WANDOOR GANITHAM - S.S.L.C STUDY MATERIAL 2022

 REVISION - ARITHMETIC SEQUENCES - PART 3 - ANSWERS1 Write the $\mathbf{n}^{\text {th }}$ term of the following arithmetic sequences .
a) $1,2,3, \ldots$
b) $2,4,6$, . .
c) $1,3,5, \ldots$

Answer
a) n
b) $2 n$
c) $2 n-1$

2 Write the $\mathbf{n}^{\text {th }}$ term of the following arithmetic sequences .
a) $1,2,3, \ldots$
b) $5,10,15$, . .
c) $7,12,17, \ldots$

Answer
a) n
b) $5 n$
c) $5 \boldsymbol{n}+2$

3 Consider the arithmetic sequence $a+1, a+2, a+3, \ldots$
a) What is the tenth term ?
b) What is the common difference ?
c) What is the algebraic form ?

Answer
a) $a+10$
b) 1
c) $a+n$

4 Consider the arithmetic sequence $x-1, x-2, x-3, \ldots$
a) What is the $20^{\text {th }}$ term of this sequence?
b) What is the common difference of this sequence?
c) What is the algebraic form of this sequence?

Answer
a) $x-20$
b) -1
c) $x-n$

5 Fill up the empty cells of the given square such that the numbers in each row, each column and both diagonals form arithmetic sequences .

Answer

2	7	12
6	11	16
10	15	20

6 Fill up the empty cells of the given square such that the numbers in each row, each column and both diagonals form arithmetic sequences .

Answer

4	11	18
6	13	20
8	15	22

7 The sum of the $8^{\text {th }}$ and the $9^{\text {th }}$ terms of an arithmetic sequence is 40 .
a) What is the sum of the first and the $16^{\text {th }}$ terms of this sequence ?
b) What is the sum of the first 16 terms of this sequence ?
a) $x_{1}+x_{16}=x_{8}+x_{9}=40$
b) Sum of the first 16 terms $=\frac{16}{2}\left(x_{1}+x_{16}\right)=\frac{16}{2} \times 40=320$

8 The sum of the $10^{\text {th }}$ and the $11^{\text {th }}$ terms of an arithmetic sequence is 65 .
a) What is the sum of the first and the $20^{\text {th }}$ terms of this sequence ?
b) What is the sum of the first 20 terms of this sequence ?

Answer

a) $x_{1}+x_{20}=x_{10}+x_{11}=65$
b) Sum of the first 20 terms $=\frac{20}{2}\left(x_{1}+x_{20}\right)=\frac{20}{2} \times 65=650$

9 The sum of the first and the $7^{\text {th }}$ terms of an arithmetic sequence is 22
a) What is the sum of the $3^{\text {rd }}$ and the $5^{\text {th }}$ terms of this sequence?
b) What is the $4^{\text {th }}$ term of this sequence?
c) What is the sum of the first 7 terms of this sequence ?

Answer

a) $x_{3}+x_{5}=x_{1}+x_{7}=22$
b) $\quad x_{4}=\frac{22}{2}=11$
c)Sum of the first 7 terms $=7 \times$ Middle term $=7 \times x_{4}=7 \times 11=77$

10 The sum of the first and $11^{\text {th }}$ terms of an arithmetic sequence is $\mathbf{4 0}$.
a) What is the sum of the $5^{\text {th }}$ and $7^{\text {th }}$ terms of this sequence?
b) What is the $6^{\text {th }}$ term of this sequence ?
c) What is the sum of the first $\mathbf{1 1}$ terms of this sequence ?

Answer

a) $x_{5}+x_{7}=x_{1}+x_{11}=40$
b) $x_{6}=\frac{40}{2}=20$
c) Sum of the first 11 terms $=11 \times$ Middle term $=11 \times x_{6}=11 \times 20=220$
$115^{\text {th }}$ term of an arithmetic sequence is 10 and the $10^{\text {th }}$ term is 5.
a) What is the common difference of this sequence?
b) What is the $15^{\text {th }}$ term of this sequence?
c) What is the sum of the first 29 terms of this sequence ?

Answer

a) common difference $=\frac{\text { Term difference }}{\text { Position difference }}=\frac{5-10}{10-5}=\frac{-5}{5}=-1$
b) $x_{15}=x_{5}+10 d=10+[10 \times(-1)]=10-10=0$
c) Sum of the first 29 terms $=29 \times$ Middle term $=29 \times x_{15}=29 \times 0=0$
$1210^{\text {th }}$ term of an arithmetic sequence is 20 and the $20^{\text {th }}$ term is 10 .
a) What is the common difference of this sequence?
b) What is the $30^{\text {th }}$ term of this sequence?
c) What is the sum of the first 59 terms of this sequence ?

Answer

a) common difference $=\frac{\text { Term difference }}{\text { Position difference }}=\frac{10-20}{20-10}=\frac{-10}{10}=-1$
b) $x_{30}=x_{10}+20 d=20+[20 \times(-1)]=20-20=0$
c) Sum of the first 59 terms $=59 \times$ Middle term $=59 \times x_{30}=59 \times 0=0$

13 The sum of first 4 terms of an arithmetic sequence is 20 and the sum of first 8 terms is 72 .
a) What is the sum of the first and the $4^{\text {th }}$ terms of this sequence?
b) What is the sum of the first and the $8^{\text {th }}$ terms of this sequence ?
c) What is the common difference of this sequence?
d) What is the first term of this sequence?

Answer

a) $x_{1}+x_{4}=\frac{20}{2}=10$
b) $x_{1}+x_{8}=\frac{72}{4}=18$
c) $x_{1}+x_{8}=18$ -

$$
x_{1}+x_{4}=10
$$

$$
\begin{aligned}
0+4 d & =8 \\
d & =\frac{8}{4}=2
\end{aligned}
$$

d) $x_{1}+x_{4}=10 \Rightarrow x_{1}+\left(x_{1}+3 d\right)=10$

$$
\begin{aligned}
2 x_{1}+3 d & =10 \\
2 x_{1}+(3 \times 2) & =10 \\
2 x_{1}+6 & =10 \\
2 x_{1} & =10-6=4 \\
x_{1} & =\frac{4}{2}=2
\end{aligned}
$$

14 The sum of first 6 terms of an arithmetic sequence is 78 and the sum of first 14 terms is 406 .
a) What is the sum of the first and the $6^{\text {th }}$ terms of this sequence ?
b) What is the sum of the first and the $14^{\text {th }}$ terms of this sequence?
c) What is the common difference of this sequence?
d) What is the first term of this sequence?

Answer

a) $x_{1}+x_{6}=\frac{78}{3}=26$
b) $x_{1}+x_{14}=\frac{406}{7}=58$
c) $x_{1}+x_{14}=58-$

$$
x_{1}+x_{6}=26
$$

$$
0+8 d=32
$$

$$
d=\frac{32}{8}=4
$$

d) $x_{1}+x_{6}=26==>x_{1}+\left(x_{1}+5 d\right)=26$

$$
\begin{aligned}
2 x_{1}+5 d & =26 \\
2 x_{1}+(5 \times 4) & =26 \\
2 x_{1}+20 & =26 \\
2 x_{1} & =26-20=6 \\
x_{1} & =\frac{6}{2}=3
\end{aligned}
$$

15 The sum of first 5 terms of an arithmetic sequence is 65 and the sum of first 10 terms is 230 .
a) What is the third term of this sequence?
b) What is the sum of the $2^{\text {nd }}$ and the $8^{\text {th }}$ terms of this sequence?
c) What is the common difference of this sequence?
d) What is the algebraic form of this sequence ?

Answer
a) $x_{3}=\frac{65}{5}=13$
b) $x_{3}+x_{8}=\frac{230}{5}=46$
c) $13+x_{8}=46 \Rightarrow x_{8}=46-13=33$

$$
\text { common difference }=\frac{\text { Term difference }}{\text { Position difference }}=\frac{33-13}{8-3}=\frac{20}{5}=4
$$

d) $x_{1}=x_{3}-2 d=13-(2 \times 4)=13-8=5$

$$
x_{n}=d n+f-d=4 n+5-4=4 n+1
$$

16 The sum of first 3 terms of an arithmetic sequence is 33 and the sum of first 8 terms is 208.
a) What is the second term of this sequence?
b) What is the sum of the $2^{\text {nd }}$ and the $7^{\text {th }}$ terms of this sequence ?
c) What is the common difference of this sequence ?
d) What is the algebraic form of this sequence?

Answer
a) $x_{2}=\frac{33}{3}=11$
b) $x_{2}+x_{7}=\frac{208}{4}=52$
c) $11+x_{7}=52==>\quad x_{7}=52-11=41$

$$
\text { common difference }=\frac{\text { Term difference }}{\text { Position difference }}=\frac{41-11}{7-2}=\frac{30}{5}=6
$$

d) $x_{1}=x_{1}-d=11-6=5$

$$
x_{n}=d n+f-d=6 n+5-6=6 n-1
$$

The sum of the $6^{\text {th }}$ and the $7^{\text {th }}$ terms of an arithmetic sequence is 43 and the third term is 11 .
a) What is the sum of the first and the $12^{\text {th }}$ terms of this sequence ?
b) What is the $10^{\text {th }}$ term of this sequence ?
c) What is the common difference of this sequence ?
d) What is the algebraic form of this sequence ?

Answer

a) $x_{1}+x_{12}=x_{6}+x_{7}=43$
b) $x_{3}+x_{10}=43==>11+x_{10}=43 \Rightarrow x_{10}=43-11=32$
c) common difference $=\frac{\text { Term difference }}{\text { Position difference }}=\frac{32-11}{10-3}=\frac{21}{7}=3$
d) $x_{1}=x_{3}-2 d=11-(2 \times 3)=11-6=5$

$$
x_{n}=d n+f-d=3 n+5-3=3 n+2
$$

18 The sum of the $8^{\text {th }}$ and the $9^{\text {th }}$ terms of an arithmetic sequence is 74 and the sixth term is 27 .
a) What is the sum of the first and the $16^{\text {th }}$ terms of this sequence ?
b) What is the $11^{\text {th }}$ term of this sequence ?
c) What is the common difference of this sequence ?
d) What is the algebraic form of this sequence ?

Answer

a) $x_{1}+x_{16}=x_{8}+x_{9}=74$
b) $x_{6}+x_{11}=74==>27+x_{11}=74 \quad=\Rightarrow \quad x_{11}=74-27=47$
c) common difference $=\frac{\text { Term difference }}{\text { Position difference }}=\frac{47-27}{11-6}=\frac{20}{5}=4$
d) $x_{1}=x_{6}-5 d=27-(5 \times 4)=27-20=7$

$$
x_{n}=d n+f-d=4 n+7-4=4 n+3
$$

19 Consider the arithmetic sequence $5,8,11$, . .
a) What is the common difference of this sequence?
b) How many times of the common difference is the difference between the $11^{\text {th }}$ and first terms of this sequence?
c) What is the difference between the $20^{\text {th }}$ and the $10^{\text {th }}$ terms of this sequence?
d) What is the difference between the sum of the first $\mathbf{1 0}$ terms and the sum of the next 10 terms of this sequence?

Answer

a) $8-5=3$
b) 10 times $\quad\left(x_{11}-x_{1}=10 d=10 \times 3=30\right)$
c) $x_{20}-x_{10}=10 d=10 \times 3=30$
d) $10 \times 30=300$

Consider the arithmetic sequence $7,11,15$, . .
a) What is the common difference of this sequence?
b)How many times of the common difference is the difference between the $21^{\text {st }}$ and first terms of this sequence?
c) What is the difference between the $40^{\text {th }}$ and the $20^{\text {th }}$ terms of this sequence?
d) What is the difference between the sum of the first 20 terms and the sum of the next 20 terms of this sequence ?

Answer

a) $\mathbf{1 1 - 7}=\mathbf{4}$
b) 20 times

$$
\left(x_{21}-x_{1}=20 d=20 \times 4=80\right)
$$

c) $x_{40}-x_{20}=20 d=20 \times 4=80$
d) $20 \times 80=1600$

21 The sum of first 10 terms of an arithmetic sequence and the sum of next 9 terms are equal. If the common difference is 2 ,
a) How many times of the common difference is the difference between the $11^{\text {th }}$ and first terms of this sequence ?
b) What is the difference between the $19^{\text {th }}$ and the $9^{\text {th }}$ terms of this sequence ?
c) What is the $10^{\text {th }}$ term of this sequence ?
d) What is the sum of the first 19 terms of this sequence ?

Answer

a) 10 times . $\quad\left(x_{11}-x_{1}=10 d=10 \times 2=20\right)$
b) $x_{19}-x_{9}=10 d=10 \times 2=20$
c) $x_{10}=9 \times 10 d=9 \times 10 \times 2=180$
d) Sum of the first 19 terms $=19 \times$ Middle term $=19 \times x_{10}=19 \times 180=3420$

22 The sum of first 8 terms of an arithmetic sequence and the sum of next 7 terms are equal. If the common difference is 5 ,
a) How many times of the common difference is the difference between the $\mathbf{9}^{\text {th }}$ and the first terms of this sequence?
b) What is the difference between the $15^{\text {th }}$ and the $7^{\text {th }}$ terms of this sequence ?
c) What is the $8^{\text {th }}$ term of this sequence?
d) What is the sum of first $\mathbf{1 5}$ terms of this sequence ?

Answer

a) 8 times.

$$
\left(x_{9}-x_{1}=8 d=8 \times 5=40\right)
$$

b) $x_{15}-x_{7}=8 d=8 \times 5=40$
c) $x_{8}=7 \times 8 d=7 \times 8 \times 5=280$
d) Sum of the first 15 terms $=15 \times$ Middle term $=15 \times x_{8}=15 \times 280=4200$

23 The angles of a quadrilateral are in arithmetic sequence. The smallest angle is $\mathbf{3 0 ^ { 0 }}$
a) What is the sum of the angles of a quadrilateral ?
b) What is the sum of the measures of the smallest angle and the largest angle ?
c) What is the common difference of this sequence ?
d) What are the measures of other angles ?

Answer

a) 360°.
b) $x_{1}+x_{4}=\frac{360}{2}=180^{\circ}$
c) $30+x_{4}=180 \Rightarrow x_{4}=180-30=150^{\circ}$ common difference $=\frac{\text { Term difference }}{\text { Position difference }}=\frac{150-30}{4-1}=\frac{120}{3}=40^{\circ}$
d) $30^{0}, 70^{0}, 110^{0}, 150^{0}$

24 The angles of a hexagon are in arithmetic sequence. The smallest angle is $\mathbf{8 0}^{\boldsymbol{0}}$.
a) What is the sum of the angles of a hexagon ?
b) What is the sum of the measures of the smallest angle and the largest angle ?
c) What is the common difference of this sequence?
d) What are the measures of other angles ?

Answer
a) 720°
b) $x_{1}+x_{6}=\frac{720}{3}=240^{\circ}$
c) $80+x_{6}=240 \Rightarrow x_{4}=240-80=160^{\circ}$ common difference $=\frac{\text { Term difference }}{\text { Position difference }}=\frac{160-80}{6-1}=\frac{80}{5}=16^{0}$
d) $\mathbf{8 0}{ }^{\circ}, \mathbf{9 6}^{0}, 112^{0}, 128^{\circ}, 144^{0}, 160^{0}$

25 The angles of a pentagon are in arithmetic sequence . The smallest angle is $60^{\mathbf{0}}$.
a) What is the sum of the angles of a pentagon ?
b) If the angles are written in arithmetic sequence, what will be the third term ?
c) What is the common difference of this sequence ?
d) What is the measure of the largest angle ?

Answer

a) $\mathbf{5 4 0}{ }^{0}$
b) $x_{3}=\frac{540}{5}=108^{0}$
c) common difference $=\frac{\text { Term difference }}{\text { Position difference }}=\frac{108-60}{3-1}=\frac{48}{2}=24^{0}$
d) $x_{5}=x_{1}+4 d=60+(4 \times 24)=60+96=156^{0}$

26 Look at the number pattern .

1

234
$\begin{array}{lllll}5 & 6 & 7 & 8 & 9\end{array}$
$\begin{array}{lllllll}10 & 11 & 12 & 13 & 14 & 15 & 16\end{array}$
\qquad
\qquad
a) Write down the fifth line of this pattern .
b) How many numbers are there in the $10^{\text {th }}$ line?
c) What is the last number in the $9^{\text {th }}$ line ?
d) What is the first number in the $10^{\text {th }}$ line ?
e) What is the sum of the numbers in the $10^{\text {th }}$ line ?

Answer.

a) $17,18,19,20,21,22,23,24,25$
b) $(2 \times 10)-1=19$
c) Last number in the $9^{\text {th }}$ line $=9^{2}=81$
d) First number in the $10^{\text {th }}$ line $=82$
e) Last number in the $10^{\text {th }}$ line $=10^{2}=100$

$$
\text { Sum of the numbers in the } 10^{\text {th }} \text { line }=\frac{19}{2}(82+100)=1729
$$

27 Look at the number pattern .

1

234
$\begin{array}{lllll}5 & 6 & 7 & 8 & 9\end{array}$
$\begin{array}{lllllll}10 & 11 & 12 & 13 & 14 & 15 & 16\end{array}$
\qquad
\qquad
a) Write down the next two more lines of this pattern .
b) What is the last number in the $11^{\text {th }}$ line ?
c) What is the first number in the $12^{\text {th }}$ line ?
d) What is the last number in the $12^{\text {th }}$ line ?

Answer.
a) $17,18,19,20,21,22,23,24,25$

$$
26,27,28,29,30,31,32,33,34,35,36
$$

b) Last number in the $11^{\text {th }}$ line $=11^{2}=121$
c) First number in the $12^{\text {th }}$ line $=122$
d) Last number in the $12^{\text {th }}$ line $=12^{2}=144$

