CLASSIFICATION OF ELEMENTS AND PERIODICITY IN PROPERTIES

EARLIER CLASSIFICATION

- **Dobereiner Law of Triads**Group of three elements and the middlth element has the average **atomic weight** of remaining two elements
- Chancourtois Cylindrical Or Helix Based on atomic weight
- Newland Law of Octaves

 Arranged in the increasing order of atomic weight and noticed that "eighth element is similar with first element in properties"
- Lothar Meyer Graphical classification on the basis of Atomic volume

MENDELEEV'S CLASSIFICATION

- Mendeleev classified the elements in the increasing order of their **atomic weights.**
- He founded that the properties of elements repeat after a regular interval.
- Based on this observation, he proposed a periodic law is known as **"Mendeleev's** periodic law or Classical periodic law"

"The properties of elements are the periodic functions of their atomic weights."

Merits:

- Arranged elements in horizontal rows (periods) and vertical columns (groups)
- He left vacant places for undiscovered elements and predicted some of their properties.

Eka Aluminium- Gallium

Eka silicon - Germanium

Eka boron - Scandium

• Elements with similar properties are placed in the same group.

Demerits:

- Elements with dissimilar properties are found in same group.
- He could not give an exact position for hydrogen.
- He could not give exact position for Lanthanoids and Actinoids and also for isotopes.
- Mendeleev's periodic table did not strictly obey the increasing order atomic weight

MODERN CLASSIFICATION

- Done by **Henry Moseley** through **X-ray spectral study**
- Arranged in the increasing order of Atomic number
- Introduced a law known as **Modern periodic law**

"The physical and chemical properties of elements are the periodic functions of their atomic numbers"

- 18 vertical columns Groups
- 7 Horizontal rows Periods
- 4 Blocks (s,p,d,f)

Digit	Name	Symbol	Eg ; Name the element with atomic number also provide symbols			
0	nil	n	110, 112, 104			
1	un	u	110, 112, 104			
2	bi	b	110 – Ununnilium(Uun) 112 – Ununbium(Uub)			
3	tri	t	104 – Unnilquadium(Unq)			
4	quad	q				
5	pent	р				
6	hex	h				
7	sept	S				
8	oct	0				
9	enn	e				
<u>Periods</u>						

Nomenclature of elements with atomic number greater than 100

Periods	Orbitals into which electrons are filled over previous period	Maximum electrons can accommodate in these orbitals	Number of elements	Name of the period	
1	1s	2	2	Very short	
2	2s, 2p	8	8	Short	
3	3s, 3p	8	8	Short	
4	4s, 4p, 3d	18	18	Long	
5	5s, 5p, 4d	18	18	Long	
6	6s, 6p, 5d, 4f	32	32	Monster	
7	7s, 7p, 6d, 5f	32	32	Incomplete	

Group wise Electronic Configuration

Group	General Electronic Configuration(GEC)	Common name of the group			
1	ns ¹	Alkali metals			
2	ns ²	Alkaline earth metals			
13	ns ² np ¹	Boron Family			
14	ns ² np ²	Carbon Family			
15	ns ² np ³	Pnictogens			
16	ns ² np ⁴	Chalcogens			
17	ns ² np ⁵	Halogens			
18	ns ² np ⁶	Noble gases/Inert Gases			

s-, p-, d- and f- blocks

• The s- and p- block elements are called main group elements or

representative elements.

<u>s- block elements:</u>

- Group-1 (Alkali metals) and Group-2 elements (Alkaline earth metals)
- Electropositive and highly reactive
- Fixed oxidation state (1st group +1, and 2nd group +2)
- All are metals
- GEC is **ns**¹⁻²

<u>p- Block elements:</u>

- They belongs to group- 13 to 18.
- General electronic configuration is ns² np¹⁻⁶
- Contains metals, non metals and metalloids
- Contains solids, liquid and gases

d- block elements:

- Group 3 to 12
- Also known as **Transition elements** (Gradual conversion from metallic character to nonmetallic character)
- Various oxidation state and forms coloured compounds
- Used as catalysts and forms alloys

• General electronic configuration (n-1)d¹⁻¹⁰ ns⁰⁻².

f block elements:

• Two series

Lanthanoids:14 elements from 6th period: Ce(58) – Lu(71) :Coming after Lanthanum

Actinoids: 14 elements from 7th period: Th(90) – Lr(103) : Coming after Actinium

- Also known as **Inner transition elements**
- Rare earth elements and radioactive elements
- Elements after Uranium is known as **Transuranium elements**
- GEC is (n-2)f¹⁻¹⁴(n-1)d⁰⁻¹ns²

TRENDS IN PHYSICAL PROPERTIES

a) Atomic radius

- Distance from center of nucleus to outer most orbital of an atom
- Measured in terms of Covalent radius, Ionic radius, metallic radius
- Unit A⁰ or pm
- **Variation along a period :** Decreases from left to right (*Reason : There is no increase in number of shell but there is increase in nuclear attraction*)
- **Variation in a group :** Increases from top to bottom (*Reason : There is increase in number of shell and there is decrease in nuclear attraction*)

- Size of cation is smaller than parental atom As cation forms nuclear attraction increases
- As the positive charge increases size again decreases
- Size of anion is greater than parental atom As anion forms nuclear attraction decreases
 As the negative charge increases size
- again increases

Isoelectronic Species : Species having same number of electrones

b) Ionisation enthalpy (Δ_i H)

- Energy required to remove loosely bounded electron from the outer most orbital of an isolated gaseous atom
- Positive in sign and unit is **kJ/Mol**
- Successive ionisation enthalpy is greater than previous state due to increase in nuclear attraction

<u>Factors affecting</u> Nuclear force of attraction Shielding effect

- Atomic size
- **Variation along a period :** Increases from left to right (*Reason : There is increase in nuclear attraction*) Decreases
- **Variation in a group :** Increases from top to bottom (*Reason : There is decrease in nuclear attraction*)
- Ionisation enthalpy of **Be** is greater than **B** due to stable **full filled** configuration
- Ionisation enthalpy of **N** is greater than **O** due to stable **half filled** configuration

c) Electron gain enthalpy (Δ_{eg} H) – Electron Affinity

- Energy released when an electron is added to the outermost orbital of an isolated gaseous atom
- Negative in sign and unit is **kJ/Mol**
- Group 18 elements has positive Electron gain enthalpy due to completed octet
- <u>Factors affecting</u> Nuclear force of attraction Shielding effect Atomic size
- **Variation along a period :** Increases from left to right (*Reason : There is increase in nuclear attraction*)
- Variation in a group : Decreases Increases from top to bottom (Reason : There is decrease in nuclear attraction)
- Electron gain enthalpy of **O** is less than **S** and **F** less than **Cl** due to electron-electron repulsion due to their extreme small size
- Cl has the highest electron affinity

d) Electronegativity

- Ability of an atom to attract shared pair of electron towards it
- Unitless <u>Factors affecting</u> Nuclear force of attraction Shielding effect Atomic size
- Variation along a period : Increases from left to right (*Reason : There is increase in nuclear attraction*) Decreases
 Variation in a group : Increases from top to bottom (*Reason : There is decrease in nuclear attraction*)
- *F* has the highest electronegativity

TRENDS IN CHEMICAL PROPERTIES

a) Oxidation state or Valency

• Along a period first increases then decreases

Group	1	2	13	14	15	16	17	18
Valency	1	2	3	4	3	2	1	0

• In a group valency remains constant

b) Anomalous properties

- Second period elements(First element of each group) shows dissimilarities with elements of same group
 - Reason : Small size
 - High polarizing power

Various anomalous properties

- Maximum covalency is only 4 due to absence of d orbital
- Greater ability to form multiple bonds
- Shows diagonal relationship

c) Reactivity

- Extreme left elements have a tendency to lose electrons(Metallic character) and extreme right elements has a tendency to accept electrons (Non metallic character), so most reactive elements found at extreme left and right
- F and Cs are vigorously reactive

Acidic Oxides: Cl₂O₇, SO₃ Basic oxides : Na₂O, MgO Amphoteric : Al₂O₃, As₂O₃ Neutral oxides: CO, NO, N₂O