

	Answer			
	a) $\angle OMN = 90^{\circ}$			
	b) 3 <i>cm</i>			
	c) $3\sqrt{3}$ cm			
4	There is a point 10 cm away from the centre of a circle of radius 6 cm . A tangent is			
	drawn through that point .			
	a)What is the angle between a tangent at a point and the radius through that point ?			
	b) What is the length of the tangent ?			
	Answer			
	a) 90°			
	b) $\sqrt{10^2 - 6^2} = \sqrt{100 - 36} = \sqrt{64} = 8 \ cm$			
5	There is a point 13 cm away from the centre of a circle of radius 5 cm . A tangent is			
	drawn through that point .			
	a)What is the angle between a tangent at a point and the radius through that point ?			
	b) What is the length of the tangent ?			
	<u>Answer</u>			
	a) 90°			
	b) $\sqrt{13^2 - 5^2} = \sqrt{169 - 25} = \sqrt{144} = 12 \ cm$			
6	In the figure ,two circles intersect at P . PQ is a tangent to Q			
	the circle with centre A.			
	a) What is the measure of $\angle APQ$?			
	b)Prove that PQ is a tangent to the circle with centre B?			

	Answer
	a) $\angle APQ = 90^{\circ}$
	b) $\angle BPQ = 90^{\circ} = PQ$ is a tangent to the circle with centre B .
	(The tangent at a point on the circle is perpendicular to the radius through that point
7	In the figure ,a circle and a semicircle intersect at P . P
	A is the centre of the circle and AB is the diameter of
	the semicircle . $\begin{pmatrix} A \\ A \end{pmatrix} = \begin{pmatrix} B \\ B \end{pmatrix}$
	a) What is the measure of $\angle APB$?
	b) Prove that PB is a tangent to the circle with centre A ?
	Answer
	a) $\angle APB = 90^{\circ}$
	b) The tangent at a point on the circle is perpendicular to the radius through that
	point . So PB is a tangent to the circle with centre A .
8	In the figure , diagonals of a rhombus intersect at a point P on the circle with centre A . a) What is the measure of $\angle APD$? b) Prove that PD is a tangent to the circle with centre A ?
	Answer
	a) $\angle APD = 90^{\circ}$
	b) The tangent at a point on the circle is perpendicular to the radius through that
	point . So PD $$ is a tangent to the circle with centre A $$.
9	In the figure ,O is the centre of the circle and the tangents A
	through the points A and B intersect at P . \angle APB = 40 ^o
	a) What is the measure of $\angle OAP$?
	b) What is the measure of $\angle AOB$?
	SARATH A S. VMC CHSS WANDOOR MAI APPURAM

<u>Answer</u>

a) \angle OAP = 90^o

b) *PA* = *PB* (The tangents to a circle from a point are of the same length)

OA = OB (Radii of a circle are equal)

OP = OP (Common side)

Since the sides of the triangle AOP are equal to the sides of the triangle BOP, they are equal triangles .

c) \angle APO = \angle BPO (Angles opposite to equal sides of equal triangles are equal)

A

B

 \therefore OP is the bisector of \angle APB

15 In the figure , O is the centre of circle and the tangents

through the points A and B intersect at P.

a) What is the measure of \angle OAP ?

b) Prove that the triangles AOP and BOP are equal ?

c) Prove that OP is the bisector of \angle AOB ?

<u>Answer</u>

a) ∠ OAP = 90⁰

b) PA = PB (The tangents to a circle from a point are of the same length)

OA = OB (Radii of a circle are equal)

OP = OP (Common side)

Since the sides of the triangle AOP are equal to the sides of the triangle BOP, they are equal triangles .

c) \angle AOP = \angle BOP (Angles opposite to equal sides of equal triangles are equal)

 \therefore OP is the bisector of $\angle AOB$

16 In the figure , O is the centre of circle and the tangents

through the points A and B intersect at P.

a) What is the measure of $\angle OAP$?

b) Prove that the triangles AOP and BOP are equal ?

c) Prove that the angles of the triangles AOM and BOM are equal ?

A

B

7

d) Prove that OP is the bisector of AB ?

e) What is the measure of \angle AMO ?

<u>Answer</u>

(

a) \angle OAP = 90^{\circ}

b) *PA* = *PB* (The tangents to a circle from a point are of the same length)

OA = OB (Radii of a circle are equal)

OP = OP (Common side)

Since the sides of the triangle AOP are equal to the sides of the triangle BOP, they are equal triangles .

c)
$$OA = OB$$
 (Radii of a circle are equal)

OM = OM (Common side)

 $\angle AOM = \angle BOM$ ($\angle AOP = \angle BOP$)

Since two sides of the triangle AOM and the angle made by them are equal to two side of the triangle BMO, they are equal triangles.

d) AM = BM (Sides opposite to equal angles of equal triangles are equal)

e) $\angle AMO = \angle AMO$

 \angle AMO + \angle AMO = 180[°] (linear pair)

 $\therefore \angle AMO = \angle AMO = 90^{\circ}$

 $[\]therefore$ OP is the bisector of AB .

	Answer
	a) $PD = PC = 5 \text{ cm}.$
	b) $PE = PF = 3 cm.$
	CF = 5 + 3 = 8 cm.
20	In the figure , O is the centre of the circle and
	tangents through the points A and B intersect at P.
	$\angle APB = 40^{\circ}$
	a) What is the measure of $\angle OAP$?
	b) What is the measure of $\angle AOB$?
	c) What is the measure of $\angle ABP$?
	d) What is the measure of $\angle OAB$?
	Answer
	a) $\angle OAP = 90^{\circ}$
	b) $\angle AOB = 140^{\circ}$
	c) $\angle ABP = 70^{\circ}$
	d) $\angle OAB = 20^{\circ}$
21	In the figure , O is the centre of the circle and
	tangents through the points C and D intersect
	at Q. \angle COD = 130 ⁰ $\left(\begin{array}{c} O \\ O \\ 1 \end{array} \right) \qquad \bigcirc Q$
	a) What is the measure of $\angle OCQ$?
	b) What is the measure of $\angle OCD$?
	c) What is the measure of \angle CDQ ?
	c) What is the measure of $\angle CQD$?
	SARATH A S, VMC GHSS WANDOOR, MALAPPURAM 9

Answer a) $\angle OAP = 90^{\circ}$ b) $\angle OAP = \angle OQA = 90^{\circ}$ $\angle AOP = \angle AOQ$ $\angle OPA = \angle OAQ$ c) $\frac{OP}{OA} = \frac{OA}{OO}$ (The sides of triangles with the same angles, taken in the order of size, are in the same ratio) $OP \times OQ = OA^2$ 24 In the figure , two circles intersect at P . CD is the common tangent of the circles . Radius of the smaller circle is 4 centimetres and the radius of the larger circle is 9 centimetres . AE is perpendicular to BC . CD a) What is the measure of \angle ADC ? Eb) Prove that AECD is a rectangle ? c) What is the length of BE ? d) What is the length of AB ? e) What is the length of the tangent CD ? Answer a) $\angle ADC = 90^{\circ}$ b) $\angle \text{ECD} = 90^{\circ}$, $\angle \text{AEC} = 90^{\circ}$ $\therefore \angle DAE = 90^{\circ} = AECD$ is a rectangle c) AD = CE = 4 cm. BE = BC - CE = 9 - 4 = 5 cm. d) AB = AP + BP = 4 + 9 = 13 cm. $BE^{2} + AE^{2} = AB^{2} = => 5^{2} + AE^{2} = 13^{2} ==> 25 + AE^{2} = 169$ e) $AE^2 = 169 - 25 = 144$ $AE = \sqrt{144} = 12 \ cm$. CD = AE = 12 cmSARATH A S, VMC GHSS WANDOOR, MALAPPURAM 11

SARATH A S, VMC GHSS WANDOOR, MALAPPURAM

15