WANDOOR GANITHAM - S.S.L.C STUDY MATERIAL 2022 CONSTRUCTIONS

CONSTRUCTIONS - CIRCLES

1. Construction of a right angled triangle with given hypotenuse. Learning objective:

If we join the ends of a diameter of a circle to a point on the circle, we get a right angle. $i e$,

Angle in a semicircle is right.

- Draw a right angled triangle of hypotenuse $\mathbf{6 c m}$?

Step 1: Draw a line (AB) of length 6 cm .Find the midpoint (O) of AB.

Step 2: Draw a semicircle with O as centre and AB as diameter.

Step 3: Mark a point (\mathbf{P}) on the semicircle.

Step 4: Draw the lines AP and BP .

Draw an isosceles right angled triangle of hypotenuse 7 cm ?
Step 1: Draw a line ($A B$) of length 7 cm .Find the midpoint (O) of $A B$.

Step 2: Draw a semicircle with O as centre and $A B$ as diameter.

Step 3: The perpendicular drawn through O to the line $A B$ meets the semicircle at P.

Step 4: Draw the lines AP and BP.

2. Construction of a triangle with given angles and circumradius .

Learning objective :

The angle made by any arc of a circle on the alternate arc is half the angle made at the centre.

- Draw a triangle of circumradius 3 cm and two of the angles 40° and 60° ?

Step 1 :

Step 2:

Step 3 :

"Step 4: Draw the lines AB , AC and BC.

NB:

Draw a circle of given radius.
Take double the angles of the triangle at the centre within three consecutive radii.

3. Construction of a rectangle of given area same as that of another rectangle. . Learning objective :

If two chords of a circle intersect within the circle, then the products of the parts of the two chords are equal.
$i e$,
If two chords of a circle intersect within a circle, then the rectangles formed by the parts of the same chord have equal area.

Draw a rectangle of width $\mathbf{6 \mathrm { cm }}$ and height 2 cm . Draw a rectangle of the same area with width 7 cm ?

Step 1 : Draw a rectangle of width 6 cm and height 2 cm .

Step 2 : Extend the line $A B$ by 2 cm.

Step 3 : Extend the line CB downwards by 7 cm and mark a point P.

Step 4 : Join the points A, E and P to form a triangle.

Step 5 : Draw the perpendicular bisectors of the lines AP and EP. They intersect at O.

"Step 6 : Draw the circumcircle of the triangle AEP. The centre of the circumcircle is \mathbf{O}.

Step 7 : \quad The circumcircle meets the line BC at \mathbf{Q}.

Step 8 : Draw an arc with centre B and radius $B Q$. The arc meets the line BE at R.
(ie, $B Q=B R$)

Step 9: Draw a rectangle with width BP and height BR.

4. Construction of a square of given area same as that of a rectangle.

Learning objective:

The product of the parts into which a diameter of a circle is cut by a perpendicular chord, is equal to the square of half the chord.
ie,
The area of the rectangle formed of parts into which a diameter of a circle is cut by a perpendicular chord is equal to the area of the square formed by half the chord.

Draw a rectangle of width 5 cm and height 3 cm . Draw a square of the same area .

Step 1 : Draw a rectangle of width 5 cm and height 3 cm .

\boldsymbol{D}				\boldsymbol{C}	
3 cm					
\boldsymbol{A}		5 cm		B	

Step 2 : Extend the line AB by 3 cm .

\boldsymbol{D}				\boldsymbol{C}					
3 cm									
\boldsymbol{A}		$5^{5 \mathrm{~cm}}$			\boldsymbol{B}	${ }^{3 \mathrm{~cm}}$	\boldsymbol{E}		

Step 3 : \quad Find the midpoint (O) of the line AE .

Step 4 : Draw a semicircle with O as centre and $A E$ as diameter.

Step 5 : Extend the line BC and it meets the semicircle at P.

Step 6 : Draw a square with BP as side.

NOTE: We can complete this construction in another way also, instead of the steps 4,5 and 6

Step 4 : Draw a circle with O as centre and AE as diameter.

Step 5 : \quad Extend the line $C B$ and it meets the circle at P.

Step 6 : Extend the line BE. Draw an arc with centre B and radius BP. This arc meets the extended line at $R .(\mathrm{ie}, \mathrm{BP}=\mathrm{BR})$

Step 6 : Draw a square with BP as side.

CONSTRUCTIONS - TANGENTS

1. Tangent through a point on a circle

Learning objective :

The tangent at a point on a circle is perpendicular to the diameter through that point.

Draw a circle of radius 3 cm and mark a point on it. Draw a tangent through that point ?

Step 1 : Draw a circle of radius 3 cm

Step 2: Extend the line OA to outside the circle .

Step 3: Draw a line perpendicular to OA through the point A.

2. Tangents from a point outside the circle

Learning objective :

From a point outside a circle, two tangents can be drawn.

Draw a circle of radius 3 cm and mark a point 7 cm away from its centre. Draw the tangents to the circle from this point ?

Step 1: Draw a circle of radius 3 cm .

Step 2 : Mark a point P, 7 cm away from the centre of the circle .

Step 3: Draw the perpendicular bisector of the line OP .

Step 4: M is the midpoint of OP. Draw a circle with centre Mand radius MO. The circles intersect at A and B.

Step 5: Draw lines from the point P to A and B.

4. Incircle of a triangle .

Learning objective :

The bisectors of all three angles of a triangle meet at a point.

Draw a triangle of sides $4 \mathrm{~cm}, 5 \mathrm{~cm}, 6 \mathrm{~cm}$ and draw its incircle .

Step 1: Draw a triangle of sides $4 \mathrm{~cm}, 5 \mathrm{~cm}, 6 \mathrm{~cm}$.

Step 2: Draw the bisector of $<A$.

Step 3: Draw the bisector of $<\boldsymbol{B}$.

Step 4: The bisectors of $<A$ and $<B$ intersect at O. Draw a circle with O as centre and the distance from O to the side $A B$ as radius.

5. Triangle with all its sides touching a circle.

Learning objective :

In a circle, the angles between the radii through two points and the angle between the tangents at these points are supplementary.

Draw a circle of radius 2 cm . Draw a triangle of angles $40^{\circ}, 60^{\circ}, 80^{\circ}$ with all its sides touching the circle.

Step 1: Draw a circle of radius 2 cm .

Step 2: Draw angles of measure $140^{\circ}, 120^{\circ}$ and 100° among three consecutive radii.

Step 3: Draw a line perpendicular to the radius OP through the point P.

Step 4: The perpendiculars through the points P, Q and R intersect at A, B and C.

6. Construction of a rectangle having same area as that of a square. Learning objective :

The product of an intersecting line and the part of it outside the circle is equal to the square of the tangent.

Draw a square of side 3 cm . Draw a rectangle whose area equal to the area of the square and one of the is 7 cm ?

Step 1 : Draw a square of side 3 cm .

Step 2 : Extend the side DA downwards .

Step 3: Mark a point O on this extended line. Draw a circle with O as centre and $O A$ as radius.

Step 4 : Draw a line of length 7 cm from B and this line meets the circle at the point the points P and Q.

Step 5: Draw an arc with centre B and radius BQ. Draw a perpendicular through B which meets the arc at $R . \quad\left(i e, \quad B Q=B R, \quad<B=90^{\circ}\right)$

Step 6 : Draw a rectangle with BP as width and BR as height.

