WANDOOR GANITHAM - S.S.L.C STUDY MATERIAL 2022

REVISION - TANGENTS - PART 1 - ANSWERS

1 In the figure, O is the centre of the circle and $A P$ is a tangent $O A=3$ centimetres , OP = 5 centimetres .
a) What is the measure of \angle OAP ?
b) What is the length of the tangent PA ?

Answer

a) $\angle \mathrm{OAP}=90^{\circ}$
b) $P A^{2}+3^{2}=5^{2}=\Rightarrow P A^{2}+9=25==>P A^{2}=25-9=16$

$$
P A=\sqrt{16}=4 \mathrm{~cm}
$$

2 In the figure, O is the centre of the circle and $Q B$ is a tangent . $\mathrm{OQ}=8 \mathrm{~cm}, \angle \mathrm{OQB}=30^{\circ}$
a) What is the measure of $\angle \mathrm{OBQ}$?

b) What is the radius of the circle ?
c) What is the length of the tangent ?

Answer
a) $\angle \mathrm{OBQ}=90^{\circ}$
b) 4 cm
c) $4 \sqrt{3} \mathrm{~cm}$

3 In the figure, O is the centre of the circle and MN is a tangent . $\mathrm{ON}=\mathbf{6} \mathrm{cm}$, $\angle \mathrm{MON}=60^{\circ}$
a) What is the measure of $\angle \mathrm{OMN}$?
b) What is the radius of the circle ?

c) What is the length of the tangent ?

Answer
a) $\angle \mathrm{OMN}=90^{\circ}$
b) $\mathbf{3 ~ c m}$
c) $3 \sqrt{3} \mathrm{~cm}$

4 There is a point 10 cm away from the centre of a circle of radius $\mathbf{6 c m}$. A tangent is drawn through that point .
a)What is the angle between a tangent at a point and the radius through that point ?
b) What is the length of the tangent ?

Answer

a) $\mathbf{9 0}{ }^{0}$
b) $\sqrt{10^{2}-6^{2}}=\sqrt{100-36}=\sqrt{64}=8 \mathrm{~cm}$

5 There is a point 13 cm away from the centre of a circle of radius 5 cm . A tangent is drawn through that point .
a)What is the angle between a tangent at a point and the radius through that point ?
b) What is the length of the tangent ?

Answer

a) $\mathbf{9 0}{ }^{0}$
b) $\sqrt{13^{2}-5^{2}}=\sqrt{169-25}=\sqrt{144}=12 \mathrm{~cm}$

6 In the figure, two circles intersect at $P . P Q$ is a tangent to the circle with centre A.
a) What is the measure of $\angle \mathrm{APQ}$?
b)Prove that $P Q$ is a tangent to the circle with centre B ?

Answer
a) $\angle \mathrm{APQ}=90^{\circ}$
b) $\angle B P Q=90^{\circ}==>P Q$ is a tangent to the circle with centre B.
(The tangent at a point on the circle is perpendicular to the radius through that point
7 In the figure ,a circle and a semicircle intersect at \mathbf{P}.
A is the centre of the circle and $A B$ is the diameter of the semicircle .
a) What is the measure of $\angle \mathrm{APB}$?

b) Prove that PB is a tangent to the circle with centre A ?

Answer
a) $\angle \mathrm{APB}=90^{\circ}$
b) The tangent at a point on the circle is perpendicular to the radius through that point. So PB is a tangent to the circle with centre A .
8 In the figure, diagonals of a rhombus intersect at a point P on the circle with centre A.
a) What is the measure of \angle APD ?
b) Prove that PD is a tangent to the circle with centre A ?

Answer

a) $\angle \mathrm{APD}=90^{\circ}$
b) The tangent at a point on the circle is perpendicular to the radius through that point. So PD is a tangent to the circle with centre A .
9 In the figure, O is the centre of the circle and the tangents through the points A and B intersect at $P . \angle A P B=40$
a) What is the measure of $\angle \mathrm{OAP}$?
b) What is the measure of $\angle A O B$?

Answer
a) $\angle \mathrm{OAP}=90^{\circ}$
b) $\angle \mathrm{AOB}=40^{\circ} \quad(\mathrm{PA}=\mathrm{PB})$

10 In the figure, O is the centre of the circle and the tangents through the points A and B intersect at P.
$\angle \mathrm{AOB}=130^{\circ}$
a) What is the measure of $\angle \mathrm{OAP}$?

b) What is the measure of $\angle \mathrm{APB}$?

Answer

a) $\angle \mathrm{OAP}=90^{\circ}$
b) $\angle \mathrm{APB}=180^{\circ}-130^{\circ}=50^{\circ}$

11 In the figure, tangents through the points C and D of a circle with centre A meet at P. The lines CP and DP are extended to touch the circle with centre at the points E and $F . \angle C A D=120^{\circ}$

a) What is the measure of $\angle \mathrm{ACP}$?
b) What is the measure of $\angle \mathrm{CPD}$?
c) What is the measure of $\angle E B F$?

Answer

a) $\angle \mathrm{ACP}=90^{\circ}$
b) $\angle \mathrm{CPD}=180^{\circ}-120^{\circ}=60^{\circ}$
c) $\angle E P F=60^{\circ}$
$\angle \mathrm{EBF}=180^{\circ}-60^{\circ}=120^{\circ}$

12 In the figure circle touches the sides of the triangle at the points P, Q and $R . O$ is the centre of the circle $. \angle B A C=55^{\circ}$,
$\angle \mathrm{ABC}=45^{\circ}$
a) What is the measure of $\angle \mathrm{BPO}$?
b) What is the measure of $\angle \mathrm{POQ}$?
c) What is the measure of $\angle Q O R$?

Answer
a) $\angle \mathrm{BPO}=90^{\circ}$
b) $\angle \mathrm{POQ}=180^{\circ}-45^{\circ}=135^{\circ}$
c) $\angle \mathrm{ACB}=180^{\circ}-\left(45^{\circ}+55^{\circ}\right)=180^{\circ}-100^{\circ}=80^{\circ}$
$\angle \mathrm{QOR}=180^{\circ}-80^{\circ}=80^{\circ}$
13 In the figure, \mathbf{O} is the centre of circle and the tangents through the points A and B intersect at P.
a) What is the measure of $\angle O A P$?
b) Prove that the tangents have the same length .

Answer

a) $\angle \mathrm{OAP}=90^{\circ}$
b) $\angle \mathrm{OBP}=90^{\circ}$

In right triangle $O A P, \quad P A=\sqrt{O P^{2}-O A^{2}}$
In right triangle $O B P, \quad P B=\sqrt{O P^{2}-O B^{2}}$

$$
P A=P B
$$

$$
(O A=O B)
$$

14 In the figure, O is the centre of circle and the tangents through the points A and B intersect at P.
a) What is the measure of $\angle O A P$?
b) Prove that the triangles AOP and BOP are equal ?

c) Prove that OP is the bisector of $\angle \mathrm{APB}$?

Answer
a) $\angle \mathrm{OAP}=90^{\circ}$
b) $P A=P B$ (The tangents to a circle from a point are of the same length)

$$
\begin{aligned}
& O A=O B \quad(\text { Radii of a circle are equal }) \\
& O P=O P \quad(\text { Common side })
\end{aligned}
$$

Since the sides of the triangle AOP are equal to the sides of the triangle BOP, they are equal triangles .
c) $\angle \mathrm{APO}=\angle \mathbf{B P O}$ (Angles opposite to equal sides of equal triangles are equal)
$\therefore \quad O P$ is the bisector of $\angle A P B$

15 In the figure, \mathbf{O} is the centre of circle and the tangents through the points A and B intersect at P.
a) What is the measure of \angle OAP ?
b) Prove that the triangles AOP and BOP are equal ?

c) Prove that OP is the bisector of $\angle \mathrm{AOB}$?

Answer

a) $\angle \mathrm{OAP}=90^{\circ}$
b) $\quad P A=P B$ (The tangents to a circle from a point are of the same length)
$O A=O B \quad$ (Radii of a circle are equal)
$O P=O P \quad$ (Common side)
Since the sides of the triangle AOP are equal to the sides of the triangle BOP, they are equal triangles .
c) $\angle \mathrm{AOP}=\angle \mathrm{BOP}$ (Angles opposite to equal sides of equal triangles are equal)
\therefore OP is the bisector of $\angle A O B$

16 In the figure, O is the centre of circle and the tangents through the points A and B intersect at P.
a) What is the measure of \angle OAP ?
b) Prove that the triangles AOP and BOP are equal ?

c) Prove that the angles of the triangles AOM and BOM are equal ?
d) Prove that OP is the bisector of AB ?
e) What is the measure of $\angle \mathrm{AMO}$?

Answer
a) $\angle \mathrm{OAP}=90^{\circ}$
b) $P A=P B \quad$ (The tangents to a circle from a point are of the same length)
$O A=O B \quad$ (Radii of a circle are equal)
$O P=O P \quad($ Common side)
Since the sides of the triangle AOP are equal to the sides of the triangle BOP, they are equal triangles .
c) $O A=O B \quad$ (Radii of a circle are equal)

$$
O M=O M \quad(\text { Common side })
$$

$\angle \mathrm{AOM}=\angle \mathrm{BOM} \quad(\angle \mathrm{AOP}=\angle \mathrm{BOP})$
Since two sides of the triangle AOM and the angle made by them are equal to two side of the triangle BMO, they are equal triangles .
d) $\mathbf{A M}=\mathbf{B M}$ (Sides opposite to equal angles of equal triangles are equal)
\therefore OP is the bisector of $A B$.
e) $\angle \mathrm{AMO}=\angle \mathrm{AMO}$
$\angle \mathrm{AMO}+\angle \mathrm{AMO}=180^{\circ} \quad$ (linear pair $)$
$\therefore \angle \mathrm{AMO}=\angle \mathbf{A M O}=\mathbf{9 0}^{\circ}$

17 In the figure two circle intersect at B. The tangents through A, B, C meet at $\mathbf{P} . \quad P A=5 \mathrm{~cm}$.
a) What is the length of PB ?
b) Prove that PBC is an isosceles triangle ?

Answer

a) $P B=5 \mathrm{~cm}$. (The tangents to a circle from a point are of the same length)
b) $P B=P C$
$\therefore \quad \mathrm{PBC}$ is an isosceles triangle .
18 In the figure two circle intersect at B. The tangents through A, B, C meet at $P . P A=6 \mathrm{~cm}, \angle B A P=50^{\circ}, \angle B C P=70^{\circ}$
a) What is the length of PB ?
b) What is the measure of $\angle \mathrm{APB}$?
c) What is the measure of $\angle \mathrm{BPC}$?

c) What is the measure of $\angle \mathrm{APC}$?

Answer

a) $P B=6 \mathrm{~cm} \quad$ (The tangents to a circle from a point are of the same length)
b) $\angle \mathrm{ABP}=\angle \mathrm{BAP}=50^{\circ}$

$$
\begin{gathered}
(P A=P B) \\
(P B=P C)
\end{gathered}
$$

c) $\angle \mathrm{BCP}=\angle \mathrm{CBP}=70^{\circ}$
$\angle B P C=180^{\circ}-\left(70^{\circ}+70^{\circ}\right)=180^{\circ}-140^{\circ}=40^{\circ}$
d) $\angle \mathrm{APB}=180^{\circ}-\left(50^{\circ}+50^{\circ}\right)=180^{\circ}-100^{\circ}=80^{\circ}$
$\angle \mathrm{APC}=\angle \mathrm{APB}+\angle \mathrm{BPC}=80^{\circ}+40^{\circ}=120^{\circ}$
19 In the figure, tangents through the points C and D of a circle with centre A meet at \mathbf{P}. The lines CP and DP are extended to touch the circle with centre at the points E and $F . P C=5$ centimetres
 $P E=3$ centimetres
a) What is the length of PD ?
b) What is the length of CF ?

Answer

a) $\mathbf{P D}=P C=5 \mathrm{~cm}$.
b) $\mathbf{P E}=\mathbf{P F}=\mathbf{3 c m}$.

$$
C F=5+3=8 \mathrm{~cm} .
$$

20 In the figure, O is the centre of the circle and tangents through the points A and B intersect at P.

$$
\angle A P B=40^{\circ}
$$

a) What is the measure of $\angle O A P$?

b) What is the measure of $\angle A O B$?
c) What is the measure of $\angle \mathrm{ABP}$?
d) What is the measure of $\angle O A B$?

Answer
a) $\angle \mathrm{OAP}=90^{\circ}$
b) $\angle \mathrm{AOB}=140^{\circ}$
c) $\angle \mathrm{ABP}=70^{\circ}$
d) $\angle \mathrm{OAB}=20^{\circ}$

21 In the figure, \mathbf{O} is the centre of the circle and tangents through the points C and D intersect at $Q . \angle C O D=130^{\circ}$
a) What is the measure of $\angle O C Q$?

b) What is the measure of $\angle O C D$?
c) What is the measure of $\angle \mathrm{CDQ}$?
c) What is the measure of $\angle \mathrm{CQD}$?

Answer
a) $\angle \mathrm{OCQ}=90^{\circ}$
b) $\angle O C D=25^{\circ}$
c) $\angle \mathrm{CDQ}=65^{\circ}$
c) $\angle \mathrm{CQD}=50^{\circ}$

22 In the figure, tangents through the points A and B of a circle intersect at \mathbf{P}. The line $\mathbf{Q R}$ touches the circle at \mathbf{C}.
a) If the length of $P A$ is 12 centimetres, what is the length of PB ?
b) If the length of $R C$ is 3 centimetres, what is the length of RA ?
c) Prove that the perimeter of the triangle PQR is double the length of PA ?

Answer
a) $P A=P B=12 \mathrm{~cm}$
c) $Q C=Q B$

$$
\begin{aligned}
\text { Perimeter of the triangle } P Q R & =P Q+Q R+P R \\
& =P Q+(Q C+R C)+P R \\
& =P Q+(Q B+R A)+P R \\
& =P B+P A \\
& =P A+P A=2 P A
\end{aligned}
$$

23 In th figure, O is the centre of the circle .
$A P$ is a tangent . $A Q$ is perpendicular to $O P$.
a) What is the measure of $\angle \mathrm{OAP}$?
b) Prove that the angles of the triangles OAP and
 OAQ are same ?
c) Prove that $\mathrm{OP} \times \mathrm{OQ}=\mathrm{OA}^{2}$?

Answer

a) $\angle \mathrm{OAP}=90^{\circ}$
b) $\angle \mathrm{OAP}=\angle \mathrm{OQA}=90^{\circ}$

$$
\angle \mathrm{AOP}=\angle \mathrm{AOQ}
$$

$$
\angle O P A=\angle O A Q
$$

c) $\frac{O P}{O A}=\frac{O A}{O Q}$ (The sides of triangles with the same angles, taken in the order of size , are in the same ratio)
$O P \times O Q=O A^{2}$
24 In the figure, two circles intersect at P. CD is the common tangent of the circles. Radius of the smaller circle is $\mathbf{4}$ centimetres and the radius of the larger circle is 9 centimetres . AE is perpendicular to BC .
a) What is the measure of $\angle \mathrm{ADC}$?
b) Prove that AECD is a rectangle ?
c) What is the length of $\mathbf{B E}$?
d) What is the length of $A B$?
e) What is the length of the tangent CD ?

Answer

a) $\angle \mathrm{ADC}=90^{\circ}$
b) $\angle \mathrm{ECD}=90^{\circ} \quad, \angle \mathrm{AEC}=90^{\circ}$
$\therefore \angle \mathrm{DAE}=9 \mathbf{0}^{\circ}==>$ AECD is a rectangle
c) $\mathrm{AD}=\mathrm{CE}=4 \mathrm{~cm}$.

$$
B E=B C-C E=9-4=5 \mathrm{~cm} .
$$

d) $\mathrm{AB}=\mathrm{AP}+\mathrm{BP}=4+9=13 \mathrm{~cm}$.
e) $B E^{2}+A E^{2}=A B^{2}==>5^{2}+A E^{2}=13^{2}==>25+A E^{2}=169$

$$
\begin{aligned}
A E^{2} & =169-25=144 \\
A E & =\sqrt{144}=12 \mathrm{~cm} . \\
C D & =A E=12 \mathrm{~cm}
\end{aligned}
$$

25 In the figure, the circle touches the sides of the triangle $A B C$ at the points $P, Q, R . A P=5$ centimetres $B Q=4$ centimetres , $C R=3$ centimetres .
a) What is the length of AR ?
b) What is the length of BC ?
c) What is the perimeter of the triangle $A B C$?

Answer

a) $\mathrm{AR}=\mathrm{AP}=5 \mathrm{~cm}$
b) $\mathrm{BP}=\mathrm{BQ}=\mathbf{4} \mathrm{cm}$
$C Q=C R=3 \mathrm{~cm}$
$B C=4+3=7 \mathrm{~cm}$
c) $\mathrm{AB}=5+4=9 \mathrm{~cm}$.

$$
\mathrm{AC}=5+3=8 \mathrm{~cm}
$$

Perimeter of the triangle $A B C=7+8+9=24 \mathrm{~cm}$.

26 In the figure, the circle touches the sides of the triangle
LMN at the points $X, Y, Z . L X=4$ centimetres , $M Y=2$ centimetres , $N Z=5$ centimetres.
a) What is the length of LZ ?
b) What is the length of MN ?

c) What is the perimeter of the triangle LMN ?

Answer

a) $L X=L Z=4 \mathrm{~cm}$
b) $\mathbf{M Y}=\mathbf{M X}=\mathbf{2} \mathbf{~ c m}$
$\mathrm{NZ}=\mathrm{NY}=\mathbf{5 c m}$
$\mathrm{MN}=2+5=7 \mathrm{~cm}$
c) $\mathrm{LM}=4+2=6 \mathrm{~cm}$

$\mathrm{LN}=4+5=9 \mathrm{~cm}$.
Perimeter of the triangle $L M N=7+9+6=22 \mathrm{~cm}$.
27 In the figure, the circle touches the sides of the triangle $A B C$ at the points $P, Q, R . A B=10$ centimetres , $B C=8$ centimetres , $A C=12$ centimetres .
a) Which other line has the same length as that of AP ?
b) If the length AR is taken as x, what is the length of $B Q$?
c) What is the value of x ?
d) What are the lengths of the lines $A P, B Q$ and $C R$

Answer

a) $\mathbf{A P}=\mathbf{A R}$
b) $\mathbf{B P}=\mathbf{B Q}=10-x$
c) $\mathbf{C Q}=\mathbf{C R}=12-x$
d) $10-x+12-x=8$

$$
\begin{aligned}
& 22-2 x=8 \\
& 2 x=14==>\quad x=\frac{14}{2}=7 \mathrm{~cm}
\end{aligned}
$$

$\mathrm{AP}=\mathrm{x}=7 \mathrm{~cm}$
$B Q=10-x=10-7=3 \mathrm{~cm}$
$\mathrm{CR}=12-\mathrm{x}=12-7=5 \mathrm{~cm}$

28 In the figure, the circle touches the sides of the triangle KLM at the points $\mathrm{S}, \mathrm{T}, \mathrm{U} \quad . \mathrm{KL}=11$ centimetres , $\mathbf{L M}=10$ centimetres, $\mathbf{K M}=7$ centimetres.
a) Which other line has the same length as that of KS ?
b)If the length KS is taken as x,what is the length of LT ?
c) What is the value of x ?
d) What are the lengths of the lines KU , LS
 and MT ?

Answer

a) $\mathrm{KS}=\mathbf{K U}$
b) $\mathbf{L S}=\mathbf{L T}=11-x$
c) $\mathbf{M U}=\mathbf{M T}=7-x$
d) $11-x+7-x=10$

$$
18-2 x=10
$$

$$
2 x=8 \quad==>\quad x=\frac{8}{2}=4 \mathrm{~cm}
$$

$K U=x=4 \mathrm{~cm}$
$\mathrm{LS}=11-x=11-4=7 \mathrm{~cm}$
MT $=7-x=7-4=3 \mathrm{~cm}$
29 In the figure, the circle touches the sides of the quadrilateral PQRS at the points A, B, C, D. $\mathrm{PA}=5$ centimetres , $\mathrm{QB}=2$ centimetres,
$R C=4$ centimetres,$S D=7$ centimetres.
a) What is the length of PB ?
b) What is the length of $\mathbf{Q R}$?

c) What is the length of RS ?
d) What is the perimeter of quadrilateral PQRS ?

Answer

a) $\mathbf{P B}=\mathbf{P A}=\mathbf{5 c m}$.
b) $\mathbf{Q B}=\mathbf{Q C}=2 \mathrm{~cm}$.

$$
\mathrm{QR}=2+4=6 \mathrm{~cm} .
$$

c) $\mathbf{R C}=\mathbf{R D}=\mathbf{4 c m}$.

$$
\text { RS }=4+3=7 \mathrm{~cm} .
$$

d) $\mathrm{SD}=\mathrm{SA}=\mathbf{3 \mathrm { cm }}$.

Perimeter of quadrilateral $P Q R S=6+7+8+7=28 \mathrm{~cm}$.
30 In the figure, the circle touches the sides of the quadrilateral ABCD at the points $\mathrm{K}, \mathrm{L}, \mathrm{M}, \mathrm{N}$.

AK = 6 centimetres, $B L=3$ centimetres ,
$C M=2$ centimetres, $D N=5$ centimetres.
a) What is the length of AL ?
b) What is the length of BC ?

c) What is the length of $C D$?
d) What is the perimeter of the quadrilateral ABCD ?

Answer

a) $\mathrm{AK}=\mathrm{AL}=6 \mathrm{~cm}$.
b) $\mathbf{B L}=\mathbf{B M}=\mathbf{3 c m}$.
$B C=3+2=5 \mathrm{~cm}$.
c) $\mathbf{C M}=\mathbf{C N}=2 \mathrm{~cm}$.
$C D=2+5=7 \mathrm{~cm}$.

d) $\mathrm{DN}=\mathrm{DK}=5 \mathrm{~cm}$.

Perimeter of the quadrilateral $A B C D=9+5+7+11=32 \mathrm{~cm}$.

