

$$
\begin{array}{ll} 
& \beta=\tan ^{-1} \mu \\
\text { or, } & \mu=\tan \beta \tag{i}
\end{array}
$$

For merchant and earnest circle, the relation between rake angle $(\alpha)$, shear angle ( $\phi)$ and friction angle $(\beta)$ is given by,

$$
\begin{aligned}
2 \phi+\beta-\alpha & =90^{\circ} \\
\beta & =90^{\circ}+\alpha-2 \phi \\
& =90^{\circ}+10-2 \times 27.75=44.5^{\circ}
\end{aligned}
$$

Now, from equation (i),

$$
\mu=\tan \left(44.5^{\circ}\right)=0.98
$$

| Answer Sheet |  |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1. | $(\mathrm{~A})$ | 19. | $(\mathrm{C})$ | 37. | $(\mathrm{~A})$ | 55. | $(\mathrm{~B})$ | 73. | $(\mathrm{~B})$ |
| 2. | $(\mathrm{D})$ | 20. | $(\mathrm{C})$ | 38. | $(\mathrm{~A})$ | 56. | $(\mathrm{C})$ | 74. | $(\mathrm{D})$ |
| 3. | $(\mathrm{C})$ | 21. | $(\mathrm{D})$ | 39. | $(\mathrm{~A})$ | 57. | $(\mathrm{~B})$ | 75. | $(\mathrm{C})$ |
| 4. | $(\mathrm{D})$ | 22. | $(\mathrm{D})$ | 40. | $(\mathrm{D})$ | 58. | $(\mathrm{~A})$ | 76. | $(\mathrm{D})$ |
| 5. | $(\mathrm{D})$ | 23. | $(\mathrm{C})$ | 41. | $(\mathrm{~B})$ | 59. | $(\mathrm{~A})$ | 77. | $(\mathrm{~A})$ |
| 6. | $(\mathrm{C})$ | 24. | $(\mathrm{~B})$ | 42. | $(\mathrm{~B})$ | 60. | $(\mathrm{~B})$ | 78. | $(\mathrm{C})$ |
| 7. | $(\mathrm{~B})$ | 25. | $(\mathrm{C})$ | 43. | $(\mathrm{C})$ | 61. | $(\mathrm{D})$ | 79. | $(\mathrm{~A})$ |
| 8. | $(\mathrm{D})$ | 26. | $(\mathrm{D})$ | 44. | $(\mathrm{D})$ | 62. | $(\mathrm{~A})$ | 80. | $(\mathrm{~B})$ |
| 9. | $(\mathrm{~A})$ | 27. | $(\mathrm{D})$ | 45. | $(\mathrm{~A})$ | 63. | $(\mathrm{~A})$ | 81. | $(\mathrm{~B})$ |
| 10. | $(\mathrm{~B})$ | 28. | $(\mathrm{~B})$ | 46. | $(\mathrm{~B})$ | 64. | $(\mathrm{C})$ | 82. | $(\mathrm{C})$ |
| 11. | $(\mathrm{C})$ | 29. | $(\mathrm{~B})$ | 47. | $(\mathrm{D})$ | 65. | $(\mathrm{~B})$ | 83. | $(\mathrm{C})$ |
| 12. | $(\mathrm{C})$ | 30. | $(\mathrm{~A})$ | 48. | $(\mathrm{~A})$ | 66. | $(\mathrm{C})$ | 84. | $(\mathrm{D})$ |
| 13. | $(\mathrm{D})$ | 31. | $(\mathrm{C})$ | 49. | $(\mathrm{D})$ | 67. | $(\mathrm{~A})$ | 85. | $(\mathrm{~B})$ |
| 14. | $(\mathrm{C})$ | 32. | $(\mathrm{~B})$ | 50. | $(\mathrm{~A})$ | 68. | $(\mathrm{C})$ | 86. | $(\mathrm{~A})$ |
| 15. | $(\mathrm{C})$ | 33. | $(\mathrm{~A})$ | 51. | $(\mathrm{~A})$ |  |  |  |  |
| 16. | $(\mathrm{~B})$ | 34. | $(\mathrm{C})$ | 52. | $(\mathrm{D})$ | 70. | $(\mathrm{D})$ | 88. | $(\mathrm{~B})$ |
| 17. | $(\mathrm{~B})$ | 35. | (B) | 53. | $(\mathrm{~B}) \square$ | 71. | $(\mathrm{~A})$ | 89. | $(\mathrm{~A})$ |
| 18. | $(\mathrm{~B})$ | 36. | $(\mathrm{D})$ | 54. | $(\mathrm{~B})$ | 72. | $(\mathrm{C})$ | 90. | $(\mathrm{D})$ |

# GATE Multiple Choice Questions For Mechanical Engineering 

## By NODIA and Company

Available in Three Volumes

## Features:

- The book is categorized into chapter and the chapter are sub-divided into units
- Unit organization for each chapter is very constructive and covers the complete syllabus
- Each unit contains an average of 40 questions
- The questions match to the level of GATE examination
- Solutions are well-explained, tricky and consume less time. Solutions are presented in such a way that it enhances you fundamentals and problem solving skills
- There are a variety of problems on each topic
- Engineering Mathematics is also included in the book


## Contents

## VOLUME-1 Applied Mechanics and Design

## UNIT 1. Engineering Mechanics

1.1 Equilibrium of forces
1.2 Structure
1.3 Friction
1.4 Virtual work
1.5 Kinematics of particle
1.6 Kinetics of particle
1.7 Plane kinematics of rigid bodies
1.8 Plane kinetics of rigid bodies

## UNIT 2. Strength of Material

### 2.1 Stress and strain

2.2 Axial loading
2.3 Torsion
2.4 Shear force and bending moment
2.5 Transformation of stress and strain
2.6 Design of beams and shafts
2.7 Deflection of beams and shafts
2.8 Column
2.9 Energy methods

## UNIT 3. Machine Design

3.1 Design for static and dynamic loading
3.2 Design of joints
3.3 Design of shaft and shaft components
3.4 Design of spur gears
3.5 Design of bearings
3.6 Design of clutch and brakes

## UNIT 4. Theory of Machine

4.1 Analysis of plane mechanism
4.2 Velocity and acceleration
4.3 Dynamic analysis of slider-crank and cams
4.4 Gear-trains
4.5 Flywheel
4.6 vibration

## VOLUME-2

Fluid Mechanics and Thermal Sciences

## UNIT 5. Fluid Mechanics

5.1 Basic concepts and properties of fluids
5.2 Pressure and fluid statics
5.3 Fluid kinematics and Bernoulli Equation
5.4 Flow analysis using control volume
5.5 Flow analysis using differential method
5.6 Internal flow
5.7 External flow
5.8 Open channel flow
5.9 Turbomachinary

## UNIT 6. Heat Transfer

6.1 Basic concepts and modes of Heat transfer
6.2 Fundamentals of conduction
6.3 Steady heat conduction
6.4 Transient heat conduction
6.5 Fundamentals of convection
6.6 Free convection
6.7 Forced convection
6.8 Fundamentals of thermal radiation
6.9 Radiation Heat transfer
6.10 Heat exchangers.

## UNIT 7. Thermodynamics

7.1 Basic concepts and Energy analysis
7.2 Properties of pure substances
7.3 Energy analysis of closed system
7.4 Mass and energy analysis of control volume
7.5 Second law of thermodynamics
7.6 Entropy
7.7 Gas power cycles
7.8 Vapour and combined power cycles
7.9 Refrigeration and air conditioning

## VOLUME-3 Manufacturing and Industrial Engineering

## UNIT 8. Engineering Materials

8.1 Structure and properties of engineering materials, heat treatment, stress-strain diagrams for engineering materials

## UNIT 9. Metal Casting:

Design of patterns, moulds and cores; solidification and cooling; riser and gating design, design considerations.

## UNIT 10. Forming:

Plastic deformation and yield criteria; fundamentals of hot and cold working processes; load estimation for bulk (forging, rolling, extrusion, drawing) and sheet (shearing, deep drawing, bending) metal forming processes; principles of powder metallurgy.

## UNIT 11. Joining:

Physics of welding, brazing and soldering; adhesive bonding; design considerations in welding.

## UNIT 12. Machining and Machine Tool Operations:

Mechanics of machining, single and multi-point cutting tools, tool geometry and materials, tool life and wear; economics of machining; principles of non-traditional machining processes; principles of work holding, principles of design of jigs and fixtures

## UNIT 13. Metrology and Inspection:

Limits, fits and tolerances; linear and angular measurements; comparators; gauge design; interferometry; form and finish measurement; alignment and testing methods; tolerance analysis in manufacturing and assembly.

## UNIT 14. Computer Integrated Manufacturing:

Basic concepts of CAD/CAM and their integration tools.

## UNIT 15. Production Planning and Control:

Forecasting models, aggregate production planning, scheduling, materials requirement planning

## UNIT 16. Inventory Control:

Deterministic and probabilistic models; safety stock inventory control systems.

## UNIT 17. Operations Research:

Linear programming, simplex and duplex method, transportation, assignment, network flow models, simple queuing models, PERT and CPM.

## UNIT 18. Engineering Mathematics:

### 18.1 Linear Algebra

18.2 Differential Calculus

### 18.3 Integral Calculus

18.4 Differential Equation
18.5 Complex Variable
18.6 Probability \& Statistics
18.7 Numerical Methods

